Flood Regional Composition Considering Typical-Year and Multi-Site Flood Source Characteristics
Abstract
:1. Introduction
2. Current Flood Regional Composition Methods
2.1. Typical-Year Composition (TYFC) Method
2.2. Equivalent Frequency Regional Composition (EFRC) Method
2.3. Most Likely Regional Composition (MLFRC) Method
3. Proposed Novel FRC-POD Method
3.1. Proper Orthogonal Decomposition (POD)
3.2. Flood Regional Composition Based on POD
4. Study Region and Data
4.1. The Upper Yangtze River Basin
4.2. Data
5. Results and Discussion
5.1. Flood Frequency Analysis at Cuntan Station
5.2. Design Flood Estimated by TYFC Method
5.3. Design Flood Estimated by FRC-POD Method
5.4. Design Flood Estimated by MLFRC Method
5.5. Comparative Study
5.5.1. Flood Regional Compositions at Cuntan Station
5.5.2. Design Flood Estimation at Cuntan Station
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, S.; Zhang, H.; Chen, H.; Peng, D.; Liu, P.; Pang, B. A reservoir flood forecasting and control system for China. Hydrol. Sci. J. 2004, 49, 959–972. [Google Scholar] [CrossRef]
- Duan, W.; Guo, S.; Wang, J.; Liu, D. Impact of cascaded reservoirs group on flow regime in the middle and lower reaches of the Yangtze River. Water 2016, 8, 218. [Google Scholar] [CrossRef]
- Guo, S.; Muhammad, R.; Liu, Z.; Xiong, F.; Yin, J. Design flood estimation methods for cascade reservoirs based on copulas. Water 2018, 10, 560. [Google Scholar] [CrossRef]
- Yue, S.; Ouarda, T.B.; Bobée, B.; Legendre, P.; Bruneau, P. Approach for describing statistical properties of flood hydrograph. J. Hydrol. Eng. 2002, 7, 147–153. [Google Scholar]
- Xiao, Y.; Guo, S.L.; Chen, L. Design flood hydrograph based on multi-characteristic synthesis index method. J. Hydrol. Eng. 2009, 14, 1359–1364. [Google Scholar]
- MWR (Ministry of Water Resources). Regulation for Calculating Design Flood of Water Resources and Hydropower Projects; Water Resources and Hydropower Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Xiong, F.; Guo, S.; Liu, P.; Xu, C.-Y.; Zhong, Y.; Yin, J.; He, S. A general framework of design flood estimation for cascade reservoirs in operation period. J. Hydrol. 2019, 577, 124003. [Google Scholar]
- Xiong, F.; Guo, S.; Yin, J.; Tian, J.; Rizwan, M. Comparative study of flood regional composition methods for design flood estimation in cascade reservoir system. J. Hydrol. 2020, 590, 125530. [Google Scholar]
- De Michele, C.; Salvadori, G. A generalized pareto intensity-duration model of storm rainfall exploiting 2-Copulas. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Salvadori, G.; Michele, C. Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resour. Res. 2004, 40, W125111. [Google Scholar]
- Poulin, A.; Huard, D.; Favre, A.C.; Pugin, S. Importance of tail dependence in bivariate frequency analysis. J. Hydrol. Eng. 2007, 12, 394–403. [Google Scholar]
- Arnaud, P.; Cantet, P.; Odry, J. Uncertainties of flood frequency estimation approaches based on continuous simulation using data resampling. J. Hydrol. 2017, 554, 360–369. [Google Scholar] [CrossRef]
- Yin, J.; Guo, S.; Liu, Z.; Yang, G.; Zhong, Y.; Liu, D. Uncertainty analysis of bivariate design flood estimation and its impacts on reservoir routing. Water Resour. Manag. 2018, 32, 1795–1809. [Google Scholar] [CrossRef]
- Nelsen, R.B. An Introduction to Copulas, 2nd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Salvadori, G.; Durante, F.; Michele, C.; Bernardi, M.; Petrella, L. A multivariate copula-based framework for dealing with hazard scenarios and failure probabilities. Water Resour. Res. 2016, 52, 3701–3721. [Google Scholar] [CrossRef]
- Karhunen, K. Zur spektral theorie stochasticher prozesse. Ann. Acad. Sci. Fenn. 1946, 34, 1–7. [Google Scholar]
- Aubry, N. On the hidden beauty of the proper orthogonal decomposition. Theor. Comput. Fluid Dyn. 1991, 2, 339–352. [Google Scholar] [CrossRef]
- Higham, J.E.; Brevis, W.; Keylock, C.J.; Safarzadeh, A. Using modal decompositions to explain the sudden expansion of the mixing layer in the wake of a groyne in a shallow flow. Adv. Water Resour. 2017, 107, 451–459. [Google Scholar] [CrossRef]
- Kutz, N.J.; Brunton, S.L.; Brunton, B.W.; Proctor, J.L. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2016. [Google Scholar]
- Higham, J.E.; Brevis, W.; Keylock, C.J. Implications of the selection of a particular modal decomposition technique for the analysis of shallow flows. J. Hydraul. Res. 2018, 56, 796–805. [Google Scholar] [CrossRef]
- Feeny, B.F.; Liang, Y. Interpreting proper orthogonal modes of randomly excited vibration systems. J. Sound Vib. 2003, 265, 953–966. [Google Scholar] [CrossRef]
- Jiang, C.; Xiong, L.; Xu, C.; Yan, L. A river network-based hierarchical model for deriving flood frequency distributions and its application to the upper Yangtze basin. Water Resour. Res. 2021, 57, 029374. [Google Scholar] [CrossRef]
- Nguyen-Tien, V.; Elliott, R.; Strobl, E.A. Hydropower generation, flood control and dam cascades: A national assessment for Vietnam. J. Hydrol. 2018, 560, 109–126. [Google Scholar] [CrossRef]
- Li, T.; Guo, S.; Chen, L.; Guo, J. Bivariate flood frequency analysis with historical information based on Copula. J. Hydrol. Eng. 2013, 18, 1018–1030. [Google Scholar] [CrossRef]
- Zhong, S.; He, Y.; Guo, S.; Xie, Y.; Xu, C.-Y. Design flood estimation of cascade reservoirs based on vine-copula flood regional composition. J. Hydrol. Reg. Stud. 2024, 56, 102071. [Google Scholar]
Reservoir Name | Reservoir Number | Catchment Area (104 km2) | Normal Pool Level (m) | Total Storage (108 m3) | Regulation Storage (108 m3) | Flood Prevention Storage (108 m3) | Installed Hydropower Capacity (GW) | Operation Year |
---|---|---|---|---|---|---|---|---|
Liyuan | 1 | 22.00 | 1618 | 8.05 | 1.73 | 1.73 | 2.40 | 2016 |
Ahai | 2 | 23.54 | 1504 | 8.85 | 2.38 | 2.15 | 2.00 | 2014 |
Jinanqiao | 3 | 23.74 | 1418 | 9.13 | 3.46 | 1.58 | 2.40 | 2012 |
Longkaikou | 4 | 24.00 | 1298 | 55.8 | 11.3 | 12.6 | 1.80 | 2014 |
Ludila | 5 | 24.73 | 1223 | 17.18 | 3.76 | 5.64 | 2.16 | 2014 |
Guanyinyan | 6 | 25.65 | 1134 | 22.5 | 5.55 | 5.42 | 3.00 | 2016 |
Lianghekou | 7 | 6.57 | 2865 | 108 | 65.6 | 21.44 | 3.00 | 2022 |
Jinping-I | 8 | 10.26 | 1880 | 79.9 | 49.11 | 16.0 | 3.60 | 2014 |
Ertan | 9 | 11.64 | 1200 | 58 | 33.7 | 9.0 | 3.30 | 1999 |
Wudongde | 10 | 40.61 | 975 | 74.08 | 30.2 | 24.4 | 10.20 | 2021 |
Baihetan | 11 | 43.03 | 825 | 206.27 | 104 | 75 | 16.00 | 2022 |
Xiluodu | 12 | 45.44 | 600 | 126.7 | 64.6 | 46.5 | 12.60 | 2014 |
Xiangjiaba | 13 | 45.88 | 380 | 51.63 | 9.03 | 9.03 | 6.00 | 2014 |
Zipingpu | 14 | 2.27 | 877 | 11.12 | 7.74 | 1.67 | 0.76 | 2006 |
Houziyan | 15 | 5.40 | 1842 | 7.06 | 3.87 | 3.87 | 0.17 | 2017 |
Changheba | 16 | 5.67 | 1690 | 10.75 | 4.15 | 4.15 | 0.26 | 2017 |
Dagangshan | 17 | 6.23 | 1130 | 7.42 | 1.17 | 1.17 | 0.26 | 2015 |
Pubugou | 18 | 7.74 | 850 | 53.9 | 38.82 | 10.56 | 0.36 | 2010 |
Bikou | 19 | 2.60 | 704 | 2.17 | 1.46 | 1.56 | 0.30 | 1997 |
Baozhusi | 20 | 2.84 | 588 | 25.5 | 13.4 | 2.8 | 0.70 | 1998 |
Tingzikou | 21 | 6.11 | 458 | 40.67 | 17.32 | 14.4 | 1.10 | 2014 |
Caojie | 22 | 15.61 | 203 | 22.18 | 0.65 | 1.99 | 0.50 | 2011 |
TGR | 23 | 100.0 | 175 | 393 | 278.94 | 221.5 | 22.5 | 2008 |
River Name | Hydrologic Station | Catchment Area | W7d | W15d | |||
---|---|---|---|---|---|---|---|
km2 | % | 108 m3 | % | 108 m3 | % | ||
Jinsha River | Pingshan | 485,099 | 60.0 | 861 | 38.4 | 1730 | 41.6 |
Minjiang River | Gaochang | 135,378 | 16.0 | 500 | 22.3 | 949 | 22.8 |
Tuo River | Fushun | 74,248 | 4.2 | 319 | 5.4 | 282 | 6.8 |
Jialin River | Beibei | 156,142 | 18.0 | 703 | 31.4 | 1070 | 25.7 |
Uncontrolled interval basin | 15,692 | 1.8 | 57 | 2.5 | 129 | 3.1 | |
Yangtze River | Cuntan | 866,559 | 100 | 2240 | 100 | 4160 | 100 |
Flood | Statistical Values | Design Flood Values | |||||
---|---|---|---|---|---|---|---|
EX | CV | CS | 0.01% | 0.10% | 1% | 5% | |
Qm (m3/s) | 51,600 | 0.25 | 0.75 | 121,000 | 105,000 | 88,700 | 75,200 |
W3d (108 m3) | 124.0 | 0.25 | 0.625 | 282 | 248 | 210 | 180 |
W7d (108 m3) | 244.0 | 0.22 | 0.55 | 509 | 452 | 390 | 340 |
W15d (108 m3) | 450.0 | 0.210 | 0.525 | 911 | 814 | 705 | 618 |
Typical-Year | Flood Volume | Cuntan | Pingshan | Gaochang | Fushun | Beibei | Interval Basin |
---|---|---|---|---|---|---|---|
1961 | W7d (108 m3) | 261 | 31.0 | 88.0 | 27.0 | 111.0 | 4.0 |
(%) | 100 | 11.9 | 33.7 | 10.3 | 42.5 | 1.6 | |
W15d (108 m3) | 470 | 91.0 | 164.0 | 42.0 | 163.0 | 10.0 | |
(%) | 100 | 19.4 | 34.9 | 8.9 | 34.7 | 2.1 | |
1966 | W7d (108 m3) | 336 | 152.0 | 91.0 | 14.0 | 58.0 | 21.0 |
(%) | 100 | 45.2 | 27.1 | 4.2 | 17.3 | 6.2 | |
W15d (108 m3) | 581 | 302.0 | 141.0 | 22.0 | 89.0 | 27.0 | |
(%) | 100 | 52.0 | 24.3 | 3.8 | 15.3 | 4.6 | |
1981 | W7d (108 m3) | 331 | 89.0 | 60.0 | 33.0 | 137.0 | 12.0 |
(%) | 100 | 26.9 | 18.1 | 10.0 | 41.4 | 3.6 | |
W15d (108 m3) | 535 | 167.0 | 121.0 | 45.0 | 175.0 | 27.0 | |
(%) | 100 | 31.2 | 22.6 | 8.4 | 32.7 | 5.1 | |
1982 | W7d (108 m3) | 213 | 83.0 | 40.0 | 4.0 | 80.0 | 6.0 |
(%) | 100 | 39.0 | 18.8 | 1.9 | 37.6 | 2.7 | |
W15d (108 m3) | 399 | 164.0 | 75.0 | 8.0 | 129.0 | 23.0 | |
(%) | 100 | 41.1 | 18.8 | 2.0 | 32.3 | 5.8 | |
1989 | W7d (108 m3) | 249 | 66.0 | 43.0 | 5.0 | 122.0 | 13.0 |
(%) | 100 | 26.5 | 17.3 | 2.0 | 49.0 | 5.2 | |
W15d (108 m3) | 419 | 135.0 | 89.0 | 10.0 | 160.0 | 25.0 | |
(%) | 100 | 32.2 | 21.2 | 2.4 | 38.2 | 6.0 | |
1991 | W7d (108 m3) | 269 | 109.0 | 69.0 | 16.0 | 43.0 | 32.0 |
(%) | 100 | 40.5 | 25.7 | 5.9 | 16.0 | 11.9 | |
W15d (108 m3) | 480 | 227.0 | 132.0 | 22.0 | 58.0 | 41.0 | |
(%) | 100 | 47.3 | 27.5 | 4.6 | 12.1 | 8.5 | |
1998 | W7d (108 m3) | 296 | 115.0 | 57.0 | 20.0 | 91.0 | 13.0 |
(%) | 100 | 38.9 | 19.3 | 6.8 | 30.7 | 4.3 | |
W15d (108 m3) | 545 | 242.0 | 97.0 | 30.0 | 132.0 | 44.0 | |
(%) | 100 | 44.4 | 17.8 | 5.5 | 24.2 | 8.1 | |
2010 | W7d (108 m3) | 257 | 71 | 43 | 7 | 108 | 28.0 |
(%) | 100 | 27.6 | 16.7 | 2.7 | 42.0 | 11.0 | |
W15d (108 m3) | 500 | 138.0 | 97.0 | 19.0 | 208.0 | 38.0 | |
(%) | 100 | 27.6 | 19.4 | 3.8 | 41.6 | 7.6 | |
2012 | W7d (108 m3) | 275 | 99.0 | 70.0 | 20.0 | 47.0 | 39.0 |
(%) | 100 | 36.0 | 25.5 | 7.3 | 17.1 | 14.1 | |
W15d (108 m3) | 507 | 201.0 | 127.0 | 27.0 | 76.0 | 76.0 | |
(%) | 100 | 39.6 | 25.0 | 5.3 | 15.0 | 15.1 | |
2020 | W7d (108 m3) | 390 | 81.0 | 115.0 | 32.0 | 158.0 | 4.0 |
(%) | 100 | 20.8 | 29.5 | 8.2 | 40.5 | 1.0 | |
W15d (108 m3) | 642 | 161.0 | 174.0 | 52.0 | 226.0 | 29.0 | |
(%) | 100 | 25.1 | 27.1 | 8.1 | 35.2 | 4.5 |
Design Frequency | 0.1% | 0.50% | 1% | 2% | 5% | 10% | 20% | |
---|---|---|---|---|---|---|---|---|
Cuntan station | W7d | 452 | 410 | 390 | 369 | 340 | 315 | 287 |
W15d | 814 | 740 | 705 | 670 | 618 | 575 | 526 | |
Pingshan station | W7d | 116 | 113 | 111 | 108 | 104 | 98.8 | 94.3 |
W15d | 243 | 221 | 242 | 215 | 199 | 192 | 174 | |
Gaochang station | W7d | 123 | 114 | 100 | 96.9 | 82.6 | 72.9 | 63.0 |
W15d | 181 | 158 | 156 | 152 | 138 | 126 | 118 | |
Fushun station | W7d | 1.96 | 3.22 | 7.42 | 7.37 | 10.9 | 15.9 | 18.5 |
W15d | 24.1 | 29.6 | 23.2 | 27.3 | 34.2 | 38.9 | 40.2 | |
Beibei station | W7d | 136 | 126 | 125 | 115 | 106 | 103 | 94 |
W15d | 239 | 222 | 196 | 192 | 183 | 175 | 151 | |
Interval basin | W7d | 76.1 | 53.2 | 47.1 | 41.4 | 36.8 | 24.9 | 17.0 |
W15d | 126 | 110 | 88.4 | 83.1 | 64.5 | 43.3 | 42.9 |
Methods | Cuntan | Pingshan | Gaochang | Fushun | Beibei | Interval Basin | |
---|---|---|---|---|---|---|---|
FRC-POD method | 100 | 40 | 21 | 2 | 20 | 17 | |
MLFRC method | 100 | 30 | 21 | 4 | 30 | 15 | |
TYFC method | 1966 | 100 | 52 | 24 | 4 | 15 | 5 |
1981 | 100 | 31 | 23 | 8 | 33 | 5 | |
1998 | 100 | 44 | 18 | 6 | 24 | 8 | |
2012 | 100 | 40 | 25 | 5 | 15 | 15 | |
2020 | 100 | 25 | 27 | 8 | 35 | 5 |
Flood Volume | Year | Pingshan Station | Beibei Station | η | ||||
---|---|---|---|---|---|---|---|---|
Start Date | W | RP | Start Date | W | RP | |||
W7d (108 m3) | 1959 | 12 August | 79.0 | <5 | 11 August | 48.4 | <5 | 1.63 |
1966 | 29 August | 163.1 | 30 | 30 August | 59.1 | <5 | 2.76 | |
1983 | 1 August | 61.4 | <5 | 31 July | 107.5 | 5~10 | 0.57 | |
1992 | 13 July | 59.7 | <5 | 14 July | 98.6 | <5 | 0.61 | |
W15d (108 m3) | 1953 | 24 July | 147.2 | <5 | 24 July | 107.1 | <5 | 1.37 |
1959 | 5 August | 145.7 | <5 | 10 August | 78.9 | <5 | 1.85 | |
1962 | 10 August | 246.8 | 5~10 | 16 August | 125.2 | <5 | 1.97 | |
1964 | 11 September | 176.2 | <5 | 10 September | 168.2 | 5~10 | 1.05 | |
1971 | 15 August | 142.5 | <5 | 13 August | 64.5 | <5 | 2.21 | |
1982 | 20 July | 166.3 | <5 | 17 July | 153.1 | <5 | 1.09 | |
1984 | 9 July | 159.8 | <5 | 3 July | 173.0 | 5~10 | 0.92 | |
1992 | 8 July | 121.2 | <5 | 14 July | 127.7 | <5 | 0.95 | |
1996 | 22 July | 175.7 | <5 | 22 July | 44.6 | <5 | 3.94 | |
1997 | 9 July | 190.2 | <5 | 3 July | 47.3 | <5 | 4.02 | |
2004 | 3 September | 180.4 | <5 | 29 August | 110.0 | <5 | 1.64 | |
2006 | 7 July | 113.0 | <5 | 1 July | 45.9 | <5 | 2.46 | |
2009 | 6 August | 180.7 | <5 | 1 August | 96.1 | <5 | 1.88 |
Flood Volume | Year | Gaochang Station | Beibei Station | δ | ||||
---|---|---|---|---|---|---|---|---|
Start Date | W | RP | Start Date | W | RP | |||
W7d (108 m3) | 1957 | 14 July | 54.29 | <5 | 14 July | 90.55 | <5 | 0.60 |
1959 | 10 August | 89.19 | 10~20 | 11 August | 48.41 | <5 | 1.84 | |
1961 | 26 June | 87.64 | 10~20 | 27 June | 111.11 | 5~10 | 0.79 | |
1964 | 10 September | 71.28 | <5 | Sept. 10 | 90.20 | <5 | 0.79 | |
1966 | 30 August | 96.60 | 20~30 | 30 August | 59.14 | <5 | 1.63 | |
1977 | 7 July | 54.67 | <5 | 7 July | 84.74 | <5 | 0.65 | |
1981 | 10 July | 78.26 | 5~10 | 13 July | 138.68 | <5 | 0.56 | |
1997 | 4 July | 48.50 | <5 | 3 July | 30.62 | <5 | 1.58 | |
2003 | 28 August | 61.37 | <5 | 30 August | 86.29 | <5 | 0.71 | |
2006 | 5 July | 32.50 | <5 | 3 July | 32.27 | <5 | 1.01 | |
2009 | 31 July | 45.18 | <5 | 2 August | 76.12 | <5 | 0.59 | |
2018 | 12 July | 75.40 | 5~10 | 11 July | 116.73 | 10~20 | 0.65 | |
2020 | 13 August | 110.6 | 10~20 | 14 August | 155 | 50 | 0.71 | |
W15d (108 m3) | 1953 | 19 July | 98.17 | <5 | 24 July | 107.11 | <5 | 0.92 |
1957 | 8 July | 101.85 | <5 | 7 July | 144.91 | <5 | 0.70 | |
1958 | 10 August | 141.32 | 5~10 | 13 August | 156.25 | <5 | 0.90 | |
1961 | 26 June | 162.71 | 10~20 | 25 June | 163.79 | 5~10 | 0.99 | |
1964 | 9 September | 126.49 | <5 | 10 September | 168.19 | 5~10 | 0.75 | |
1965 | 9 July | 119.70 | <5 | 9 July | 158.66 | <5 | 0.75 | |
1970 | 28 July | 99.67 | <5 | 28 July | 70.78 | <5 | 1.41 | |
1971 | 10 August | 89.02 | <5 | 13 August | 64.51 | <5 | 1.38 | |
1977 | 2 July | 91.32 | <5 | 7 July | 110.45 | <5 | 0.83 | |
1995 | 12 August | 104.87 | <5 | 12 August | 65.15 | <5 | 1.61 | |
1996 | 20 July | 98.45 | <5 | 22 July | 44.58 | <5 | 2.21 | |
1997 | 28 June | 85.54 | <5 | 3 July | 47.30 | <5 | 1.81 | |
2003 | 26 August | 109.07 | <5 | 29 August | 138.01 | <5 | 0.79 | |
2006 | 5 July | 64.40 | <5 | 1 July | 45.93 | <5 | 1.40 | |
2010 | 13 July | 98.04 | <5 | 16 July | 207.08 | 50 | 0.47 | |
2013 | 5 July | 114.28 | <5 | 10 July | 178.54 | 10 | 0.64 | |
2018 | 8 July | 138.97 | 5~10 | 3 July | 199.51 | 20 | 0.70 | |
2020 | 11 August | 176.5 | 10~20 | 12 August | 223.8 | 20 | 0.79 |
Probability | Design Flood | Original Value | FRC-POD | MLFRC | TYFC-1998 |
---|---|---|---|---|---|
0.10% | Qm (m3/s) | 105,000 | 61,600 (−41.3%) | 65,400 (−37.8%) | 56,500 (−46.2%) |
W3d 108 m3) | 248 | 148 (−40.2%) | 161 (−35.2%) | 136 (−45.0%) | |
W7d (108 m3) | 452 | 287 (−36.6%) | 315 (−30.4%) | 265 (−41.4%) | |
W15d (108 m3) | 814 | 532 (−34.7%) | 592 (−27.3%) | 500 (−38.6%) | |
1% | Qm (m3/s) | 88,700 | 48,300 (−45.6%) | 50,000 (−43.6%) | 44,700 (−49.6%) |
W3d 108 m3) | 210 | 117 (−44.3%) | 122 (−42.1%) | 109 (−48.1%) | |
W7d (108 m3) | 390 | 248 (−36.5%) | 261 (−33.1%) | 235 (−39.8%) | |
W15d (108 m3) | 705 | 473 (−33.0%) | 506 (−28.3%) | 449 (−36.3%) | |
2% | Qm (m3/s) | 82,900 | 46,500 (−44.0%) | 49,400 (−40.5%) | 42,900 (−48.2%) |
W3d 108 m3) | 198 | 112 (−43.3%) | 120 (−39.2%) | 105 (−47.0%) | |
W7d (108 m3) | 369 | 237 (−35.8%) | 258 (−30.3%) | 225 (−39.1%) | |
W15d (108 m3) | 670 | 453 (−32.4%) | 499 (−25.5%) | 429 (−36.0%) | |
5% | Qm (m3/s) | 75,200 | 43,300 (−42.4%) | (−38.7%) | 40,500 (−46.1%) |
W3d 108 m3) | 180 | 105 (−41.9%) | 112 (−37.6%) | 98.8 (−45.1%) | |
W7d (108 m3) | 340 | 222 (−34.8%) | (−28.9%) | 210 (−38.3%) | |
W15d (108 m3) | 618 | 424 (−31.4%) | 469 (−24.1%) | 400 (−35.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhong, S.; Guo, S.; Sun, B.; Wang, X. Flood Regional Composition Considering Typical-Year and Multi-Site Flood Source Characteristics. Water 2025, 17, 1106. https://doi.org/10.3390/w17071106
Wang Y, Zhong S, Guo S, Sun B, Wang X. Flood Regional Composition Considering Typical-Year and Multi-Site Flood Source Characteristics. Water. 2025; 17(7):1106. https://doi.org/10.3390/w17071106
Chicago/Turabian StyleWang, Yun, Sirui Zhong, Shenglian Guo, Bokai Sun, and Xiaoya Wang. 2025. "Flood Regional Composition Considering Typical-Year and Multi-Site Flood Source Characteristics" Water 17, no. 7: 1106. https://doi.org/10.3390/w17071106
APA StyleWang, Y., Zhong, S., Guo, S., Sun, B., & Wang, X. (2025). Flood Regional Composition Considering Typical-Year and Multi-Site Flood Source Characteristics. Water, 17(7), 1106. https://doi.org/10.3390/w17071106