Power Generation and Microbial Communities in Microbial Fuel Cell Powered by Tobacco Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of MFCs
2.2. Analytical Method
2.3. Microbial Community Analysis
3. Result and Discussion
3.1. Power Generation and Organic Removal
3.2. Anode Biofilm Electrochemical Activity
3.3. Microbial Community Analysis
3.4. Bacterial Function Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Potts, R.J.; Bombick, B.R.; Meckley, D.R.; Ayres, P.H.; Pence, D.H. A summary of toxicological and chemical data relevant to the evaluation of cast sheet tobacco. Exp. Toxicol. Pathol. 2010, 62, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wen, Y.B.; Sun, D.P.; Mao, Y.; Yao, Y.J. Study on the decrease of harmful substance in paper-process reconstituted tobacco sheet. Adv. Mater. Res. 2011, 314, 2338–2343. [Google Scholar] [CrossRef]
- Wu, X.-X.; Xu, C.-H.; Li, M.; Sun, S.-Q.; Li, J.-M.; Dong, W. Analysis and identification of two reconstituted tobacco sheets by three-level infrared spectroscopy. J. Mol. Struct. 2014, 1069, 133–139. [Google Scholar] [CrossRef]
- Liu, L.; Nong, Y.; Luo, Q.; Liu, C.; Lai, H.; Fang, W. Analysis of Wastewater Treatment Engineering in Reconstituted Tobacco Company. IOP Conf. Ser. Earth Environ. Sci. 2020, 598, 012042. [Google Scholar] [CrossRef]
- Ma, X.; Gao, Y.; Huang, H.; Ding, J.; Xia, H. Treatment of papermaking tobacco sheet wastewater by electrocoagulation and biodegradability enhancement. Environ. Manag. J. 2017, 16, 2781. [Google Scholar] [CrossRef]
- Zhu, M.; Hu, X.; Ye, M.; Shi, F.; Liu, J. Examples and analysis of tobacco wastewater treatment engineering. IOP Conf. Ser. Earth Environ. Sci. IOP Publ. 2019, 223, 052040. [Google Scholar] [CrossRef]
- Wang, M.; Yang, G.; Feng, H.; Lv, Z.; Min, H. Optimization of Fenton process for decoloration and COD removal in tobacco wastewater and toxicological evaluation of the effluent. Water Sci. Technol. 2011, 63, 2471–2477. [Google Scholar] [CrossRef]
- Wang, R.-S.; Shan, L.-L.; Zhu, Z.-B.; Liu, Z.-Q.; Liao, Z.-M.; Cui, Y.-H. Current status of electrode corrosion passivation and its mitigation strategies in electrocoagulation. Chem. Eng. Process.-Process Intensif. 2025, 209, 110192. [Google Scholar] [CrossRef]
- Ribeiro, J.P.; Nunes, M.I. Recent trends and developments in Fenton processes for industrial wastewater treatment—A critical review. Environ. Res. 2021, 197, 110957. [Google Scholar] [CrossRef]
- Budzianowski, W.M.; Postawa, K. Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures. Renew. Sustain. Energy Rev. 2017, 68, 852–868. [Google Scholar] [CrossRef]
- Li, M.; Zhou, M.; Tian, X.; Tan, C.; McDaniel, C.T.; Hassett, D.J.; Gu, T. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol. Adv. 2018, 36, 1316–1327. [Google Scholar] [CrossRef]
- Mahto, K.U.; Das, S. Electroactive biofilm communities in microbial fuel cells for the synergistic treatment of wastewater and bioelectricity generation. Crit. Rev. Biotechnol. 2024, 45, 434–453. [Google Scholar] [CrossRef] [PubMed]
- Iberahim, N.I.; Lutpi, N.A.; Ho, L.N.; Wong, Y.S.; Ong, S.A.; Dahalan, F.A. Wastewater remediation and bioelectricity generation in dual chambered salt bridge microbial fuel cell: A mini--review. Environ. Qual. Manag. 2024, 34, e22240. [Google Scholar] [CrossRef]
- Suransh, J.; Jadhav, D.A.; Nguyen, D.D.; Mungray, A.K. Scalable architecture of low-cost household microbial fuel cell for domestic wastewater treatment and simultaneous energy recovery. Sci. Total Environ. 2023, 857, 159671. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Al Senaidi, A.S.; Vishnu, D.S.; Khanam, S.Z.; Al Rahbi, A.S.; Fettah, N.; Sharma, I. Bio-electrolysis of petroleum wastewater using microbial fuel cell for energy production. Biomass Convers. Biorefinery 2024, 1–12. [Google Scholar] [CrossRef]
- Radeef, A.Y.; Najim, A.A.; Karaghool, H.A.; Jabbar, Z.H. Sustainable kitchen wastewater treatment with electricity generation using upflow biofilter-microbial fuel cell system. Biodegradation 2024, 35, 893–906. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, M.; Zhou, M.; Yang, H.; Liang, L.; Gu, T. Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges. Renew. Sustain. Energy Rev. 2019, 103, 13–29. [Google Scholar] [CrossRef]
- Lovley, D.R.; Holmes, D.E. Electromicrobiology: The ecophysiology of phylogenetically diverse electroactive microorganisms. Nat. Rev. Microbiol. 2022, 20, 5–19. [Google Scholar] [CrossRef]
- Bhaduri, S.; Behera, M. From single-chamber to multi-anodic microbial fuel cells: A review. J. Environ. Manag. 2024, 355, 120465. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Li, C.; Li, N.; Zou, P.; Gao, X.; Cao, Q. Nitrogen removal performances and metabolic mechanisms of denitrification systems using different volatile fatty acids as external carbon sources. Chem. Eng. J. 2023, 474, 145998. [Google Scholar] [CrossRef]
- Choi, J.-d.-r.; Chang, H.N.; Han, J.-I. Performance of microbial fuel cell with volatile fatty acids from food wastes. Biotechnol. Lett. 2011, 33, 705–714. [Google Scholar] [CrossRef]
- Jablonska, M.A.; Rybarczyk, M.K.; Lieder, M. Electricity generation from rapeseed straw hydrolysates using microbial fuel cells. Bioresour. Technol. 2016, 208, 117–122. [Google Scholar] [CrossRef]
- Godain, A.; Haddour, N.; Fongarland, P.; Vogel, T.M. Bacterial competition for the anode colonization under different external resistances in microbial fuel cells. Catalysts 2022, 12, 176. [Google Scholar] [CrossRef]
- Fu, X.; Hou, R.; Yang, P.; Qian, S.; Feng, Z.; Chen, Z.; Wang, F.; Yuan, R.; Chen, H.; Zhou, B. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review. Sci. Total Environ. 2022, 817, 153061. [Google Scholar] [CrossRef]
- Lian, J.; Tian, X.; Li, Z.; Guo, J.; Guo, Y.; Yue, L.; Ping, J.; Duan, L. The effects of different electron donors and electron acceptors on perchlorate reduction and bioelectricity generation in a microbial fuel cell. Int. J. Hydrogen Energy 2017, 42, 544–552. [Google Scholar] [CrossRef]
- Ahn, Y.; Logan, B.E. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour. Technol. 2010, 101, 469–475. [Google Scholar] [CrossRef]
- Xia, T.; Zhang, X.; Wang, H.; Zhang, Y.; Gao, Y.; Bian, C.; Wang, X.; Xu, P. Power generation and microbial community analysis in microbial fuel cells: A promising system to treat organic acid fermentation wastewater. Bioresour. Technol. 2019, 284, 72–79. [Google Scholar] [CrossRef]
- Huang, L.; Logan, B.E. Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Appl. Microbiol. Biotechnol. 2008, 80, 349–355. [Google Scholar] [CrossRef]
- Wang, J.; Song, X.; Wang, Y.; Abayneh, B.; Li, Y.; Yan, D.; Bai, J. Nitrate removal and bioenergy production in constructed wetland coupled with microbial fuel cell: Establishment of electrochemically active bacteria community on anode. Bioresour. Technol. 2016, 221, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Basak, B.; Patil, S.M.; Kumar, R.; Ahn, Y.; Ha, G.-S.; Park, Y.-K.; Khan, M.A.; Chung, W.J.; Chang, S.W.; Jeon, B.-H. Syntrophic bacteria-and Methanosarcina-rich acclimatized microbiota with better carbohydrate metabolism enhances biomethanation of fractionated lignocellulosic biocomponents. Bioresour. Technol. 2022, 360, 127602. [Google Scholar] [CrossRef]
- Cui, Y.; Cui, Y.-W.; Huang, J.-L. A novel halophilic Exiguobacterium mexicanum strain removes nitrogen from saline wastewater via heterotrophic nitrification and aerobic denitrification. Bioresour. Technol. 2021, 333, 125189. [Google Scholar] [CrossRef]
- Sakr, E.A.E.; Khater, D.Z.; El-khatib, K.M. Electroactive Brevundimonas diminuta consortium mediated selenite bioreduction, biogenesis of selenium nanoparticles and bio-electricity generation. J. Nanobiotechnol. 2024, 22, 352. [Google Scholar] [CrossRef]
- Erable, B.; Vandecandelaere, I.; Faimali, M.; Delia, M.-L.; Etcheverry, L.; Vandamme, P.; Bergel, A. Marine aerobic biofilm as biocathode catalyst. Bioelectrochemistry 2010, 78, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Sciarria, T.P.; Arioli, S.; Gargari, G.; Mora, D.; Adani, F. Monitoring microbial communities’ dynamics during the start-up of microbial fuel cells by high-throughput screening techniques. Biotechnol. Rep. 2019, 21, e00310. [Google Scholar] [CrossRef]
- Naradasu, D.; Guionet, A.; Miran, W.; Okamoto, A. Microbial current production from Streptococcus mutans correlates with biofilm metabolic activity. Biosens. Bioelectron. 2020, 162, 112236. [Google Scholar] [CrossRef]
- Wang, H.; Lyu, W.; Hu, X.; Chen, L.; He, Q.; Zhang, W.; Song, J.; Wu, J. Effects of current intensities on the performances and microbial communities in a combined bio-electrochemical and sulfur autotrophic denitrification (CBSAD) system. Sci. Total Environ. 2019, 694, 133775. [Google Scholar] [CrossRef] [PubMed]
- Venkidusamy, K.; Megharaj, M. Identification of electrode respiring, hydrocarbonoclastic bacterial strain Stenotrophomonas maltophilia MK2 highlights the untapped potential for environmental bioremediation. Front. Microbiol. 2016, 7, 1965. [Google Scholar] [CrossRef]
- An, Q.; Deng, S.-m.; Zhao, B.; Li, Z.; Xu, J.; Song, J.-L. Simultaneous denitrification and hexavalent chromium removal by a newly isolated Stenotrophomonas maltophilia strain W26 under aerobic conditions. Environ. Chem. 2021, 18, 20–30. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Fu, G.; Zhang, Z. Simultaneous electricity generation and nitrogen and carbon removal in single-chamber microbial fuel cell for high-salinity wastewater treatment. J. Clean. Prod. 2020, 276, 123203. [Google Scholar] [CrossRef]
- Logan, B.E.; Rossi, R.; Ragab, A.a.; Saikaly, P.E. Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol. 2019, 17, 307–319. [Google Scholar] [CrossRef]
- Rainey, F.A. Trichococcus. In Bergey’s Manual of Systematics of Archaea and Bacteria; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Saheb-Alam, S.; Persson, F.; Wilén, B.M.; Hermansson, M.; Modin, O. Response to starvation and microbial community composition in microbial fuel cells enriched on different electron donors. Microb. Biotechnol. 2019, 12, 962–975. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Dong, L.; Zhai, T.; Wang, W.; Wu, H.; Kong, F.; Cui, Y.; Wang, S. Bio-clogging mitigation in constructed wetland using microbial fuel cells with novel hybrid air-photocathode. Sci. Total Environ. 2023, 881, 163423. [Google Scholar] [CrossRef]
- Baek, G.; Kim, J.; Cho, K.; Bae, H.; Lee, C. The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: Their potential for enhanced biomethanation. Appl. Microbiol. Biotechnol. 2015, 99, 10355–10366. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Usman, M.; Tsang, D.C.W.; O-Thong, S.; Angelidaki, I.; Zhu, X.; Zhang, S.; Luo, G. Hydrochar-Facilitated Anaerobic Digestion: Evidence for Direct Interspecies Electron Transfer Mediated through Surface Oxygen-Containing Functional Groups. Environ. Sci. Technol. 2020, 54, 5755–5766. [Google Scholar] [CrossRef] [PubMed]
- Light, S.H.; Su, L.; Rivera-Lugo, R.; Cornejo, J.A.; Louie, A.; Iavarone, A.T.; Ajo-Franklin, C.M.; Portnoy, D.A. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 2018, 562, 140–144. [Google Scholar] [CrossRef]
- Wu, Y.; Song, H.-L.; Pan, Y.; Zhai, S.-Q.; Shao, Y.; Nan, J.; Yang, Y.-L.; Zhang, L.-M. Insight into the role of microbial community interactions on nitrogen removal facilitated by a bioelectrochemical system in an osmotic membrane bioreactor. Bioresour. Technol. 2022, 361, 127696. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Chen, C.; Xue, X.; Tang, K.; Chen, X.; Lai, M.; Li, X.; Wu, Z. Power Generation and Microbial Communities in Microbial Fuel Cell Powered by Tobacco Wastewater. Water 2025, 17, 1101. https://doi.org/10.3390/w17071101
Liu Y, Chen C, Xue X, Tang K, Chen X, Lai M, Li X, Wu Z. Power Generation and Microbial Communities in Microbial Fuel Cell Powered by Tobacco Wastewater. Water. 2025; 17(7):1101. https://doi.org/10.3390/w17071101
Chicago/Turabian StyleLiu, Yutong, Cong Chen, Xing Xue, Kun Tang, Xiaoyu Chen, Miao Lai, Xiaohu Li, and Zhiyong Wu. 2025. "Power Generation and Microbial Communities in Microbial Fuel Cell Powered by Tobacco Wastewater" Water 17, no. 7: 1101. https://doi.org/10.3390/w17071101
APA StyleLiu, Y., Chen, C., Xue, X., Tang, K., Chen, X., Lai, M., Li, X., & Wu, Z. (2025). Power Generation and Microbial Communities in Microbial Fuel Cell Powered by Tobacco Wastewater. Water, 17(7), 1101. https://doi.org/10.3390/w17071101