Mapping the Landscape: A Bibliometric Analysis of Water Security, Governance, and Trading in Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Empirical Methods
2.2.1. Bibliometric Analysis
2.2.2. Double-Log Regression Model
3. Results and Discussion
3.1. Results from Bibliometric Analysis
3.1.1. Publication Outputs
3.1.2. Total Number of Publications with Citations
3.1.3. Top Contributing Journals
3.1.4. Author Collaboration and Net Working
3.1.5. Keyword Used by the Authors
3.1.6. Citation Network with Different Countries
3.1.7. Bibliographic Coupling Network with Documents
3.1.8. Co-Citation Network with Cited Authors
3.2. Regression Analysis
3.2.1. Factors Influencing Citation Count
3.2.2. Results from Double-Log Regression
3.3. Discussion of Main Themes, Subfields, and Interdisciplinary Connections Within the Theme
3.3.1. Climate Change Impact on Water Security
3.3.2. Water Resource Management and Water Security
3.3.3. Water Trading and Allocation Mechanisms
3.3.4. Water Market Modelling and Forecasting
3.3.5. Institutional Arrangements and Water Governance
3.3.6. Policy Instruments and Water Governance
3.4. The Practical Implications of the Findings
4. Limitations of the Study
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CPP | citations per paper |
DCCEEW | Department of Climate Change, Energy, the Environment and Water |
MDB | Murray–Darling Basin |
SNIP | Source Normalised Impact Per Paper |
SJR | Scimago Journal Ranking |
TP | total publications |
TC | total citations |
WUE | water use efficiency |
References
- Gordon, L.J.; Finlayson, C.M.; Falkenmark, M. Managing water in agriculture for food production and other ecosystem services. Agric. Water Manag. 2010, 97, 512–519. [Google Scholar] [CrossRef]
- Groenfeldt, D. Multifunctionality of agricultural water: Looking beyond food production and ecosystem services. Irrig. Drain. 2006, 55, 73–83. [Google Scholar] [CrossRef]
- Rockström, J.; Folke, C.; Gordon, L.; Hatibu, N.; Jewitt, G.; de Vries, F.P.; Rwehumbiza, F.; Sally, H.; Savenije, H.; Schulze, R. A watershed approach to upgrade rainfed agriculture in water scarce regions through Water System Innovations: An integrated research initiative on water for food and rural livelihoods in balance with ecosystem functions. Phys. Chem. Earth Parts A/B/C 2004, 29, 1109–1118. [Google Scholar] [CrossRef]
- Department of Climate Change, Energy, the Environment and Water. National Water Initiative. 2024. Available online: https://www.dcceew.gov.au/water/policy/policy/nwi (accessed on 10 December 2024).
- Kiem, A.S.; Austin, E.K. Drought and the future of rural communities: Opportunities and challenges for climate change adaptation in regional Victoria, Australia. Glob. Environ. Chang. 2013, 23, 1307–1316. [Google Scholar] [CrossRef]
- Kingwell, R.S. Climate change in Australia: Agricultural impacts and adaptation. Australas. Agribus. Rev. 2006, 14, 1. [Google Scholar]
- Allan, C.; Xia, J.; Pahl-Wostl, C. Climate change and water security: Challenges for adaptive water management. Curr. Opin. Environ. Sustain. 2013, 5, 625–632. [Google Scholar] [CrossRef]
- Chami, D.E.; Moujabber, M.E. Drought, climate change and sustainability of water in agriculture: A roadmap towards the NWRS2. S. Afr. J. Sci. 2016, 112, 4. [Google Scholar] [CrossRef]
- Falkenmark, M. Adapting to climate change: Towards societal water security in dry-climate countries. Int. J. Water Resour. Dev. 2013, 29, 123–136. [Google Scholar] [CrossRef]
- Stewart, I.T.; Rogers, J.; Graham, A. Water security under severe drought and climate change: Disparate impacts of the recent severe drought on environmental flows and water supplies in Central California. J. Hydrol. X 2020, 7, 100054. [Google Scholar] [CrossRef]
- Stringer, L.C.; Mirzabaev, A.; Benjaminsen, T.A.; Harris, R.M.; Jafari, M.; Lissner, T.K.; Stevens, N.; der Pahlen, C.T.-V. Climate change impacts on water security in global drylands. One Earth 2021, 4, 851–864. [Google Scholar] [CrossRef]
- Koech, R.; Langat, P. Improving Irrigation Water Use Efficiency: A Review of Advances, Challenges and Opportunities in the Australian Context. Water 2018, 10, 1771. [Google Scholar] [CrossRef]
- Arouna, A.; Dzomeku, I.K.; Shaibu, A.-G.; Nurudeen, A.R. Water management for sustainable irrigation in rice (Oryza sativa L.) production: A review. Agronomy 2023, 13, 1522. [Google Scholar] [CrossRef]
- Evans, R.G.; Sadler, E.J. Methods and technologies to improve efficiency of water use. Water Resour. Res. 2008, 44, 7. [Google Scholar] [CrossRef]
- Suna, T.; Kumari, A.; Paramaguru, P.K.; Kushwaha, N. Enhancing agricultural water productivity using deficit irrigation practices in water-scarce regions. In Enhancing Resilience of Dryland Agriculture Under Changing Climate: Interdisciplinary and Convergence Approaches; Springer: Singapore, 2023; pp. 177–206. [Google Scholar]
- Alam, M.Z.; Carpenter-Boggs, L.; Mitra, S.; Haque, M.; Halsey, J.; Rokonuzzaman, M.; Saha, B.; Moniruzzaman, M. Effect of Salinity Intrusion on Food Crops, Livestock, and Fish Species at Kalapara Coastal Belt in Bangladesh. J. Food Qual. 2017, 2017, 2045157. [Google Scholar] [CrossRef]
- Solanes, M.; Jouravlev, A. Water Governance for Development and Sustainability; ECLAC: Santiago, Chile, 2006. [Google Scholar]
- De Loë, R.C.; Patterson, J.J. Rethinking water governance: Moving beyond water-centric perspectives in a connected and changing world. Nat. Resour. J. 2017, 57, 75–100. [Google Scholar]
- Ayre, M.L.; Nettle, R.A. Enacting resilience for adaptive water governance: A case study of irrigation modernization in an Australian catchment. Ecol. Soc. 2017, 22, 1. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Horne, J. Water markets in the Murray-Darling Basin. Agric. Water Manag. 2014, 145, 61–71. [Google Scholar] [CrossRef]
- Kiem, A.S. Drought and water policy in Australia: Challenges for the future illustrated by the issues associated with water trading and climate change adaptation in the Murray–Darling Basin. Glob. Environ. Chang. 2013, 23, 1615–1626. [Google Scholar] [CrossRef]
- Wheeler, S.; Bjornlund, H.; Zuo, A.; Shanahan, M. The changing profile of water traders in the Goulburn-Murray Irrigation District, Australia. Agric. Water Manag. 2010, 97, 1333–1343. [Google Scholar] [CrossRef]
- Australian Government. National Water Reform 2024. 2024. Available online: https://www.pc.gov.au/inquiries/completed/water-reform-2024#report (accessed on 1 November 2024).
- Bjornlund, H. Water Governance for Sustainable Irrigation: The Role of Civil; WIT Press: Edinburgh, UK, 2014. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Chu, H.L.; Stewardson, M.; Kompas, T. Optimal dynamic water allocation: Irrigation extractions and environmental tradeoffs in the Murray River, Australia. Water Resour. Res. 2011, 47, 12. [Google Scholar] [CrossRef]
- Qureshi, M.E.; Schwabe, K.; Connor, J.; Kirby, M. Environmental water incentive policy and return flows. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Bakker, K.; Morinville, C. The governance dimensions of water security: A review. Philosophical Transactions of the Royal Society A: Mathematical. Phys. Eng. Sci. 2013, 371, 20130116. [Google Scholar]
- Pahl-Wostl, C. A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes. Glob. Environ. Chang. 2009, 19, 354–365. [Google Scholar] [CrossRef]
- Gemede, E.J.; Senbeta, F.; Zeleke, T.; Hagos, F. Assessment of water governance practices in the central rift valley of ethiopia: Transparency, accountability and participation. Water Environ. Sustain. 2024, 4, 40–51. [Google Scholar]
- Liu, Y.; Li, P.; Zhang, Z. Resilient or Not: A Comparative Case Study of Ten Local Water Markets in China. Sustainability 2018, 10, 4020. [Google Scholar] [CrossRef]
- Schulte, S.; Davis, G.; Brown, J. Water Security: Challenges to the Irrigation Water-Energy Nexus in Australia. In Sustaining our Environment for Better Future: Challenges and Opportunities; Omran, A., Schwarz-Herion, O., Eds.; Springer: Singapore, 2020; pp. 85–116. [Google Scholar] [CrossRef]
- Brodnik, C.; Brown, R. Strategies for developing transformative capacity in urban water management sectors: The case of Melbourne, Australia. Technol. Forecast. Soc. Chang. 2018, 137, 147–159. [Google Scholar] [CrossRef]
- Brown, R.R.; Keath, N.; Wong, T.H.F. Urban water management in cities: Historical, current and future regimes. Water Sci. Technol. 2009, 59, 847–855. [Google Scholar] [CrossRef]
- Dhakal, R.S.; Syme, G.; Andre, E.; Sabato, C. Sustainable water management for urban agriculture, gardens and public open space irrigation: A case study in Perth. Agric. Sci. 2015, 6, 676–685. [Google Scholar] [CrossRef]
- Furlong, C.; Gan, K.; De Silva, S. Governance of integrated urban water management in melbourne, Australia. Util. Policy 2016, 43, 48–58. [Google Scholar] [CrossRef]
- Gany, A.H.A.; Sharma, P.; Singh, S. Global Review of Institutional Reforms in the Irrigation Sector for Sustainable Agricultural Water Management, Including Water Users’ Associations. Irrig. Drain. 2018, 68, 84–97. [Google Scholar] [CrossRef]
- Kirby, M.; Bark, R.; Connor, J.; Qureshi, M.E.; Keyworth, S. Sustainable irrigation: How did irrigated agriculture in Australia’s Murray–Darling Basin adapt in the Millennium Drought? Agric. Water Manag. 2014, 145, 154–162. [Google Scholar]
- Leonard, R.; Walton, A.; Farbotko, C. Using the Concept of Common Pool Resources to Understand Community Perceptions of Diverse Water Sources in Adelaide, South Australia. Water Resour. Manag. 2015, 29, 1697–1711. [Google Scholar] [CrossRef]
- Poddar, R.; Qureshi, M.E.; Shi, T. A Comparison of Water Policies for Sustainable Irrigation Management: The Case of India and Australia. Water Resour. Manag. 2014, 28, 1079–1094. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Linnenluecke, M.K.; Marrone, M.; Singh, A.K. Conducting systematic literature reviews and bibliometric analyses. Aust. J. Manag. 2019, 45, 175–194. [Google Scholar] [CrossRef]
- Passas, I. Bibliometric Analysis: The Main Steps. Encyclopedia 2024, 4, 1014–1025. [Google Scholar] [CrossRef]
- Montazeri, A.; Mohammadi, S.; Hesari, P.M.; Ghaemi, M.; Riazi, H.; Sheikhi-Mobarakeh, Z. Preliminary guideline for reporting bibliometric reviews of the biomedical literature (BIBLIO): A minimum requirements. Syst. Rev. 2023, 12, 239. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, K.; Yu, Y.; Yang, B. Mapping of water footprint research: A bibliometric analysis during 2006–2015. J. Clean. Prod. 2017, 149, 70–79. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J. Advances in Water Use Efficiency in Agriculture: A Bibliometric Analysis. Water 2018, 10, 377. [Google Scholar] [CrossRef]
- Meng, H.; Bai, G.; Wang, L. Research trends and areas of focus on water rights: A bibliometric analysis 1971–2020. Environ. Sci. Pollut. Res. 2022, 29, 75119–75133. [Google Scholar] [CrossRef]
- Gajurel, S.; Maheshwari, B.; Hagare, D.; Ward, J.; Singh, P.K. Evolving research on groundwater governance and collective action for water security: A Global bibliometric analysis. Groundw. Sustain. Dev. 2024, 26, 101224. [Google Scholar] [CrossRef]
- Baas, J.; Baas, J.; Schotten, M.; Schotten, M.; Plume, A.; Plume, A.; Côté, G.; Côté, G.; Karimi, R.; Karimi, R. Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quant. Sci. Stud. 2020, 1, 377–386. [Google Scholar] [CrossRef]
- Turral, H.N.; Etchells, T.; Malano, H.M.M.; Wijedasa, H.A.; Taylor, P.; McMahon, T.A.M.; Austin, N. Water trading at the margin: The evolution of water markets in the Murray-Darling Basin. Water Resour. Res. 2005, 41, W07011. [Google Scholar] [CrossRef]
- Castillo-Vergara, M.; Alvarez-Marin, A.; Placencio-Hidalgo, D. A bibliometric analysis of creativity in the field of business economics. J. Bus. Res. 2018, 85, 1–9. [Google Scholar] [CrossRef]
- Khan, M.A.; Pattnaik, D.; Ashraf, R.; Ali, I.; Kumar, S.; Donthu, N. Value of special issues in the journal of business research: A bibliometric analysis. J. Bus. Res. 2021, 125, 295–313. [Google Scholar] [CrossRef]
- Bouchard, L.; Albertini, M.; Batista, R.; de Montigny, J. Research on health inequalities: A bibliometric analysis. Soc. Sci. Med. 2015, 141, 100–108. [Google Scholar] [CrossRef]
- Guo, Y.; Hao, Z.; Zhao, S.; Gong, J.; Yang, F. Artificial intelligence in health care: Bibliometric analysis. J. Med. Internet Res. 2020, 22, e18228. [Google Scholar] [CrossRef]
- Jalali, M.S.; Razak, S.; Gordon, W.; Perakslis, E.; Madnick, S. Health care and cybersecurity: Bibliometric analysis of the literature. J. Med. Internet Res. 2019, 21, e12644. [Google Scholar] [CrossRef]
- Sikandar, H.; Abbas, A.F.; Khan, N.; Qureshi, M.I. Digital Technologies in Healthcare: A Systematic Review and Bibliometric Analysis. Int. J. Online Biomed. Eng. 2022, 18, 34–48. [Google Scholar] [CrossRef]
- Jin, S.; Chang, H. The trends of blockchain in environmental management research: A bibliometric analysis. Environ. Sci. Pollut. Res. 2022, 30, 81707–81724. [Google Scholar] [CrossRef]
- Letunovska, N.; Lyuolyov, O.; Pimonenko, T.; Aleksandrov, V. Environmental management and social marketing: A bibliometric analysis. In Proceedings of the the International Conference on Innovation, Modern Applied Science & Environmental Studies, Kenitra, Morocco, 25–27 December 2020. [Google Scholar]
- Su, Y.; Yu, Y.; Zhang, N. Carbon emissions and environmental management based on Big Data and Streaming Data: A bibliometric analysis. Sci. Total. Environ. 2020, 733, 138984. [Google Scholar] [CrossRef] [PubMed]
- Durán-Sánchez, A.; Álvarez-García, J.; De la Cruz Del Río-Rama, M. Sustainable water resources management: A bibliometric overview. Water 2018, 10, 1191. [Google Scholar] [CrossRef]
- Li, Q.; Guo, X.; Zhang, L. Bibliometric Analysis of Water Resource Management. J. Coast. Res. 2020, 105, 210–214. [Google Scholar] [CrossRef]
- Lv, T.; Wang, L.; Xie, H.; Zhang, X.; Zhang, Y. Evolutionary overview of water resource management based on a bibliometric analysis in Web of Science. Ecol. Inform. 2021, 61, 101218. [Google Scholar] [CrossRef]
- Pandey, D.K.; Hunjra, A.I.; Bhaskar, R.; Al-Faryan, M.A.S. Artificial intelligence, machine learning and big data in natural resources management: A comprehensive bibliometric review of literature spanning 1975–2022. Resour. Policy 2023, 86, 104250. [Google Scholar] [CrossRef]
- Yu, J.; Wang, S.; Yang, W. Natural resources governance and geopolitical risks: A literature review and bibliometric analysis. Resour. Policy 2023, 86, 104299. [Google Scholar] [CrossRef]
- Klarin, A. How to conduct a bibliometric content analysis: Guidelines and contributions of content co-occurrence or co-word literature reviews. Int. J. Consum. Stud. 2024, 48, e13031. [Google Scholar] [CrossRef]
- Pandey, D.K.; Hassan, M.; Kumari, V.; Ben Zaied, Y.; Rai, V.K. Mapping the landscape of FinTech in banking and finance: A bibliometric review. Res. Int. Bus. Financ. 2023, 67, 102116. [Google Scholar] [CrossRef]
- Garfield, E. Citation indexing. J. Inf. Sci. 1980, 2, 47. [Google Scholar] [CrossRef]
- Xue, Y.; Niu, Z.; Zhang, R.; Jia, L.; Guo, S. Current Status and Future Research of Groundwater Under Climate Change: A Bibliometric Analysis. Water 2024, 16, 3438. [Google Scholar] [CrossRef]
- Khan, M.O.; DKeesstra, S.; Słowik-Opoka, E.; Klamerus-Iwan, A.; Liaqat, W. Determining the Role of Urban Greenery in Soil Hydrology: A Bibliometric Analysis of Nature-Based Solutions in Urban Ecosystem. Water 2025, 17, 322. [Google Scholar] [CrossRef]
- Kwon, S. Characteristics of interdisciplinary research in author keywords appearing in Korean journals. Malays. J. Libr. Inf. Sci. 2018, 23, 77–93. [Google Scholar] [CrossRef]
- Lu, W.; Liu, Z.; Huang, Y.; Bu, Y.; Li, X.; Cheng, Q. How do authors select keywords? A preliminary study of author keyword selection behavior. J. Inf. 2020, 14, 101066. [Google Scholar] [CrossRef]
- Gbur, E.E.; Trumbo, B.E. Key words and phrases—the key to scholarly visibility and efficiency in an information explosion. Am. Stat. 1995, 49, 29–33. [Google Scholar] [CrossRef]
- González, L.-M.; García-Massó, X.; Pardo-Ibañez, A.; Peset, F.; Devís-Devís, J. An author keyword analysis for mapping Sport Sciences. PLoS ONE 2018, 13, e0201435. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Erbis, S.; Isaacs, J.A.; Kamarthi, S. Novel keyword co-occurrence network-based methods to foster systematic reviews of scientific literature. PLoS ONE 2017, 12, e0172778. [Google Scholar] [CrossRef]
- Zhang, Q.; Rong, G.; Meng, Q.; Yu, M.; Xie, Q.; Fang, J. Outlining the keyword co-occurrence trends in Shuanghuanglian injection research: A bibliometric study using CiteSpace III. J. Tradit. Chin. Med. Sci. 2020, 7, 189–198. [Google Scholar] [CrossRef]
- Zhang, N.; Feng, G. Analysis of Big Data Research Hotspots Based on Keyword Co-occurrence. In Proceedings of the 2024 IEEE 9th International Conference on Data Science in Cyberspace (DSC), Jinan, China, 26 August 2024. [Google Scholar]
- Farah, E.; Shahrour, I. Water Leak Detection: A comprehensive review of methods, challenges, and future directions. Water 2024, 16, 2975. [Google Scholar] [CrossRef]
- Gomez, C.J.; Herman, A.C.; Parigi, P. Leading countries in global science increasingly receive more citations than other countries doing similar research. Nat. Hum. Behav. 2022, 6, 919–929. [Google Scholar] [CrossRef]
- Biscaro, C.; Giupponi, C. Co-authorship and bibliographic coupling network effects on citations. PLoS ONE 2014, 9, e99502. [Google Scholar] [CrossRef]
- Kessler, M. An experimental study of bibliographic coupling between technical papers (Corresp.). IEEE Trans. Inf. Theory 1963, 9, 49–51. [Google Scholar] [CrossRef]
- Wheeler, S.; Bjornlund, H.; Zuo, A.; Edwards, J. Handing down the farm? The increasing uncertainty of irrigated farm succession in Australia. J. Rural. Stud. 2012, 28, 266–275. [Google Scholar] [CrossRef]
- Tozer, C.R.; Vance, T.R.; Roberts, J.L.; Kiem, A.S.; Curran, M.A.J.; Moy, A.D. An ice core derived 1013-year catchment-scale annual rainfall reconstruction in subtropical eastern Australia. Hydrol. Earth Syst. Sci. 2016, 20, 1703–1717. [Google Scholar] [CrossRef]
- Alexandra, J. Evolving Governance and Contested Water Reforms in Australia’s Murray Darling Basin. Water 2018, 10, 113. [Google Scholar] [CrossRef]
- Wheeler, S.A. Insights, lessons and benefits from improved regional water security and integration in Australia. Water Resour. Econ. 2014, 8, 57–78. [Google Scholar] [CrossRef]
- Graversgaard, M.; Hedelin, B.; Smith, L.; Gertz, F.; Højberg, A.L.; Langford, J.; Martinez, G.; Mostert, E.; Ptak, E.; Peterson, H.; et al. Opportunities and barriers for water co-governance—A critical analysis of seven cases of diffuse water pollution from agriculture in Europe, Australia and North America. Sustainability 2018, 10, 1634. [Google Scholar] [CrossRef]
- Hartwig, L.D.; Jackson, S.; Markham, F.; Osborne, N. Water colonialism and Indigenous water justice in south-eastern Australia. Int. J. Water Resour. Dev. 2021, 38, 30–63. [Google Scholar] [CrossRef]
- Maraseni, T.N.; Mushtaq, S.; Reardon-Smith, K. Climate change, water security and the need for integrated policy development: The case of on-farm infrastructure investment in the Australian irrigation sector. Environ. Res. Lett. 2012, 7, 034006. [Google Scholar] [CrossRef]
- Wheeler, S.A.; Garrick, D.E. A tale of two water markets in Australia: Lessons for understanding participation in formal water markets. Oxf. Rev. Econ. Policy 2020, 36, 132–153. [Google Scholar] [CrossRef]
- Gaupp, F.; Hall, J.; Dadson, S. The role of storage capacity in coping with intra- and inter-annual water variability in large river basins. Environ. Res. Lett. 2015, 10, 125001. [Google Scholar] [CrossRef]
- Robinne, F.; Hallema, D.W.; Bladon, K.D.; Flannigan, M.D.; Boisramé, G.; Bréthaut, C.M.; Doerr, S.H.; Di Baldassarre, G.; Gallagher, L.A.; Hohner, A.K.; et al. Scientists’ warning on extreme wildfire risks to water supply. Hydrol. Process. 2021, 35, e14086. [Google Scholar] [CrossRef] [PubMed]
- Fielding, K.S.; Roiko, A.H. Providing information promotes greater public support for potable recycled water. Water Res. 2014, 61, 86–96. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Williams, J. Rent-seeking behaviour and regulatory capture in the Murray-Darling Basin, Australia. Int. J. Water Resour. Dev. 2020, 36, 484–504. [Google Scholar] [CrossRef]
- Hart, B.T. The Australian Murray-Darling Basin Plan: Factors leading to its successful development. Ecohydrol. Hydrobiol. 2016, 16, 229–241. [Google Scholar] [CrossRef]
- Hartwig, L.D.; Jackson, S.; Osborne, N. Trends in Aboriginal water ownership in New South Wales, Australia: The continuities between colonial and neoliberal forms of dispossession. Land. Use Policy 2020, 99, 104869. [Google Scholar] [CrossRef]
- Mushtaq, S.; Maraseni, T.; Reardon-Smith, K. Climate change and water security: Estimating the greenhouse gas costs of achieving water security through investments in modern irrigation technology. Agric. Syst. 2013, 117, 78–89. [Google Scholar] [CrossRef]
- Brocca, L.; Tarpanelli, A.; Filippucci, P.; Dorigo, W.; Zaussinger, F.; Gruber, A.; Fernández-Prieto, D. How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 752–766. [Google Scholar] [CrossRef]
- Short, M.D.; Peirson, W.L.; Peters, G.M.; Cox, R.J. Managing Adaptation of Urban Water Systems in a Changing Climate. Water Resour. Manag. 2012, 26, 1953–1981. [Google Scholar] [CrossRef]
- Loch, A.; Wheeler, S.; Boxall, P.; Hatton-Macdonald, D.; Adamowicz, W.L.; Bjornlund, H. Irrigator preferences for water recovery budget expenditure in the Murray-Darling Basin, Australia. Land. Use Policy 2014, 36, 396–404. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Wheeler, S.A. Economics of water recovery in the murray-darling basin, Australia. Annu. Rev. Resour. Econ. 2018, 10, 487–510. [Google Scholar] [CrossRef]
- Breinl, K.; Di Baldassarre, G.; Mazzoleni, M.; Lun, D.; Vico, G. Extreme dry and wet spells face changes in their duration and timing. Environ. Res. Lett. 2020, 15, 074040. [Google Scholar] [CrossRef]
- Horne, J. Economic approaches to water management in Australia. Int. J. Water Resour. Dev. 2013, 29, 526–543. [Google Scholar] [CrossRef]
- Cooper, B.; Crase, L.; Pawsey, N. Best practice pricing principles and the politics of water pricing. Agric. Water Manag. 2014, 145, 92–97. [Google Scholar] [CrossRef]
- Zuo, A.; Wheeler, S.A.; Adamowicz, W.; Boxall, P.C.; Hatton-MacDonald, D. Measuring Price Elasticities of Demand and Supply of Water Entitlements Based on Stated and Revealed Preference Data. Am. J. Agric. Econ. 2015, 98, 314–332. [Google Scholar] [CrossRef]
- Gibbs, L.M. Just Add Water: Colonisation, Water Governance, and the Australian Inland. Environ. Plan. A Econ. Space 2009, 41, 2964–2983. [Google Scholar] [CrossRef]
- Alexandra, J. Risks, Uncertainty and Climate Confusion in the Murray–Darling Basin Reforms. Water Econ. Policy 2016, 3, 1650038. [Google Scholar] [CrossRef]
- Alston, M.; Whittenbury, K. Climate change and water policy in Australia’s irrigation areas: A lost opportunity for a partnership model of governance. Environ. Politi. 2011, 20, 899–917. [Google Scholar] [CrossRef]
- Wheeler, S.; Loch, A.; Zuo, A.; Bjornlund, H. Reviewing the adoption and impact of water markets in the Murray–Darling Basin, Australia. J. Hydrol. 2014, 518, 28–41. [Google Scholar] [CrossRef]
- Wheeler, S.; Bjornlund, H.; Shanahan, M.; Zuo, A. Who trades water allocations? Evidence of the characteristics of early adopters in the Goulburn–Murray Irrigation District, Australia 1998–1999. Agric. Econ. 2009, 40, 631–643. [Google Scholar] [CrossRef]
- Bjornlund, H. Can water markets assist irrigators Managing Increased Supply Risk? Some Australian experiences. Water Int. 2006, 31, 221–232. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Jiang, Q. Economic effects of water recovery on irrigated agriculture in the Murray-Darling Basin. Aust. J. Agric. Resour. Econ. 2011, 55, 487–499. [Google Scholar] [CrossRef]
- Wheeler, S.; Bjornlund, H.; Shanahan, M.; Zuo, A. Price elasticity of water allocations demand in the Goulburn–Murray Irrigation District. Aust. J. Agric. Resour. Econ. 2008, 52, 37–55. [Google Scholar] [CrossRef]
- Skinner, D.; Langford, J. Legislating for sustainable basin management: The story of Australia’s Water Act. Water Policy 2013, 15, 871–894. [Google Scholar] [CrossRef]
- Nguyen-Ky, T.; Mushtaq, S.; Loch, A.; Reardon-Smith, K.; An-Vo, D.-A.; Ngo-Cong, D.; Tran-Cong, T. Predicting water allocation trade prices using a hybrid Artificial Neural Network-Bayesian modelling approach. J. Hydrol. 2018, 567, 781–791. [Google Scholar] [CrossRef]
- Zaman, A.; Malano, H.; Davidson, B. An integrated water trading–allocation model, applied to a water market in Australia. Agric. Water Manag. 2008, 96, 149–159. [Google Scholar] [CrossRef]
- Qureshi, M.E.; Grafton, R.Q.; Kirby, M.; Hanjra, M.A. Understanding irrigation water use efficiency at different scales for better policy reform: A case study of the Murray-Darling Basin, Australia. Water Policy 2011, 13, 1–17. [Google Scholar] [CrossRef]
- Zuo, A.; Nauges, C.; Wheeler, S.A. Farmers’ exposure to risk and their temporary water trading. Eur. Rev. Agric. Econ. 2014, 42, 1–24. [Google Scholar] [CrossRef]
- Sigala, M.; Kumar, S.; Donthu, N.; Sureka, R.; Joshi, Y. A bibliometric overview of the Journal of Hospitality and Tourism Management: Research contributions and influence. J. Hosp. Tour. Manag. 2021, 47, 273–288. [Google Scholar] [CrossRef]
- Khan, S. Managing climate risks in Australia: Options for water policy and irrigation management. Aust. J. Exp. Agric. 2008, 48, 265–273. [Google Scholar] [CrossRef]
- Gonzalez, D.; Dillon, P.; Page, D.; Vanderzalm, J. The Potential for Water Banking in Australia’s Murray–Darling Basin to Increase Drought Resilience. Water 2020, 12, 2936. [Google Scholar] [CrossRef]
- Kiem, A.S.; Kuczera, G.; Kozarovski, P.; Zhang, L.; Willgoose, G. Stochastic Generation of Future Hydroclimate Using Temperature as a Climate Change Covariate. Water Resour. Res. 2021, 57, 2020WR027331. [Google Scholar] [CrossRef]
- Kiem, A.S.; Vance, T.R.; Tozer, C.R.; Roberts, J.L.; Pozza, R.D.; Vitkovsky, J.; Smolders, K.; Curran, M.A. Learning from the past—Using palaeoclimate data to better understand and manage drought in South East Queensland (SEQ), Australia. J. Hydrol. Reg. Stud. 2020, 29, 100686. [Google Scholar] [CrossRef]
- Brent, D.A.; Gangadharan, L.; Lassiter, A.; Leroux, A.; Raschky, P.A. Valuing environmental services provided by local stormwater management. Water Resour. Res. 2017, 53, 4907–4921. [Google Scholar] [CrossRef]
- Ticehurst, J.L.; Curtis, A.L. Can existing practices expected to lead to improved on-farm water use efficiency enable irrigators to effectively respond to reduced water entitlements in the Murray–Darling Basin? J. Hydrol. 2015, 528, 613–620. [Google Scholar] [CrossRef]
- Jackson, S.; MacDonald, D.H.; Bark, R.H. Public Attitudes to Inequality in Water Distribution: Insights From Preferences for Water Reallocation From Irrigators to Aboriginal Australians. Water Resour. Res. 2019, 55, 6033–6048. [Google Scholar] [CrossRef]
- Khan, S.; Rana, T.; Hanjra, M.A.; Zirilli, J. Water markets and soil salinity nexus: Can minimum irrigation intensities address the issue? Agric. Water Manag. 2009, 96, 493–503. [Google Scholar] [CrossRef]
- Wheeler, S.A.; Rossini, P.; Bjornlund, H.; Spagnoletti, B. Chapter 18—The Returns from Investing in Water Markets in Australia. In Handbook of Environmental and Sustainable Finance; Ramiah, V., Gregoriou, G.N., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 371–384. [Google Scholar] [CrossRef]
- Zuo, A.; Qiu, F.; Wheeler, S.A. Examining volatility dynamics, spillovers and government water recovery in Murray-Darling Basin water markets. Resour. Energy Econ. 2019, 58, 101113. [Google Scholar] [CrossRef]
- Qureshi, M.E.; Ahmad, M.-U.; Whitten, S.M.; Kirby, M. A multi-period positive mathematical programming approach for assessing economic impact of drought in the Murray–Darling Basin, Australia. Econ. Model. 2014, 39, 293–304. [Google Scholar] [CrossRef]
- Qureshi, M.; Whitten, S. Regional impact of climate variability and adaptation options in the southern Murray–Darling Basin, Australia. Water Resour. Econ. 2014, 5, 67–84. [Google Scholar] [CrossRef]
- Brennan, D. Policy interventions to promote the adoption of water saving sprinkler systems: The case of lettuce on the Gnangara Mound. Aust. J. Agric. Resour. Econ. 2007, 51, 323–341. [Google Scholar] [CrossRef]
- Upton, E.; Nielsen-Pincus, M. Climate Change and Water Governance: Decision Making for Individual Vineyard Owners in Global Wine Regions. Front. Clim. 2021, 3. [Google Scholar]
- Olsson, R.C.; Wyborn, C.A.; van Kerkhoff, L.E. How the Resist-Accept-Direct framework is being used by communities for socio-economic climate adaptation: A case study in Australia’s Murray-Darling Basin. Reg. Environ. Chang. 2024, 24, 136. [Google Scholar] [CrossRef]
- Hong, P.; Wei, Y.; Bouckaert, F.; Johnston, K.; Head, B. Assessing stakeholder structure in water governance in the Murray-Darling Basin, a public submission perspective. Environ. Sci. Policy 2024, 156, 103746. [Google Scholar] [CrossRef]
- Palomo-Hierro, S.; Loch, A.; Pérez-Blanco, C.D. Improving water markets in Spain: Lesson-drawing from the Murray-Darling Basin in Australia. Agric. Water Manag. 2022, 259, 107224. [Google Scholar] [CrossRef]
- Crase, L.; Connor, J.; Michaels, S.; Cooper, B. Australian water policy reform: Lessons learned and potential transferability. Clim. Policy 2020, 20, 641–651. [Google Scholar] [CrossRef]
- Samnakay, N.; Alexandra, J.; Wyborn, C.A.; Bender, I. Climate adaptive water policy in Australia’s Murray Darling basin: Soft options or hard commitments? Ecol. Soc. 2024, 29, 1. [Google Scholar] [CrossRef]
Time period | 2005 to 2024 (20 years) |
Search field | Article title, abstract, keywords |
Keywords put to the search engine |
|
Export information limited to | Citation information, bibliographical information, abstract and keywords, and other information—including references |
The subject area is limited to | Environmental science, social science, agricultural and biological sciences |
Document type limited to | Article, conference paper, review article, book chapter, editorial |
Types of Analysis (5) | Unit of Analysis (19) | Counting Method |
---|---|---|
Co-authorship | ✓Authors Organisations Countries | Full counting |
Co-occurrence | All Keywords ✓Author keywords Index keywords | Full counting |
Citation Documents | Sources Authors Organisations ✓Countries | Full counting |
Bibliographic coupling | ✓Documents Sources Authors Organisations Countries | Full counting |
Co-citation | Cited references Cited sources ✓Cited authors | Full counting |
Journals | TP | TC | CPP | CiteScore a | SNIP a | SJR b |
---|---|---|---|---|---|---|
Agricultural Water Management | 11 | 303 | 27.545 | 12.100 | 1.875 | 1.579Q1 |
Journal of Hydrology | 9 | 245 | 27.222 | 11.000 | 1.659 | 1.764Q1 |
Water Resources Research | 9 | 329 | 36.556 | 8.800 | 1.427 | 1.574Q1 |
Water (Switzerland) | 8 | 195 | 24.375 | 5.800 | 0.999 | 0.724Q1 |
Australian Journal of Water Resources | 7 | 39 | 5.571 | 5.100 | 0.707 | 0.506Q2 |
Australian Journal of Agricultural and Resource Economics | 6 | 143 | 23.833 | 6.300 | 1.301 | 0.929Q1 |
International Journal of Water Resources Development | 6 | 193 | 32.167 | 8.100 | 1.256 | 0.814Q1 |
WIT Transactions on Ecology and the Environment | 6 | 23 | 3.833 | 1.100 | 0.187 | 0.176Q4 |
Water Policy | 5 | 123 | 24.600 | 3.100 | 0.661 | 0.445Q2 |
Environmental Research Letters | 4 | 121 | 30.250 | 11.900 | 1.582 | 2.134Q1 |
Journal of Cleaner Production | 4 | 47 | 11.750 | 20.400 | 2.236 | 2.058Q1 |
Water Resources Management | 4 | 98 | 24.500 | 7.400 | 1.151 | 0.898Q1 |
Agricultural Systems | 3 | 83 | 27.667 | 13.300 | 1.91 | 1.585Q1 |
Hydrological Processes | 3 | 81 | 27.000 | 6.000 | 0.879 | 0.954Q1 |
Journal of Rural Studies | 3 | 108 | 36.000 | 9.800 | 1.851 | 1.542Q2 |
Land Use Policy | 3 | 100 | 33.333 | 13.700 | 1.894 | 1.847Q1 |
Sustainability (Switzerland) | 3 | 45 | 15.000 | 6.800 | 1.086 | 0.672Q1 |
Water Resources and Economics | 3 | 73 | 24.333 | 5.000 | 0.948 | 0.608Q2 |
SL No | Authors | Articles | Authors | Articles Fractionalised |
---|---|---|---|---|
1 | Wheeler, Sarah | 25 | Wheeler, Sarah | 8.73 |
2 | Bjornlund, Henning | 15 | Bjornlund, Henning | 6.33 |
3 | Zuo, Alec | 15 | Zuo, Alec | 4.32 |
4 | Loch, Adam | 9 | Alexandra, Jason | 3.84 |
5 | Grafton, Quentin | 8 | Loch, Adam | 3.39 |
6 | Kiem, Anthony | 7 | Brennan, Donna | 3 |
7 | Alexandra, Jason | 6 | Grafton, Quentin | 2.87 |
8 | Jackson, Sue | 5 | Horne, James | 2.5 |
9 | Khan, Stuart | 4 | Kiem, Anthony | 2.28 |
10 | Malano, Hector | 4 | Harris, Edwyna | 2 |
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | Cluster 6 | Cluster 7 | Cluster 8 |
---|---|---|---|---|---|---|---|
Wheeler et al [80] | Tozer et al. [81] | Alexandra [82] | Grafton and Horne [20] | Wheeler [83] | Graversgaard [84] | Hartwig et al. [85] | Maraseni et al. [86] |
Wheeler and Garrick [87] | Gaupp et al. [88] | Robinne et al. [89] | Fielding and Roiko [90] | Grafton and Williams [91] | Hart [92] | Hartwig et al. [93] | Mushtaq et al. [94] |
Wheeler et al. [22] | Brocca et al [95] | Wheeler and Garrick [80] | Short et al. [96] | Loch et al. [97] | Grafton and Wheeler [98] | ||
Turral et al. [49] | Kiem and Austin [5] | Breinl [99] | Horne [100] | Cooper et al. [101] | |||
Zuo et al. [102] | Gibbs [103] | Alexandra [104] | Alston and Whittenbury [105] | Wheeler et al. [106] | |||
Wheeler et al. [107] | Kiem [21] | Grafton et al. [25] | |||||
Bjornlund [108] | Grafton and Rupert [109] | ||||||
Wheeler at al. [110] | Skinner and Langford [111] | ||||||
Nguyen-Ky et al. [112] | Grafton and Jiang [109] | ||||||
Zaman et al. [113] | Qureshi et al. [114] | ||||||
Zuo et al. [115] |
Sl No | Authors | TLS | Sl No | Authors | TLS |
---|---|---|---|---|---|
1 | Wheeler, Sarah | 9990 | 11 | Kiem, Anthony | 2371 |
2 | Bjornlund, Henning | 8261 | 12 | Kirby, Mac | 2267 |
3 | Zuo, Alec | 7295 | 13 | Quiggin, John | 2212 |
4 | Grafton, Quentin | 5342 | 14 | Crase, Lin | 2197 |
5 | Loch, Adam | 5121 | 15 | Qureshi, Muhammad | 2104 |
6 | Williams, John | 3437 | 16 | Connell, Daniel | 2061 |
7 | Connor, Jeffery | 2840 | 17 | Horne, James | 1916 |
8 | Pittock, Jamie | 2716 | 18 | Young, Michael | 1670 |
9 | Alexandra, Jason | 2453 | 19 | Shanahan, Martin | 1560 |
10 | Adamson, David | 2431 | 20 | Khan, Stuart | 1494 |
Variables | Variable Type | Minimum | Maximum | Mean | Std. Deviation |
---|---|---|---|---|---|
Dependent variable | |||||
Ln Total citation | Continuous | 0.00 | 4.99 | 2.309 | 1.406 |
Independent variables | |||||
Article appearances and quality | |||||
Ln Number of references | Continuous | 0.00 | 5.06 | 3.785 | 0.807 |
Ln Page count | Continuous | 1.39 | 3.66 | 2.583 | 0.404 |
Ln Article age | Continuous | 0.00 | 2.94 | 1.788 | 0.884 |
Ln Impact factor | Continuous | −1.92 | 2.50 | 1.065 | 0.790 |
Document types (research article is taken as the reference variable) | |||||
Conference paper | Binary, 1 = Conference paper, 0 = Otherwise. | 0.00 | 1.00 | 0.054 | 0.246 |
Book chapter | Binary, 1 = Book chapter, 0 = Otherwise. | 0.00 | 1.00 | 0.075 | 0.264 |
Variables related to authors | |||||
Wheeler, Sarah | Binary, 1 = Wheeler 0 = Otherwise | 0.00 | 1.00 | 0.134 | 0.341 |
Kiem, Anthony S | Binary, 1 = Kiem 0 = Otherwise | 0.00 | 1.00 | 0.037 | 0.190 |
Grafton, R. Quentin | Binary, 1 = Grafton 0 = Otherwise | 0.00 | 1.00 | 0.054 | 0.226 |
Variables | Coefficients | Std. Error |
---|---|---|
Intercept | −2.832 *** | 0.680 |
Number of references | 0.532 *** | 0.110 |
Page count | 0.433 * | 0.195 |
Article age | 0.965 *** | 0.086 |
Impact factor | 0.392 *** | 0.100 |
Conference paper | −0.793 ** | 0.297 |
Book chapter | −0.883 ** | 0.283 |
No of authors | 0.204 * | 0.117 |
First author Australian affiliation | −0.410 * | 0.206 |
Wheeler, Sarah | 0.452 * | 0.202 |
Kiem, Anthony S | 0.650 * | 0.360 |
Grafton, R. Quentin | 1.076 *** | 0.302 |
Multiple R-squared | 0.621 | |
Adjusted R-squared | 0.597 | |
F-statistic | 26.07 *** | |
Sample size | 187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarker, J.; Rolfe, J.; Akbar, D. Mapping the Landscape: A Bibliometric Analysis of Water Security, Governance, and Trading in Australia. Water 2025, 17, 1035. https://doi.org/10.3390/w17071035
Sarker J, Rolfe J, Akbar D. Mapping the Landscape: A Bibliometric Analysis of Water Security, Governance, and Trading in Australia. Water. 2025; 17(7):1035. https://doi.org/10.3390/w17071035
Chicago/Turabian StyleSarker, Jaba, John Rolfe, and Delwar Akbar. 2025. "Mapping the Landscape: A Bibliometric Analysis of Water Security, Governance, and Trading in Australia" Water 17, no. 7: 1035. https://doi.org/10.3390/w17071035
APA StyleSarker, J., Rolfe, J., & Akbar, D. (2025). Mapping the Landscape: A Bibliometric Analysis of Water Security, Governance, and Trading in Australia. Water, 17(7), 1035. https://doi.org/10.3390/w17071035