Optimizing UV Photodegradation of Chlorothalonil with Reflective Materials (Silver-White Aluminium Foil)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Purpose of Construction
2.2. Equipment Set-Up
2.3. Sampling Method
2.4. Different Water Quality
2.5. Sample Analysis
2.6. Calculation
2.7. Statistical Analysis of Data
3. Results and Discussion
3.1. Photodegradation of CTL Irradiated with Different Numbers of UV Lamps in Different Diameter Barrels and Different Inner Wall Materials
3.2. Mechanism of Action of Silver-White Aluminum Foil to Promote CTL Degradation
3.3. Photodegradation Effect of Aluminum Foil on CTL in Natural Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, G.-B.; Chen, R.-N.; Chen, Q.-S.; Chen, F.-Q.; Liu, H.-L.; Ren, C.-Y.; Zhang, Y.-X.; Yang, F.-J.; Wei, J.-P. Jasmonic acid promotes glutathione assisted degradation of chlorothalonil during tomato growth. Ecotoxicol. Environ. Saf. 2022, 233, 113296. [Google Scholar] [PubMed]
- Boman, A.; Montelius, J.; Rissanen, R.L.; Lidén, C. Sensitizing potential of chlorothalonil in the guinea pig and the mouse. Contact Dermat. 2000, 43, 273–279. [Google Scholar]
- Authority, E.F.S.; Arena, M.; Auteri, D.; Barmaz, S.; Bellisai, G.; Brancato, A.; Brocca, D.; Bura, L.; Byers, H.; Chiusolo, A. Peer review of the pesticide risk assessment of the active substance chlorothalonil. EFSA J. 2018, 16, e05126. [Google Scholar]
- Zhang, C.; Zhao, X.; Pan, X.; Zaya, G.; Lyu, B.; Li, S.; Li, J.; Zhao, Y.; Wu, Y.; Chen, D. The mother-offspring transfer of chlorothalonil through human breast milk: A multi-city cross-sectional study. Sci. Total Environ. 2024, 941, 173511. [Google Scholar]
- Xing, Z.; Chow, L.; Cook, A.; Benoy, G.; Rees, H.; Ernst, B.; Meng, F.; Li, S.; Zha, T.; Murphy, C. Pesticide application and detection in variable agricultural intensity watersheds and their river systems in the maritime region of Canada. Arch. Environ. Contam. Toxicol. 2012, 63, 471–483. [Google Scholar] [PubMed]
- Voulvoulis, N.; Scrimshaw, M.D.; Lester, J.N. Occurrence of four biocides utilized in antifouling paints, as alternatives to organotin compounds, in waters and sediments of a commercial estuary in the UK. Mar. Pollut. Bull. 2000, 40, 938–946. [Google Scholar]
- Gallo, A.; Tosti, E. Reprotoxicity of the antifoulant chlorothalonil in ascidians: An ecological risk assessment. PLoS ONE 2015, 10, e0123074. [Google Scholar]
- Báez, M.E.; Sarkar, B.; Peña, A.; Vidal, J.; Espinoza, J.; Fuentes, E. Effect of surfactants on the sorption-desorption, degradation, and transport of chlorothalonil and hydroxy-chlorothalonil in agricultural soils. Environ. Pollut. 2023, 327, 121545. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Cuesta, A.; Meseguer, J.; Esteban, M.A. Risks of using antifouling biocides in aquaculture. Int. J. Mol. Sci. 2012, 13, 1541–1560. [Google Scholar] [CrossRef]
- Verween, A.; Vincx, M.; Degraer, S. Comparative toxicity of chlorine and peracetic acid in the biofouling control of Mytilopsis leucophaeata and Dreissena polymorpha embryos (Mollusca, Bivalvia). Int. Biodeterior. Biodegrad. 2009, 63, 523–528. [Google Scholar]
- Haque, M.N.; Eom, H.-J.; Nam, S.-E.; Shin, Y.K.; Rhee, J.-S. Chlorothalonil induces oxidative stress and reduces enzymatic activities of Na+/K+-ATPase and acetylcholinesterase in gill tissues of marine bivalves. PLoS ONE 2019, 14, e0214236. [Google Scholar]
- McMahon, T.A.; Halstead, N.T.; Johnson, S.; Raffel, T.R.; Romansic, J.M.; Crumrine, P.W.; Boughton, R.K.; Martin, L.B.; Rohr, J.R. The fungicide chlorothalonil is nonlinearly associated with corticosterone levels, immunity, and mortality in amphibians. Environ. Health Perspect. 2011, 119, 1098–1103. [Google Scholar] [PubMed]
- Du Gas, L.M.; Ross, P.S.; Walker, J.; Marlatt, V.L.; Kennedy, C.J. Effects of atrazine and chlorothalonil on the reproductive success, development, and growth of early life stage sockeye salmon (Oncorhynchus nerka). Environ. Toxicol. Chem. 2017, 36, 1354–1364. [Google Scholar]
- Bruynzeel, D.P.; van Ketel, W.G. Contact dermatitis due to chlorothalonil in floriculture. Contact Dermat. (01051873) 1986, 14, 67. [Google Scholar]
- Lensen, G.; Jungbauer, F.; Gonçalo, M.; Coenraads, P.J. Airborne irritant contact dermatitis and conjunctivitis after occupational exposure to chlorothalonil in textiles. Contact Dermat. 2007, 57, 181–186. [Google Scholar]
- Barr, D.B.; Ananth, C.V.; Yan, X.; Lashley, S.; Smulian, J.C.; Ledoux, T.A.; Hore, P.; Robson, M.G. Pesticide concentrations in maternal and umbilical cord sera and their relation to birth outcomes in a population of pregnant women and newborns in New Jersey. Sci. Total Environ. 2010, 408, 790–795. [Google Scholar] [PubMed]
- Wang, T.; Zhou, Y.; Wang, L.; Sui, J.; Chen, F.; Jia, Y.; Chen, S.; Cui, X.; Yang, Y.; Zhang, W. Assessing the biotic and abiotic degradation of malathion in the environment: Current strategies and advances. J. Environ. Chem. Eng. 2025, 13, 115429. [Google Scholar]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent strategies for bioremediation of emerging pollutants: A review for a green and sustainable environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef]
- Xiong, J.; Li, G.; Gelman, F.; Ronen, Z.; An, T. Mechanism investigation and stable isotope change during photochemical degradation of tetrabromobisphenol A (TBBPA) in water under LED white light irradiation. Chemosphere 2020, 258, 127378. [Google Scholar]
- Barnes, P.W.; Robson, T.M.; Zepp, R.G.; Bornman, J.F.; Jansen, M.; Ossola, R.; Wang, Q.-W.; Robinson, S.; Foereid, B.; Klekociuk, A. Interactive effects of changes in UV radiation and climate on terrestrial ecosystems, biogeochemical cycles, and feedbacks to the climate system. Photochem. Photobiol. Sci. 2023, 22, 1049–1091. [Google Scholar]
- El-Saeid, M.H.; Alotaibi, M.O.; Alshabanat, M.; Al-Anazy, M.M.; Alharbi, K.R.; Altowyan, A.S. Impact of photolysis and TiO2 on pesticides degradation in wastewater. Water 2021, 13, 655. [Google Scholar] [CrossRef]
- Wang, Y.; Roddick, F.A.; Fan, L. Direct and indirect photolysis of seven micropollutants in secondary effluent from a wastewater lagoon. Chemosphere 2017, 185, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Katagi, T. Direct photolysis mechanism of pesticides in water. J. Pestic. Sci. 2018, 43, 57–72. [Google Scholar] [CrossRef]
- Wu, C.; Linden, K.G. Phototransformation of selected organophosphorus pesticides: Roles of hydroxyl and carbonate radicals. Water Res. 2010, 44, 3585–3594. [Google Scholar] [CrossRef] [PubMed]
- Goon, A.; Bhattacharyya, A.; Ghosh, B.; Rakshit, R.; Das, A.; Choudury, S.R.; Kundu, C.; Ganguly, P.; Hossain, A. Photodegradation of flucetosulfuron, a sulfonylurea-based herbicide in the aqueous media is influenced by ultraviolet irradiation. J. Xenobiotics 2021, 11, 142–154. [Google Scholar] [CrossRef]
- Aydin, M.I.; Ozaktac, D.; Yuzer, B.; Doğu, M.; Inan, H.; Okten, H.E.; Coskun, S.; Selcuk, H. Desalination and detoxification of textile wastewater by novel photocatalytic electrolysis membrane reactor for ecosafe hydroponic farming. Membranes 2021, 12, 10. [Google Scholar] [CrossRef]
- Crovella, T.; Paiano, A. Assessing the Sustainability of Photodegradation and Photocatalysis for Wastewater Reuse in an Agricultural Resilience Context. Water 2023, 15, 2758. [Google Scholar] [CrossRef]
- Papernov, S.; Schmid, A. Laser-induced surface damage of optical materials: Absorption sources, initiation, growth, and mitigation. Laser-Induc. Damage Opt. Mater. 2008 2008, 7132, 469–496. [Google Scholar]
- Wu, H.Y.; Huang, S.R.; Shih, C.H.; Hsiao, L.J.; Chen, H.W.; Cheng, M.C.; Hsu, J.C. Highly Reflective Silver-Enhanced Coating with High Adhesion and Sulfurization Resistance for Telescopes. Nanomaterials 2022, 12, 1054. [Google Scholar] [CrossRef]
- Cisterna-Osorio, P.; Galvez-Gonzalez, M.; Moraga-Chaura, M.; Quijada-Vera, S. Increase by Substitution of Galvanized Steel for Aluminum Mirrors in the UV Solar Radiation in Canal with Fins and Side Panels That Disinfect Wastewater. Processes 2022, 11, 84. [Google Scholar] [CrossRef]
- Xu, X.; Ji, F.; Fan, Z.; He, L. Degradation of glyphosate in soil photocatalyzed by Fe3O4/SiO2/TiO2 under solar light. Int. J. Environ. Res. Public Health 2011, 8, 1258–1270. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.; Wang, C.; Huang, H.; Li, W.; Du, D.; Han, D.; Qiu, T.; Chu, P.K. Aluminum plasmonic photocatalysis. Sci. Rep. 2015, 5, 15288. [Google Scholar]
- Denny, F.; Scott, J.; Pareek, V.; Peng, G.D.; Amal, R. CFD modelling for a TiO2-coated glass-bead photoreactor irradiated by optical fibres: Photocatalytic degradation of oxalic acid. Chem. Eng. Sci. 2009, 64, 1695–1706. [Google Scholar] [CrossRef]
- Lv, P.; Min, S.; Wang, Y.; Zheng, X.; Wu, X.; Li, Q.X.; Hua, R. Flavonoid-sensitized photolysis of chlorothalonil in water. Pest Manag. Sci. 2020, 76, 2972–2977. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Wu, Y.H.; Ting, Y.Y.; Wu, C.C.; Wu, J.S.; Lin, S.D. Nano- to atomic-scale epitaxial aluminum films on Si substrate grown by molecular beam epitaxy. AIP Adv. 2019, 9, 105001. [Google Scholar] [CrossRef]
- Pashchanka, M.; Cherkashinin, G. A Strategy towards Light-Absorbing Coatings Based on Optically Black Nanoporous Alumina with Tailored Disorder. Materials 2021, 14, 5827. [Google Scholar] [CrossRef]
- Lindsley, W.G.; McClelland, T.L.; Neu, D.T.; Martin, S.B.; Mead, K.R.; Thewlis, R.E.; Noti, J.D. Ambulance disinfection using Ultraviolet Germicidal Irradiation (UVGI): Effects of fixture location and surface reflectivity. J. Occup. Environ. Hyg. 2018, 15, 1–12. [Google Scholar] [CrossRef]
Diameter (cm) | Materials | 1 Lamp (Lx) | 2 Lamp (Lx) | 3 Lamp (Lx) | 4 Lamp (Lx) |
---|---|---|---|---|---|
20 | Enamel | 850–920 | 1700–2500 | 2300–3500 | 3200–4500 |
Al | 1050–1200 | 2000–3200 | 3100–3900 | 4200–5300 | |
30 | Enamel | 540–590 | 1000–1600 | 1600–2000 | 2200–2500 |
Al | 630–720 | 1300–2000 | 1950–2200 | 2500–3000 | |
Black Al | 530–560 | ||||
40 | Enamel | 410–460 | 750–1100 | 1000–1180 | 1250–1650 |
Al | 440–470 | 580–1300 | 1200–1450 | 1600–1850 |
Natural Water | Pond Water | Paddy Water |
---|---|---|
pH | 6.8 | 7.3 |
DO (mg/L) | 7.4 | 7.6 |
Turbidity (NTU) | <0.5 | <0.5 |
Conductivity (ms/cm) | 0.36 | 0.64 |
Hardness (mg/L) | 164 | 318 |
COD (mg/L) | 47 | 48 |
BOD5 (mg/L) | 9.7 | 9.9 |
Fe3+ (mg/L) | <0.02 | <0.02 |
Cu2+ (mg/L) | <0.006 | <0.006 |
Cl− (mg/L) | 22.7 | 18.0 |
SO42− (mg/L) | 35.7 | 14.7 |
NO3− (mg/L) | 3.11 | <0.004 |
Inner Wall Material | Water | K (min−1) | R2 | T1/2 (min) |
---|---|---|---|---|
Enamel | Ultrapure | 0.0126 | 0.9930 | 55.23 (±1.67) |
Pond | 0.0549 | 0.9326 | 12.63 (±1.36) | |
Paddy | 0.0424 | 0.9948 | 16.36 (±0.61) | |
Al | Ultrapure | 0.0290 | 0.9960 | 23.93 (±1.11) |
Pond | 0.0972 | 0.9949 | 7.13 (±0.24) | |
Paddy | 0.0562 | 0.9973 | 12.34 (±0.56) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, J.; Chen, S.; Ma, X.; Shi, T.; Wu, H.; Liu, Z.; Hua, R.; Huang, Y. Optimizing UV Photodegradation of Chlorothalonil with Reflective Materials (Silver-White Aluminium Foil). Water 2025, 17, 1032. https://doi.org/10.3390/w17071032
Xue J, Chen S, Ma X, Shi T, Wu H, Liu Z, Hua R, Huang Y. Optimizing UV Photodegradation of Chlorothalonil with Reflective Materials (Silver-White Aluminium Foil). Water. 2025; 17(7):1032. https://doi.org/10.3390/w17071032
Chicago/Turabian StyleXue, Jingfeng, Siyu Chen, Xin Ma, Taozhong Shi, Huiting Wu, Zhaowen Liu, Rimao Hua, and Youkun Huang. 2025. "Optimizing UV Photodegradation of Chlorothalonil with Reflective Materials (Silver-White Aluminium Foil)" Water 17, no. 7: 1032. https://doi.org/10.3390/w17071032
APA StyleXue, J., Chen, S., Ma, X., Shi, T., Wu, H., Liu, Z., Hua, R., & Huang, Y. (2025). Optimizing UV Photodegradation of Chlorothalonil with Reflective Materials (Silver-White Aluminium Foil). Water, 17(7), 1032. https://doi.org/10.3390/w17071032