Metal Pollution and Health–Ecological Risk Assessment in an Intensely Burdened Coastal Environment of Greece, the Saronikos Gulf: A 50-Year Critical Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Geographical Setting
2.1.2. Geology
2.1.3. Water Circulation
2.1.4. Anthropogenic Pressures
2.2. Literature and Meta-Analysis Review Dataset and Analysis
2.3. Literature Data Processing and Treatment
2.3.1. Sediment Pollution Spatial and Temporal Distribution (Meta-Analyses)
2.3.2. Environmental Indices (Meta-Analyses)
3. Results and Discussion
3.1. Literature and Systematic Review
3.2. Meta-Analysis Review
3.2.1. Heavy Metal Distribution in Saronikos Gulf per Decade
3.2.2. Environmental Indices
3.2.3. Potential Biological Effects of Heavy Metals
4. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birch, G.F. Determination of Sediment Metal Background Concentrations and Enrichment in Marine Environments—A Critical Review. Sci. Total Environ. 2017, 580, 813–831. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.C.; do Nascimento Monte, C.; de Souza, J.R.; Selfe, A.C.C.; Ishihara, J.H. Mapping of Metals Contamination in Coastal Sediments around the World in the Last Decades: A Bibliometric Analysis and Systematic Review. Mar. Pollut. Bull. 2024, 205, 116572. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Liao, X.; Xiao, R.; Liu, K.; Bai, J.; Li, B.; He, Q. Heavy Metal Pollution in Coastal Wetlands: A Systematic Review of Studies Globally over the Past Three Decades. J. Hazard. Mater. 2022, 424, 127312. [Google Scholar] [CrossRef] [PubMed]
- Mok, W.J.; Ghaffar, M.A.; Noor, M.I.M.; Lananan, F.; Azra, M.N. Understanding Climate Change and Heavy Metals in Coastal Areas: A Macroanalysis Assessment. Water 2023, 15, 891. [Google Scholar] [CrossRef]
- Violintzis, C.; Arditsoglou, A.; Voutsa, D. Elemental Composition of Suspended Particulate Matter and Sediments in the Coastal Environment of Thermaikos Bay, Greece: Delineating the Impact of Inland Waters and Wastewaters. J. Hazard. Mater. 2009, 166, 1250–1260. [Google Scholar] [CrossRef]
- Wang, J.; Ye, S.; Laws, E.A.; Yuan, H.; Ding, X.; Zhao, G. Surface Sediment Properties and Heavy Metal Pollution Assessment in the Shallow Sea Wetland of the Liaodong Bay, China. Mar. Pollut. Bull. 2017, 120, 347–354. [Google Scholar] [CrossRef]
- Kanellopoulos, T.D.; Kapetanaki, N.; Karaouzas, I.; Botsou, F.; Mentzafou, A.; Kaberi, H.; Kapsimalis, V.; Karageorgis, A.P. Trace Element Contamination Status of Surface Marine Sediments of Greece: An Assessment Based on Two Decades (2001–2021) of Data. Environ. Sci. Pollut. Res. 2022, 29, 45171–45189. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lai, T.; Jahan, S.; Farid, F.; Bello, A. A Machine Learning Predictive Model to Detect Water Quality and Pollution. Future Internet 2022, 14, 324. [Google Scholar] [CrossRef]
- Huang, B.; Guo, Z.; Xiao, X.; Zeng, P.; Peng, C. Changes in Chemical Fractions and Ecological Risk Prediction of Heavy Metals in Estuarine Sediments of Chunfeng Lake Estuary, China. Mar. Pollut. Bull. 2019, 138, 575–583. [Google Scholar] [CrossRef]
- Hong, J.; Zhang, J.; Song, Y.; Cao, X. Spatial and Temporal Distribution Characteristics of Nutrient Elements and Heavy Metals in Surface Water of Tibet, China and Their Pollution Assessment. Water 2022, 14, 3664. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Truchet, D.M.; Buzzi, N.S.; Negro, C.L.; Mora, M.C.; Marcovecchio, J.E. Integrative Assessment of the Ecological Risk of Heavy Metals in a South American Estuary under Human Pressures. Ecotoxicol. Environ. Saf. 2021, 208, 111498. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.S.S.; Rahman, M.; Sultana, S.; Babu, S.M.O.F.; Sarker, M.S.I. Bioaccumulation and Heavy Metal Concentration in Tissues of Some Commercial Fishes from the Meghna River Estuary in Bangladesh and Human Health Implications. Mar. Pollut. Bull. 2019, 145, 436–447. [Google Scholar] [CrossRef]
- Pinzón-Bedoya, C.H.; Pinzón-Bedoya, M.L.; Pinedo-Hernández, J.; Urango-Cardenas, I.; Marrugo-Negrete, J. Assessment of Potential Health Risks Associated with the Intake of Heavy Metals in Fish Harvested from the Largest Estuary in Colombia. Int. J. Environ. Res. Public. Health 2020, 17, 2921. [Google Scholar] [CrossRef] [PubMed]
- Monte, C.d.N.; de Castro Rodrigues, A.P.; Silva, M.C.; Ferreira, L.J.S.; Monte, G.; Silveira, C.S.; Cordeiro, R.C.; Machado, W. Assessment of Eutrophication from Phosphorus Remobilization after Resuspension of Coastal Sediments from an Urban Tropical Estuary. Environ. Sci. Pollut. Res. 2023, 30, 65500–65511. [Google Scholar] [CrossRef]
- Bugenyi, F.W.B. Copper Pollution Studies in Lakes George and Edward, Uganda: The Distribution oF Cu, Cd and Fe in the Water and Sediments. Environ. Pollut. (Ser. B) 1982, 3, 129–138. [Google Scholar] [CrossRef]
- Selbig, W.R.; Bannerman, R.; Corsi, S.R. From Streets to Streams: Assessing the Toxicity Potential of Urban Sediment by Particle Size. Sci. Total Environ. 2013, 444, 381–391. [Google Scholar] [CrossRef]
- Liu, J.; Wu, H.; Feng, J.; Li, Z.; Lin, G. Heavy Metal Contamination and Ecological Risk Assessments in the Sediments and Zoobenthos of Selected Mangrove Ecosystems, South China. Catena (Amst) 2014, 119, 136–142. [Google Scholar] [CrossRef]
- Huang, F.; Chen, C. GIS-Based Approach and Multivariate Statistical Analysis for Identifying Sources of Heavy Metals in Marine Sediments from the Coast of Hong Kong. Environ. Monit. Assess. 2023, 195, 518. [Google Scholar] [CrossRef]
- Al-Mutairi, K.A.; Yap, C.K. A Review of Heavy Metals in Coastal Surface Sediments from the Red Sea: Health-Ecological Risk Assessments. Int. J. Environ. Res. Public. Health 2021, 18, 2798. [Google Scholar] [CrossRef]
- Papakostidis, G.; Grimanis, A.P.; Zafiropoulos, D.; Griggs, G.B.; Hopkins, T.S. Heavy Metals in Sediments from the Athens Sewage Outfall Area. Mar. Pollut. Bull. 1975, 6, 136–138. [Google Scholar]
- Grimanis, A.; Vassilaki-Grimani, M.; Griggs, G. Pollution Studies of Trace Elements in Sediments from the Upper Saronikos Gulf, Greece. J. Radioanal. Chem. 1977, 37, 761–773. [Google Scholar]
- Griggs, G.B.; Grimanis, A.P.; Vassilaki Grimani, M. Bottom Sediments in a Polluted Marine Environment, Upper Saronikos Gulf, Greece. Environ. Geol. 1978, 2, 97–106. [Google Scholar] [CrossRef]
- Scoullos, M.; Oldfield, F.; Thompson, R. Magnetic Monitoring of Marine Pollution in the Elefsis Gulf, Greece. Mar. Pollut. Bull. 1979, 10, 287–291. [Google Scholar]
- Griggs, G.B.; Hopkins, T.S. The Delineation and Growth of a Sludge Field. Water Res. 1976, 10, 501–506. [Google Scholar]
- Karageorgis, A.P.; Botsou, F.; Kaberi, H.; Iliakis, S. Geochemistry of Major and Trace Elements in Surface Sediments of the Saronikos Gulf (Greece): Assessment of Contamination between 1999 and 2018. Sci. Total Environ. 2020, 717, 137046. [Google Scholar] [CrossRef] [PubMed]
- Gkaragkouni, A.; Sergiou, S.; Geraga, M.; Papaefthymiou, H.; Christodoulou, D.; Papatheodorou, G. Heavy Metal Distribution, Sources and Contamination Assessment in Polluted Marine Sediments: Keratsini Outfall Sewer Area, Saronikos Gulf, Greece. Water Air Soil. Pollut. 2021, 232, 477. [Google Scholar] [CrossRef]
- Dimiza, M.D.; Triantaphyllou, M.V.; Portela, M.; Koukousioura, O.; Karageorgis, A.P. Response of Living Benthic Foraminifera to Anthropogenic Pollution and Metal Concentrations in Saronikos Gulf (Greece, Eastern Mediterranean). Minerals 2022, 12, 591. [Google Scholar] [CrossRef]
- Makri, P.; Hermides, D.; Kontakiotis, G.; Zarkogiannis, S.D.; Besiou, E.; Janjuhah, H.T.; Antonarakou, A. Integrated Ecological Assessment of Heavily Polluted Sedimentary Basin within the Broader Industrialized Area of Thriassion Plain (Western Attica, Greece). Water 2022, 14, 382. [Google Scholar] [CrossRef]
- Prifti, E.; Kaberi, H.; Paraskevopoulou, V.; Michalopoulos, P.; Zeri, C.; Iliakis, S.; Dassenakis, M.; Scoullos, M. Vertical Distribution and Chemical Fractionation of Heavy Metals in Dated Sediment Cores from the Saronikos Gulf, Greece. J. Mar. Sci. Eng. 2022, 10, 376. [Google Scholar] [CrossRef]
- Filippi, G.; Dassenakis, M.; Paraskevopoulou, V.; Lazogiannis, K. Sediment Quality Assessment in an Industrialized Greek Coastal Marine Area (Western Saronikos Gulf). Biogeosciences 2023, 20, 163–189. [Google Scholar] [CrossRef]
- Gkaragkouni, A.; Sergiou, S.; Geraga, M.; Christodoulou, D.; Dimas, X.; Papatheodorou, G. Metal Pollution Chronology and Ecological Risk Assessment in Marine Sediments of Perama—Salamina Strait, Saronikos Gulf, Greece. Reg. Stud. Mar. Sci. 2024, 76, 103584. [Google Scholar] [CrossRef]
- Dimitriou, P.D.; Apostolaki, E.T.; Papageorgiou, N.; Reizopoulou, S.; Simboura, N.; Arvanitidis, C.; Karakassis, I. Meta-Analysis of a Large Data Set with Water Framework Directive Indicators and Calibration of a Benthic Quality Index at the Family Level. Ecol. Indic. 2012, 20, 101–107. [Google Scholar] [CrossRef]
- Hui, X.; Sheikh Asadi, A.M.; Fakhri, Y.; Mehri, F.; Limam, I.; Thai, V.N. Potential Toxic Elements in Costal Sediment of the Persian Gulf: A Systematic Review-Meta-Analysis, Non-Dietary Risk Assessment and Ecological Risk Assessment. Environ. Sci. Pollut. Res. 2023, 30, 64891–64903. [Google Scholar] [CrossRef]
- Adewumi, A.J.; Ogundele, O.D. Hidden Hazards in Urban Soils: A Meta-Analysis Review of Global Heavy Metal Contamination (2010–2022), Sources and Its Ecological and Health Consequences. Sustain. Environ. 2024, 10, 2293239. [Google Scholar] [CrossRef]
- Nunez-Mir, G.C.; Iannone, B.V.; Pijanowski, B.C.; Kong, N.; Fei, S. Automated Content Analysis: Addressing the Big Literature Challenge in Ecology and Evolution. Methods Ecol. Evol. 2016, 7, 1262–1272. [Google Scholar] [CrossRef]
- Barbieri, M. The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. J. Geol. Geophys. 2016, 5, 237. [Google Scholar] [CrossRef]
- Muller, G. Heavy Metals in the Sediments of Rhine-Changes Seity. Umschau 1979, 79, 778–783. [Google Scholar]
- Abrahim, G.M.S.; Parker, R.J. Assessment of Heavy Metal Enrichment Factors and the Degree of Contamination in Marine Sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2008, 136, 227–238. [Google Scholar] [CrossRef]
- Radomirović, M.; Mijatović, N.; Vasić, M.; Tanaskovski, B.; Mandić, M.; Pezo, L.; Onjia, A. The Characterization and Pollution Status of the Surface Sediment in the Boka Kotorska Bay, Montenegro. Environ. Sci. Pollut. Res. 2021, 28, 53629–53652. [Google Scholar] [CrossRef]
- Scoullos, M.J. Zinc in Seawater and Sediments (of the Gulf of Elefsis, Greece). Water Air Soil. Pollut. 1981, 16, 187–207. [Google Scholar]
- Voutsinou-Taliadouri, F. Metal Polution in the Saronikos Gulf. Mar. Pollut. Bull. 1981, 12, 163–168. [Google Scholar]
- Galanopoulou, S.; Vgenopoulos, A.; Conispoliatis, N. Anthropogenic Heavy Metal Pollution in the Surficial Sediments of the Keratsini Harbor, Saronikos Gulf, Greece. Water Air Soil. Pollut. 2009, 202, 121–130. [Google Scholar] [CrossRef]
- Kapsimalis, V.; Panagiotopoulos, I.P.; Talagani, P.; Hatzianestis, I.; Kaberi, H.; Rousakis, G.; Kanellopoulos, T.D.; Hatiris, G.A. Organic Contamination of Surface Sediments in the Metropolitan Coastal Zone of Athens, Greece: Sources, Degree, and Ecological Risk. Mar. Pollut. Bull. 2014, 80, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Panagiotoulias, I.; Botsou, F.; Kaberi, H.; Karageorgis, A.P.; Scoullos, M. Can We Document If Regulation and Best Available Techniques (BAT) Have Any Positive Impact on the Marine Environment? A Case Based on a Steel Mill in Greece. Environ. Monit. Assess. 2017, 189, 598. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Scoullos, M.; Vassilaki-Grimani, M.; Grimanis, A.P. Vanadium in Particles and Sediments of the Northern Saronikos Gulf, Greece. Sci. Total Environ. 1989, 19, 241–252. [Google Scholar]
- Wang, Q.; Hong, H.; Yang, D.; Li, J.; Chen, S.; Pan, C.; Lu, H.; Liu, J.; Yan, C. Health Risk Assessment of Heavy Metal and Its Mitigation by Glomalin-Related Soil Protein in Sediments along the South China Coast. Environ. Pollut. 2020, 263, 114565. [Google Scholar] [CrossRef]
- Robledo Ardila, P.A.; Álvarez-Alonso, R.; Árcega-Cabrera, F.; Durán Valsero, J.J.; Morales García, R.; Lamas-Cosío, E.; Oceguera-Vargas, I.; DelValls, A. Assessment and Review of Heavy Metals Pollution in Sediments of the Mediterranean Sea. Appl. Sci. 2024, 14, 1435. [Google Scholar] [CrossRef]
- Makris, J.; Papoulia, J.; Drakatos, G. Tectonis Deformation and Microseismicity of the Saronikos Gulf, Greece. Bouletin Seismol. Soc. Am. 2004, 94, 920–929. [Google Scholar]
- Pe-Piper, G.; Piper, D.J.W. The South Aegean Active Volcanic Arc: Relationships between Magmatism and Tectonics. Dev. Volcanol. 2005, 7, 113–133. [Google Scholar] [CrossRef]
- Francalanci, L.; Vougioukalakis, G.E.; Perini, G.; Manetti, P. A West-East Traverse along the Magmatism of the South Aegean Volcanic Arc in the Light of Volcanological, Chemical and Isotope Data. Dev. Volcanol. 2005, 7, 65–111. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Piper, D.J.W. The Effect of Changing Regional Tectonics on an Arc Volcano: Methana, Greece. J. Volcanol. Geotherm. Res. 2013, 260, 146–163. [Google Scholar] [CrossRef]
- Friligos, N. Nutrients of the Saronikos Gulf in Relation to Environmental Characteristics (1973–1976). Hydrobiologia 1984, 112, 17–25. [Google Scholar] [CrossRef]
- Triantaphyllou, M.V.; Tsourou, T.; Kouli, K.; Koukousioura, O.; Dimiza, M.D.; Aidona, E.V.; Syrides, G.; Antoniou, V.; Panagiotopoulos, I.P.; Vandarakis, D.; et al. Paleoenvironmental Evolution and Sea Level Change in Saronikos Gulf (Aegean Sea, Greece): Evidence from the Piraeus Coastal Plain and Elefsis Bay Sedimentary Records. Water 2021, 13, 1621. [Google Scholar] [CrossRef]
- Kontoyiannis, H. Observations on the Circulation of the Saronikos Gulf: A Mediterranean Embayment Sea Border of Athens, Greece. J. Geophys. Res. Oceans 2010, 115, C06029. [Google Scholar] [CrossRef]
- Scoullos, M.J.; Sakellari, A.; Giannopoulou, K.; Paraskevopoulou, V.; Dassenakis, M. Dissolved and Particulate Trace Metal Levels in the Saronikos Gulf, Greece, in 2004. The Impact of the Primary Wastewater Treatment Plant of Psittalia. Desalination 2007, 210, 98–109. [Google Scholar] [CrossRef]
- Paschaliori, C.; Palmos, D.; Papakits, K.; Mavrakis, A.; Papakitsos, E.C.; Laskaris, N. The Biogeochemical Behavior of Heavy Metals in the Aquatic Environment and Their Effects on Health. Mediterr. J. Basic Appl. Sci. 2023, 7, 114–126. [Google Scholar] [CrossRef]
- Angelidis, M.; Grimanis, A.P. Geochemical Partitioning of Co, Cr, Fe, Sc and Zn in Polluted and Non-Polluted Marine Sediments. Environ. Pollut. 1989, 62, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, A.J. Environmental Considerations for Design of the Athens Sea Outfall, Saronikos Gulf, Greece. Environ. Geol. Water Sci. 1991, 17, 233–248. [Google Scholar] [CrossRef]
- Papaefthymiou, H.; Papatheodorou, G.; Christodoulou, D.; Geraga, M.; Moustakli, A.; Kapolos, J. Elemental Concentrations in Sediments of the Patras Harbour, Greece, Using INAA, ICP-MS and AAS. Microchem. J. 2010, 96, 269–276. [Google Scholar] [CrossRef]
- Sakellariadou, F.; Dassenakis, M. Metal Pollution in Piraeus Port, a Major Mediterranean Port. Fresenius Environ. Bull. 2001, 10, 73–79. [Google Scholar]
- Tselentis, B.S.; Maroulakou, M.; Lascourregest, J.F.; Szpunar, J.; Smith, V.; Donard, O.F.X. Organotins in Sediments and Biological Tissues from Greek Coastal Areas: Preliminary Results. Mar. Pollut. Bull. 1999, 38, 146–153. [Google Scholar]
- Kostakis, K.; Skordaki, E.M.; Papatheodorou, G.; Ferentinos, G.; Georgoudis, I. GIS-Aided Simulation of Pollutant Distribution in Marine Sediments in Greece: Spatial Patterns and Origin. Chin. J. Geochem. 2006, 25, 252. [Google Scholar]
- Scoullos, M.J. Lead in Coastal Sediments: The Case of the Elefsis Gulf, Greece. Sci. Total Environ. 1986, 49, 199–219. [Google Scholar] [CrossRef]
- Sakellariadou, F.; Haralambides, L. Cd, Ni and Pb Vertical Distribution in Sediments Cores From the Elefsis Gulf (Attiki-Greece). Fresenius Environ. Bull. 2010, 19, 1848–1853. [Google Scholar]
- Mavrakis, A.; Theoharatos, G.; Asimakopoulos, D.N.; Christides, A. Distribution of Trace Metals in the Sediments of Elefsis Gulf. Mediterr. Mar. Sci. 2004, 5, 151–158. [Google Scholar] [CrossRef]
- Scoullos, M.J.; Oldfield, F. Trace Metal and Magnetic Studies of Sediments in Greek Estuaries and Enclosed Gulfs. Mar. Chem. 1986, 18, 249–268. [Google Scholar]
- Dassenakis, M.; Scoullos, M.; Rapti, K.; Pavlidou, A.; Tsorova, D.; Paraskevopoulou, V.; Rozi, E.; Stamateli, A.; Siganos, M. The Distribution of Copper in Saronikos Gulf after the Operation of the Wastewater Treatment Plant of Psitalia. Global Nest Int. J. 2003, 5, 135–145. [Google Scholar]
- Buttner, O.; Bcker, A.; Kellner, S.; Kuehn, B.; Whendt-Photthoff, K.; Zachmann, D.W.; Friese, K. Geostatistical Analysis of Surface Sediments in an Acidic Mining Lake. Water Air Soil. Pollut. 1998, 108, 297–316. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the Assessment of Heavy-Metal Levels in Estuaries and the Formation of a Pollution Index. Helgol. Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control. A Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Wang, H.; Cui, L.; Zhang, Z.; Guo, J.; Liu, S.; Cui, W. Contamination and Health Risk Assessment of Lead, Arsenic, Cadmium, and Aluminum from a Total Diet Study of Jilin Province, China. Food Sci. Nutr. 2020, 8, 5631–5640. [Google Scholar] [CrossRef]
- Qing, X.; Yutong, Z.; Shenggao, L. Assessment of Heavy Metal Pollution and Human Health Risk in Urban Soils of Steel Industrial City (Anshan), Liaoning, Northeast China. Ecotoxicol. Environ. Saf. 2015, 120, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Kumar, V.; Pandita, S.; Setia, R. A Meta-Analysis of Potential Ecological Risk Evaluation of Heavy Metals in Sediments and Soils. Gondwana Res. 2022, 103, 487–501. [Google Scholar]
- Wang, Y.; Liu, R.; Miao, Y.; Jiao, L.; Cao, L.; Li, L.; Wang, Q. Identification and Uncertainty Analysis of High-Risk Areas of Heavy Metals in Sediments of the Yangtze River Estuary, China. Mar. Pollut. Bull. 2021, 164, 112003. [Google Scholar] [CrossRef]
- US EPA. Guidelines for the Health Risk Assessment of Chemical Mixtures; US EPA: Washington, DC, USA, 1986.
- US EPA. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual (Part A) Vol. I.; US EPA: Washington, DC, USA, 1989.
- US EPA. Exposure Factors Handbook (1997 Final Report); US EPA: Washington, DC, USA, 1997.
- US EPA. Baseline Human Health Risk Assessment Vasquez Boulevard and I-70 Superfund Site Demver, Co; US EPA: Washington, DC, USA, 2001.
- Nag, R.; Cummins, E. Human Health Risk Assessment of Lead (Pb) through the Environmental-Food Pathway. Sci. Total Environ. 2022, 810, 151168. [Google Scholar] [CrossRef]
- Papakostidis, G.; Griggs, G.B.; Grimanis, A.P.; Hopkins, T.; Zafiropoulos, D. The Distribution of Heavy Metals in Bottom Sediments m the Vicinity of the Athens Sewage Outfall. Comm. Int. Mer. Medit. 1975, 23, 289–293. [Google Scholar]
- Kanellopoulou, G.; Perdikatsis, V.; Foskolos, A. Geochemical and Minerological Analysis of Sediments From the Gulf of Elefsina-Study of the Anthropogenic Impact. In Proceedings of the Bulletin of the Geological Society of Greece, Thessaloniki, Greece, April 2004; Volume XXXVI. [Google Scholar]
- Grimanis, A.P.; Kalogeropoulos, N.; Vassilaki-Grimani, M.; Angelidis, M.; Zafiropoulos, D. Determination of Rare Earth Elements in Sediment Cores From Northern Saronikos Gulf, Greece, by Instrumental Neutron Activation Analysis. J. Radioanal. Nucl. Chem. Artic. 1987, 114, 45–55. [Google Scholar] [CrossRef]
- Angelidis, M.; Grimanis, A.P. Arsenic Geochemistry in Sediments Near the Athens Sewage Outfall. Mar. Pollut. Bull. 1987, 18, 297–298. [Google Scholar] [CrossRef]
- Kokovides, K.; Loizidou, M.; Haralambous, K.J.; Moropoulou, T. Environmental Study of the Marinas Part I. A Study on the Pollution in the Marinas Area. Environ. Technol. 1992, 13, 239–244. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Kilikoglou, V.; Vassilaki-Grimani, M.; Grimanis, A.P. Application of Two INAA Methods To Pollution Studies of Sediments From Saronikos Gulf, Greece. J. Radioanal. Andnuclear Chem. 1993, 167, 369–381. [Google Scholar]
- Grimanis, A.P.; Vassilaki-Grimani, M. Pollution Studies of Silver and Antimony in Saronikos Gulf, Greece by INAA. J. Radioanal. Nucl. Chem. Artic. 1994, 179, 231–241. [Google Scholar]
- Papadopoulos, D.; Pantazi, C.; Savvides, C.; Haralambous, K.J.; Papadopoulos, A.; Loizidou, M. A Study on Heavy Metal Pollution in Marine Sediments and Their Removal from Dredged Material. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 1997, 32, 347–360. [Google Scholar] [CrossRef]
- Karageorgis, A.; Hatzianestis, I. Surface Sediment Chemistry in the Olympic Games 2004 Sailing Center (Saronikos Gulf). Mediterr. Mar. Sci. 2003, 4, 5–22. [Google Scholar] [CrossRef]
- Paraskevopoulou, V.; Dassenakis, M.; Sakellariadou, F.; Tapinos, S.; Dassenakis, M. Heavy Metal Pollution and Environmental Management Problems in the Marinas of Saronikos Gulf. Fresenius Environ. Bull. 2006, 15, 1049–1057. [Google Scholar]
- Papaefthymiou, H.; Gkaragkouni, A.; Papatheodorou, G.; Geraga, M. Radionuclide Activities and Elemental Concentrations in Sediments from a Polluted Marine Environment (Saronikos Gulf-Greece). J. Radioanal. Nucl. Chem. 2017, 314, 1841–1852. [Google Scholar] [CrossRef]
- Sakellariadou, F. Heavy Metal and Dissolved Organic Matter Studies in Piraeus Port Sediments. Int. J. Ocean. Oceanogr. 2012, 6, 27–43. [Google Scholar]
- Naeem, H.S.; Munem, E.A.; Salah Naeem, H.; Khaniabadi, M.; Eid, E.M. A Comparison between Neutron Activation Analysis and X-Ray Fluorescence Methods in Analyzing the Granite Samples. Artic. J. Chem. Chem. Eng. 2013, 7, 803–807. [Google Scholar]
- Perez-Santana, S.; Pomares Alfonso, M.; Villanueva Tagle, M.; Peña Icart, M.; Brunori, C.; Morabito, R. Total and Partial Digestion of Sediments for the Evaluation of Trace Element Environmental Pollution. Chemosphere 2007, 66, 1545–1553. [Google Scholar] [CrossRef]
- Filzmoser, P.; Garrett, R.G.; Reimann, C. Multivariate Outlier Detection in Exploration Geochemistry. Comput. Geosci. 2005, 31, 579–587. [Google Scholar] [CrossRef]
- Birch, G.F. A Review and Critical Assessment of Sedimentary Metal Indices Used in Determining the Magnitude of Anthropogenic Change in Coastal Environments. Sci. Total Environ. 2023, 854, 158129. [Google Scholar] [CrossRef] [PubMed]
- Brady, J.P.; Ayoko, G.A.; Martens, W.N.; Goonetilleke, A. Development of a Hybrid Pollution Index for Heavy Metals in Marine and Estuarine Sediments. Environ. Monit. Assess. 2015, 187, 306. [Google Scholar] [CrossRef]
- Hornberger, M.I.; Luoma, S.N.; Van Geen, A.; Fuller, C.; Anima, R. Historical Trends of Metals in the Sediments of San Francisco Bay, California. Mar. Chem. 1999, 64, 39–55. [Google Scholar]
- Long, E.R.; Macdonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- MacDonald, D.D. Approach to the Assessment of Sediment Quality in Florida Coastal Waters. Volume 1—Development and Evaluation of Sediment Quality Assessment Guidelines; Florida Department of Environmental Protection Office of Water Policy: Tallahassee, FL, USA, 1994.
- Perin, G.; Craboledda, L.; Lucchese, M. Heavy Metal Speciation in the Sediments of Northern Adriatic Sea: A New Approach for Environmental Toxicity Determination. Heavy Met. Environ. 1895, 2, 454–456. [Google Scholar]
- Lu, X.Q.; Werner, I.; Young, T.M. Geochemistry and Bioavailability of Metals in Sediments from Northern San Francisco Bay. Environ. Int. 2005, 31, 593–602. [Google Scholar] [CrossRef]
- Rica, C. Revista de Biología Tropical Heavy Metals in Sediments, Mussels and Oysters from Trinidad and Venezuela. Rev. Biol. Trop. 2005, 53, 41–53. [Google Scholar]
- Birch, G.F.; Lee, J.H.; Gunns, T.; Besley, C.H. The Use of Sedimentary Metals to Assess Anthropogenic Change, Ecological Risk, Model Past and Future Impacts and Identify Contaminant Sources in the Eleven Estuaries of Greater Sydney (Australia): A Review and Critical Assessment. Sci. Total Environ. 2024, 950, 175268. [Google Scholar] [CrossRef]
- Karageorgis, A.P.; Botsou, F.; Kaberi, H.; Iliakis, S. Dataset on the Major and Trace Elements Contents and Contamination in the Sediments of Saronikos Gulf and Elefsis Bay, Greece. Data Brief. 2020, 29, 105330. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A Review of the Identification and Detection of Heavy Metal Ions in the Environment by Voltammetry. Talanta 2018, 178, 324–338. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Gao, J.; Zha, Y. Hyperspectral Sensing of Heavy Metals in Soil and Vegetation: Feasibility and Challenges. ISPRS J. Photogramm. Remote Sens. 2018, 136, 73–84. [Google Scholar] [CrossRef]
- He, Q.; Silliman, B.R. Climate Change, Human Impacts, and Coastal Ecosystems in the Anthropocene. Curr. Biol. 2019, 29, R1021–R1035. [Google Scholar] [CrossRef] [PubMed]
Index | Procedures of Calculation | Classification | Description | Reference |
---|---|---|---|---|
PLI | PLI = (CF1 × CF2 × CF3 × … × CFn)1/n, where CFmetals is the ratio between the content of each metal to the background values (background values according to Gkaragkouni et al. [32] in sediment; CFmetals = Cmetal/Cbackground | (0) (1) (>1) | Unpolluted sediments Baseline level of contamination Progressive deterioration of the environmental conditions and increasing pollution | [70] |
PERI (RI) | PERI = = is the potential ecological risk factor for a given substance, is the toxic response factor, is the contamination factor, is the heavy metal concentration in the sediments, is the background concentration of heavy metals in the sediments, and is the biological toxicity factor; i.e., Cd = 40, Cr = 30, Cu = 5, Pb = 5, and Zn = 1 | <150 150–300 300–600 >600 | Low ecological risk Moderate ecological risk Considerable ecological risk Very high ecological risk | [71] |
HHRA | HQi = ADDi/RFDi Csediment is the metal content in the sediment sample, and the RfD (mg/kg day) values used in the present study were the following: Cu: RfDing = 4.00 × 10−2, RfDder = 1.20 × 10−2. Pb: RfDing = 3.50 × 10−3, RfD der = 5.25 × 10−4. Zn: RfDing = 3.00 × 10−1, RfDder = 6.00 × 10−2. HI = ∑HQi = ∑(ADDI/RfDI) | HQ > 1 HI > 1 | Risk of occurrence of harmful health effects Possible occurrence of non-carcinogenic effects | [77,78,79,80,81] |
Liquid Sample | Solid Sample | Sample Vol. (mL) | Max. Matrix Conc. (g/L) | Detection (ng/mL) | Detection (ppm) | Sequential Multielement | Simultaneous Multielement | Matrix Effects | Spectral Interferences | Precision % RSD | |
---|---|---|---|---|---|---|---|---|---|---|---|
INAA | Possible | Possible | 0.01 | 70 | 0.01–100 | 0.05–50 | Yes | Yes | Small | Few | 5 |
ICP-AES | Ideal | Possible | 1–10 | 10–100 | 0.1–10 | - | Yes | Yes | Small | Large | 0.5–1 |
Flame-AAS | Ideal | (a) | 5–10 | 30 | 1–103 | - | Possible | No | Large | Few | 0.5–1 |
GF-AAS | Ideal | Possible | 0.01–0.1 | 200 | 10−2–0.1 | - | Possible | Yes | Moderate | Few | 3–10 |
ICP-MS | Ideal | Possible | 1–10 | 0.1–0.5 | 10−3–10−2 | - | Yes | Yes | Moderate | Significant | 1–3 |
WD-XRF | Possible | Ideal | (b) | (b) | (b) | 0.1–104 | Yes | Yes | Large | 1 |
Location | Corg | Ag | Al | As | Cd | Co | Cr | Cu | Fe | Mn | Ni | Pb | Sb | Sc | V | Zn | Hg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. | 0.2 | 0.04 | 1.46 | 5.0 | 0.1 | 4.5 | 8.5 | 1.0 | 0.71 | 95 | 35.7 | 5 | 0.3 | 5.9 | 16.2 | 1.0 | 0.33 |
Max. | 0.49 | 0.7 | 7.45 | 25 | 3.5 | 12.3 | 220 | 25 | 3.5 | 520 | 115 | 48 | 0.9 | 6.7 | 90 | 120 | 0.46 |
Mean | 0.92 | 0.40 | 3.62 | 12.67 | 0.95 | 8.48 | 106.44 | 11.78 | 4.68 | 258.4 | 63.9 | 23.0 | 0.59 | 6.2 | 43.7 | 62.9 | 0.40 |
Subarea of Saronikos Gulf |
Sedimentation Rate (cm/year) | Reference |
---|---|---|
Perama–Salamina strait | 0.45 | [32] |
Inner Saronikos | (0.62 and 0.08) | [30] |
Elefsina Bay | (0.11 and 0.25) | [30] |
Wester basin of Saronikos | 0.006 | [26] |
Inner Saronikos | 0.9 | [26] |
Elefsina Bay | 0.26 | [26] |
Elefsina Bay | (0.4–1.0) | [45] |
Elefsina Bay | 0.29 | [83] |
Elefsina Bay | 0.5 | [67] |
Min. | 0.006 | Saronikos |
Max. | 1.0 | Saronikos |
Mean | 0.41 | Saronikos |
Environmental Index | Equation/References | Metals Employed | Studies Referenced |
---|---|---|---|
(a) | |||
Micropollutant Index | As, Cr, Hg, Sb, Zn maximum pollution in Keratsini Bay near the outfall and outside Piraeus harbor | [21,22] | |
Geoaccumulation Index | [38] | Heavily polluted by Cd, Pb, W, As, Se, and Zn and highly contaminated concerning Cu and Cr | [43] |
Contamination Factor (Cf) Modified Contamination Degree (mCd) | CF = (metal content in polluted sediment/background value of the metal) [71] [39] | Al, As, Ca, Cu, Cr, Fe, Mo, Mg, Mn, Ni, P, Pb, Sb, Sn, Si, S, Ti, V, and Zn: high | [45] |
Enrichment Factor (EF) | EF = (X/C sample)/(X/C reference) (IAEA 1992) | As, Br, Se, Sb, and Zn are the most enriched elements in most sites | [92] |
Enrichment Factor (EF) Modified Pollution Index (MPI) | [37] [98] | Cu, Zn, Pb > 10: “very severe modification” (Inner Saronikos) V, Cr, Mn, Co, Ni, Cu, Zn, As, and Pb: heavy to moderately heavily polluted (Elefsina Bay) | [26] |
Enrichment Factor (EF) | [37] | Ag, V, Cr, Mn, Fe, Cu, Zn, As, Mo, Cd, and Pb: “severe modification” (Inner Saronikos) | [30] |
Geoaccumulation Index (Igeo) Enrichment Factor (EF) Pollution Loading Index (PLI) | [38,70,99] | Cu > Zn > Mo > Ag > Cd > Cr > Pb: “extremely to moderately polluted” Cu > Zn > Mo > Ag > Cd > Cr > Pb: “high to medium enrichment” > 1 contaminated sediment | [27] |
Enrichment Factor (EF) Geoaccumulation Index (Igeo) Pollution Loading Index (PLI) | [37,38,70] | Ag < Pb < Sn < Zn < Cu: very high to significant enrichment Ag, Pb, Sn, Zn, Cu: moderate to heavy contamination > 1 contaminated sediment | [32] |
(b) | |||
Corresponding sediment quality guidelines (SQGs), effect range low/effect range median (ERL/ERM) | [100] | Cd, Pb, As, Zn, Cu, and Cr in most of the sediments exceed the toxic effect range | [43] |
SQG Mean Effect Range Median quotient (m-ERM-q) values | [100] | “Medium-to-high risks” of toxicity | [45] |
Threshold Effect Level (TEL) Probable Effect Level (PEL) Risk Assessment Code (RAC) | [101,102] | Ag, Cr, Cu, Zn, As, Cd, and Pb: medium to high toxicity risk (Inner Saronikos) Cd: high toxicity risk (Elefsina) | [30] |
Potential Ecological Risk Index (RI) Mean Effect Range Median quotient (m-ERM-q) values | [71,100] | As, Cd, Cr, Cu, Pb, and Zn: “low to considerable ecological risk” Zn, Cu, Pb, Ni, Cr, Cd, As, and Ag “medium to high-medium priority sites” | [32] |
Group of Heavy Metals | Total Variance (%) | Pollution Source | Saronikos Subarea | Reference |
---|---|---|---|---|
As-Sb-Ag-Au-Zn-REE- | 84.4% | Fertilizer Plant, ASO | Inner Saronikos | [87] |
Zn-Pb-Cr-W-As-Corg | - | ASO, ports | Keratsini | [43] |
Fe-Mn-Zn-Pb-Cu-Sb-S-Mo-As-Mg-TOC | - | Steel mill | Elefsina | [45] |
Sn-V | - | Crude oil refineries | Elefsina | [45] |
U-Corg-Silt-Clay | 19.98% | FP–ASO–agriculture | Psyttalia–Keratsini | [92] |
Cu-Zn-As-Pb-Corg | 30.6% | WWTP, ports, industries | Inner Saronikos | [26] |
Ag-Cd-Cr-Cu–Zn-Pb-Mn-Corg Fe-As-Pb–Cd-Mn Co–Ni-Mo-Mn-Cu | 57.73% 15.41% 7.59% | ASO (sludge) | Keratsini–Psyttalia | [27] |
Ag, As, Cd, Cu, Pb, Zn, Sn, Ba-Corg | 43.26% | Industry, shipyard, ASO, WWTP | Perama–Salamina | [32] |
Decade | No. of Samples | Extent of Area of Sampling (km2) | PLI Values | Overall PLI Area |
---|---|---|---|---|
1970s | 30 | 224 | - | - |
1980s | 28 | 29.5 | 1.7–13.3 | 4.8 |
1990s | 62 | 1921 | 0.7–43.2 | 14.7 |
2000s | 57 | 436 | 0.5–6.4 | 2.7 |
2010s | 80 | 2277 | 0.6–4.2 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkaragkouni, A.; Dimas, X.; Sergiou, S.; Christodoulou, D.; Anastasopoulos, L.; Geraga, M.; Karapanagioti, H.K.; Papatheodorou, G. Metal Pollution and Health–Ecological Risk Assessment in an Intensely Burdened Coastal Environment of Greece, the Saronikos Gulf: A 50-Year Critical Review. Water 2025, 17, 1029. https://doi.org/10.3390/w17071029
Gkaragkouni A, Dimas X, Sergiou S, Christodoulou D, Anastasopoulos L, Geraga M, Karapanagioti HK, Papatheodorou G. Metal Pollution and Health–Ecological Risk Assessment in an Intensely Burdened Coastal Environment of Greece, the Saronikos Gulf: A 50-Year Critical Review. Water. 2025; 17(7):1029. https://doi.org/10.3390/w17071029
Chicago/Turabian StyleGkaragkouni, Anastasia, Xenophon Dimas, Spyros Sergiou, Dimitris Christodoulou, Loukas Anastasopoulos, Maria Geraga, Hrissi K. Karapanagioti, and George Papatheodorou. 2025. "Metal Pollution and Health–Ecological Risk Assessment in an Intensely Burdened Coastal Environment of Greece, the Saronikos Gulf: A 50-Year Critical Review" Water 17, no. 7: 1029. https://doi.org/10.3390/w17071029
APA StyleGkaragkouni, A., Dimas, X., Sergiou, S., Christodoulou, D., Anastasopoulos, L., Geraga, M., Karapanagioti, H. K., & Papatheodorou, G. (2025). Metal Pollution and Health–Ecological Risk Assessment in an Intensely Burdened Coastal Environment of Greece, the Saronikos Gulf: A 50-Year Critical Review. Water, 17(7), 1029. https://doi.org/10.3390/w17071029