Multiscale Factors Driving Extreme Flooding in China’s Pearl River Basin During the 2022 Dragon Boat Precipitation Season
Abstract
:1. Introduction
2. Data and Methods
3. The Multiscale Nature of Flood-Inducing Rainfall in the BJB
4. Impact of Multiscale Temporal Factors on Extreme Precipitation
4.1. Favorable Synoptic Environments
4.2. Influence of Subseasonal-Scale Signal Stagnation
4.3. Indirect Effects of Rare Tri-Peak La Niña Phenomenon
5. Conclusions and Discussion
- (1)
- First identification of the combined impacts from a rare triple-peaked La Niña, stalled BSISO phases, and synoptic–system interactions on South China rainfall extremes;
- (2)
- A new conceptual framework (Figure 14) quantifying cross-scale feedbacks between interannual (ENSO), subseasonal (ISO), and synoptic systems.
- (1)
- Early warning potential: The co-occurrence of third-year La Niña and BSISO phase 1/5 persistence (detectable 4–6 weeks pre-event) could serve as a novel predictor for South China rainstorms;
- (2)
- Methodological innovation potential: The paradigm shift calls for revisiting attribution methodologies in climate science and developing scale-integrated prediction systems.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, L.X.; Wu, N.G.; Huang, Z.; Cai, A.A. Causality analysis of the infrequent Dragon-Boat Precipitation in Guangdong Province in 2008. Meteor. Mon. 2009, 35, 43–50. (In Chinese) [Google Scholar]
- Yao, W.G. Successful flood defense in the Pearl River Basin in 2022 with multiple measures. China Water Resour. 2022, 1–4. [Google Scholar]
- Tang, T.Y.; Wu, C.S.; Wang, A.Y.; Hao, I.P.; Luo, H.B. An observational study of intraseasonal variations over Guangdong province China during the rainy season of 1999. J. Trop. Meteor. 2007, 23, 683–689. (In Chinese) [Google Scholar]
- Ji, Z.P.; Hu, L.T.; Gu, D.J.; Wu, N.G.; Liang, J. The quasi-biweekly oscillation of flood-causing tropical rain in Xijiang River region and its atmospheric circulation models. J. Trop. Meteor. 2011, 27, 775–784. (In Chinese) [Google Scholar]
- Cao, X.; Ren, X.J.; Yang, X.Q.; Fang, J.B. The quasi-biweekly oscillation characteristics of persistent severe rain and its general circulation anomaly over southeast China from May to August. Acta Meteor. Sin. 2012, 70, 766–778. (In Chinese) [Google Scholar]
- Hong, W.; Ren, X.J. Persistent heavy rainfall over South China during May–August: Subseasonal anomalies of circulation and sea surface temperature. J. Meteor. Res. Appl. 2014, 27, 769–787. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, B.; Zeng, Q. Impact of the Madden–Julian Oscillation on Summer Rainfall in Southeast China. J. Clim. 2009, 22, 201–216. [Google Scholar]
- Ren, H.L.; Ren, P. Impact of Madden–Julian Oscillation upon Winter Extreme Rainfall in Southern China: Observations and Predictability in CFSv2. Atmosphere 2017, 8, 192. [Google Scholar] [CrossRef]
- Madden, R.A.; Julian, P.R. Detection of a 40–50 Day Oscillation in the Zonal Wind in the Tropical Pacific. J. Atmos. Sci. 1971, 28, 702–708. [Google Scholar] [CrossRef]
- Madden, R.A.; Julian, P.R. Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period. J. Atmos. Sci. 1972, 29, 1109–1123. [Google Scholar]
- Wheeler, M.C.; Hendon, H.H. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Weather Rev. 2004, 132, 1917–1932. [Google Scholar] [CrossRef]
- Roxy, M.K.; Dasgupta, P.; McPhaden, M.J.; Suematsu, T.; Zhang, C.; Kim, D. Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle. Nature 2019, 575, 647–651. [Google Scholar] [CrossRef]
- Zhang, W.J.; Huang, Z.C.; Jiang, F.; Stuecker, M.F.; Chen, G.; Jin, F. Exceptionally persistent Madden-Julian Oscillation activity contributes to the extreme 2020 East Asian summer monsoon rainfall. Geophys. Res. Lett. 2021, 48, e2020GL091588. [Google Scholar]
- Wang, Y.; Ren, H.L.; Wei, Y.; Jin, F.; Ren, P.; Gao, L.; Wu, J. MJO phase swings modulate the recurring latitudinal shifts of the 2020 extreme summer-monsoon rainfall around Yangtse. J. Geophys. Res. Atmos. 2022, 6, 127. [Google Scholar]
- Biabanaki, M.; Eslamian, S.S.; Koupai, J.A.; Cañón, J.; Boni, G.; Gheysari, M. A principal components/singular spectrum analysis approach to ENSO and PDO influences on rainfall in western Iran. J. Hydrol. Res. 2014, 45, 250–262. [Google Scholar]
- Huang, R.H.; Wu, Y.F. The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci. 1989, 6, 21–32. [Google Scholar]
- Zhang, R.H.; Sumi, A.; Kimoto, M. Impact of El Niño on the East Asian monsoon: A diagnostic study of the ’86/87 and ’91/92 events. J. Meteor. Soc. Jpn. 1996, 74, 49–62. [Google Scholar]
- Tao, S.Y.; Zhang, Q.Y. Response of the Asian winter and summer monsoon to ENSO events. Chin. J. Atmos. Sci. 1998, 22, 399–407. (In Chinese) [Google Scholar]
- Wang, B.; Wu, R.G.; Fu, X.H. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar]
- Liu, M.H.; Ren, H.L.; Zhang, W.J.; Ren, P.F. Influence of super El Nino events on the frequency of spring and summer extreme precipitation over eastern China. Acta Meteor. Sin. 2018, 76, 539–553. (In Chinese) [Google Scholar]
- Deng, W.J.; Ren, P.F.; Zhang, D.; Sun, Y.; Wu, N.-G. An Extreme Monsoonal Heavy Rainfall Event over Inland South China in June 2022: A Synoptic Causes Analysis. J. Trop. Meteor. 2023, 29, 16–25. [Google Scholar]
- Wang, T.; Hu, Y.M.; Pan, W.J. Climate causation analysis of the strongest Dragon-Boat precipitation in Guangdong province in 2008. Guangdong Meteor. 2008, 30, 5–7. (In Chinese) [Google Scholar]
- Du, Y.; Chen, G. Heavy rainfall associated with double low-level jets over Southern China. Part II: Convection initiation. Mon. Weather Rev. 2019, 147, 543–565. [Google Scholar] [CrossRef]
- Liu, X.; Luo, Y.; Huang, L.; Zhang, D.; Guan, Z. Roles of double low-level jets in the generation of coexisting inland and coastal heavy rainfall over south China during the pre-summer rainy season. J. Geophys. Res. Atmos. 2020, 125, e2020JD032890. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, C.; Xu, K.; Ma, S.; Lu, M.; Han, X.; Hua, L. Record-breaking pre-flood rainfall over South China in 2022: Role of historic warming over the Northeast Pacific and Maritime Continent. Clim. Dyn. 2023, 61, 3147–3163. [Google Scholar] [CrossRef]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. J. Atmos. Ocean. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Liebmann, B.; Smith, C.A. Description of a Complete (Interpolated) Outgoing Longwave Radiation Dataset. Bull. Am. Meteorol. Soc. 1996, 77, 1275–1277. [Google Scholar]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An Improved In Situ and Satellite SST Analysis for Climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Lee, J.Y.; Wang, B.; Wheeler, M.C.; Fu, X.; Waliser, D.E.; Kang, I.-S. Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Clim. Dyn. 2013, 40, 493–509. [Google Scholar]
- Liu, B.; Zhu, C.; Yuan, Y. Two interannual dominant modes of the South Asian High in May and their linkage to the tropical SST anomalies. Clim. Dyn. 2017, 49, 2705–2720. [Google Scholar]
- Chen, Y.; Zhai, P. Mechanisms for concurrent low-latitude circulation anomalies responsible for persistent extreme precipitation in the Yangtze River Valley. Clim. Dyn. 2016, 47, 989–1006. [Google Scholar]
- Sun, Z.; Zhou, H.; Peng, L.; Ni, D. Relationships between different types of South Asian high and atmospheric circulation in the Northern Hemisphere in July. Trans. Atmos. Sci. 2016, 39, 577–588. (In Chinese) [Google Scholar]
- Wang, B.; Rui, H. Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys. 1990, 44, 43–61. [Google Scholar] [CrossRef]
- Madden, R.A.; Julian, P.R. Observations of the 40–50-Day Tropical Oscillation—A Review. Mon. Weather Rev. 1994, 122, 814–837. [Google Scholar] [CrossRef]
- Zhang, C.D.; Dong, M. Seasonality in the Madden-Julian Oscillation. J. Clim. 2004, 17, 3169–3180. [Google Scholar] [CrossRef]
- Jiang, X.; Li, T.; Wang, B. Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Clim. 2004, 17, 1022–1039. [Google Scholar]
- Zhu, C.W.; Nakazawa, T.; Li, J.P.; Chen, L. The 30–60 day intraseasonal oscillation over the western North Pacific Ocean and its impacts on summer flooding in China during 1998. Geophys. Res. Lett. 2003, 30, 1952. [Google Scholar]
- Mao, J.; Wu, G. Intraseasonal variations of the Yangtze rainfall and its related atmospheric circulation features during the 1991 summer. Clim. Dyn. 2006, 27, 815–830. [Google Scholar] [CrossRef]
- Yang, J.; Wang, B.; Bao, Q. Biweekly and 21–30-day variations of the subtropical summer monsoon rainfall over the lower reach of the Yangtze River basin. J. Clim. 2010, 23, 1146–1159. [Google Scholar] [CrossRef]
- Chen, J.; Wen, Z.; Wu, R.; Chen, Z.; Zhao, P. Influences of northward propagating 25–90-day and quasi-biweekly oscillations on eastern China summer rainfall. Clim. Dyn. 2015, 45, 105–124. [Google Scholar] [CrossRef]
- Hsu, P.C.; Lee, J.Y.; Ha, K.J. Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China. Int. J. Climatol. 2016, 36, 1403–1412. [Google Scholar] [CrossRef]
- Lee, S.; Moon, J.; Wang, B.; Kim, H.-J. Subseasonal Prediction of Extreme Precipitation over Asia: Boreal Summer Intraseasonal Oscillation Perspective. J. Clim. 2017, 30, 2849–2865. [Google Scholar] [CrossRef]
- Sasikumar, K.; Nath, D.; Wang, X.; Chen, W.; Yang, S. Recent enhancement and prolonged occurrence of MJO over the Indian Ocean and their impact on Indian summer monsoon rainfall. Clim. Dyn. 2022, 59, 2585–2598. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, W.; Geng, X.; Hsu, P.-C. Accumulated Effect of Intra-Seasonal Oscillation Convections over the Tropical Western North Pacific on the Meridional Location of Western Pacific Subtropical High. Front. Earth Sci. 2020, 8, 579442. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Ai, W.; Li, Q. Reconstruction and Application of the Monthly Western Pacific Subtropical High Indices. J. Appl. Meteorol. Sci. 2012, 23, 414–423. (In Chinese) [Google Scholar]
- Pohl, B.; Matthews, A.J. Observed changes in the lifetime and amplitude of the Madden-Julian Oscillation associated with interannual ENSO sea surface temperature anomalies. J. Clim. 2007, 20, 2659–2674. [Google Scholar] [CrossRef]
- Wei, Y.; Ren, H. Modulation of ENSO on Fast and Slow MJO Modes during Boreal Winter. J. Clim. 2019, 32, 7483–7506. [Google Scholar] [CrossRef]
- Wang, B.; Chen, G.; Liu, F. Diversity of the Madden-Julian Oscillation. Sci. Adv. 2019, 5, eaax0220. [Google Scholar] [CrossRef]
- Ambrizzi, T.; Hoskins, B.J.; Hsu, H.-H. Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci. 1995, 52, 3661–3672. [Google Scholar] [CrossRef]
- Ren, P.; Ren, L.; Fu, X.; Wu, J.; Du, L. Impact of Boreal Summer Intraseasonal Oscillation on Rainfall Extremes in Southeastern China and its Predictability in CFSv2. J. Geophys. Res. Atmos. 2018, 123, 4423–4442. [Google Scholar] [CrossRef]
Dataset | Variables | Spatial Resolution | Temporal Resolution | Temporal Coverage | Source | Notes |
---|---|---|---|---|---|---|
GPM | Precipitation | 0.1° × 0.1° | Daily | 2014–2022 | National Aeronautics and Space Administration (NASA)/ Japan Aerospace Exploration Agency (JASA) | Merged with TRMM data; validated against station observations |
TRMM | Precipitation | 0.25° × 0.25° | Daily | 1998–2015 | NASA/JAXA | Mission ended in April 2015; data merged with GPM |
ERA5 | Geopotential, UV winds, temperature, specific humidity | 0.25° × 0.25° | Hourly | 1979–2022 | ECMWF | Used for synoptic and subseasonal analysis |
CMA Stations | Precipitation | Stations | Daily | 2005–2022 | CMA | Used for validation of satellite precipitation data |
NOAA OLR | Outgoing longwave radiation | 2.5° × 2.5° | Daily | 1974–2022 | NOAA | Used to monitor tropical convection |
NOAA SST | Sea surface temperature | 0.25° × 0.25° | Monthly | 1981–2022 | NOAA | Used for interannual-scale analysis (e.g., ENSO) |
China Ept | Evapotranspiration | 0.01° × 0.01° | Monthly | 1991–2020 | National Tibetan Plateau Data Center in China | |
BSISO Index | BSISO1, BSISO2 | N/A | Daily | 1981–2022 | Lee et al. [31] | Used to monitor tropical intraseasonal signals |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Wu, N.; Ren, P.; Deng, W.; Zhang, D. Multiscale Factors Driving Extreme Flooding in China’s Pearl River Basin During the 2022 Dragon Boat Precipitation Season. Water 2025, 17, 1013. https://doi.org/10.3390/w17071013
Zheng J, Wu N, Ren P, Deng W, Zhang D. Multiscale Factors Driving Extreme Flooding in China’s Pearl River Basin During the 2022 Dragon Boat Precipitation Season. Water. 2025; 17(7):1013. https://doi.org/10.3390/w17071013
Chicago/Turabian StyleZheng, Jiawen, Naigeng Wu, Pengfei Ren, Wenjian Deng, and Dong Zhang. 2025. "Multiscale Factors Driving Extreme Flooding in China’s Pearl River Basin During the 2022 Dragon Boat Precipitation Season" Water 17, no. 7: 1013. https://doi.org/10.3390/w17071013
APA StyleZheng, J., Wu, N., Ren, P., Deng, W., & Zhang, D. (2025). Multiscale Factors Driving Extreme Flooding in China’s Pearl River Basin During the 2022 Dragon Boat Precipitation Season. Water, 17(7), 1013. https://doi.org/10.3390/w17071013