Rapid Urban Flood Detection Using PlanetScope Imagery and Thresholding Methods
Abstract
:1. Introduction
- i.
- The evaluation of remote sensing water indices: This study systematically evaluates the effectiveness of various water indices in detecting urban floodwaters. The goal is to minimize misclassification errors caused by urban features, ensuring a reliable distinction between floodwaters and non-water surfaces. The NDWI, a standard water detection index, serves as the baseline for comparison.
- ii.
- The selection of thresholding methods: This study compares global and local thresholding techniques to identify the most effective approach. Otsu’s method is used as the benchmark for evaluating alternative techniques.
2. Study Area
3. Methodology
3.1. Remote Sensing Indices
3.2. Thresholding Techniques
3.2.1. Global Approach
- Yen’s method: This entropy-based technique selects the threshold that maximizes the entropy of the thresholded image [28]. By optimizing the information content, Yen’s method aims to effectively separate the intensity distributions of water and non-water pixels, making it suitable for images with distinct class characteristics.
- Otsu’s method: A widely adopted approach, Otsu’s method determines the threshold that minimizes the intra-class variance—or equivalently, maximizes the inter-class variance—between water and non-water regions [21]. It performs well when the image histogram exhibits a bimodal distribution, providing a robust baseline for global thresholding.
- Isodata method: The Iterative Self-Organizing Data Analysis Technique (Isodata) iteratively refines the threshold by calculating the means of the two classes (below and above the threshold) and adjusting the threshold until it converges [29]. This method is particularly useful for images where the histogram lacks a clear bimodal structure, offering adaptability to varying intensity distributions.
3.2.2. Local Approach
- Niblack’s method: This method calculates the threshold for each pixel as a function of the local mean and standard deviation within a defined window, typically expressed as threshold = mean + k × standard deviation, where k is a sensitivity parameter. Optimized for each case study, Niblack’s method excels at detecting local details but can be sensitive to noise in uniform regions [30].
- Sauvola’s method: An improvement over Niblack’s approach, Sauvola’s method adjusts the threshold to account for the dynamic range of the standard deviation, using the formula threshold = mean × (1 + k × (standard deviation/R − 1)), where R is the maximum standard deviation (typically 128 for 8-bit images), and k is a tunable parameter. This adaptation reduces noise in low-contrast areas, making it effective for urban flood mapping, with the parameters being fine-tuned for each case study [31].
- Gonzalez’s method: This method employs local statistics, such as the mean or median of the pixel neighborhood, to determine the threshold [32]. While specific formulations may vary, they adapt to local image conditions, offering flexibility in handling the diverse spectral characteristics of urban landscapes. In this study, its parameters were optimized to enhance the performance across the case studies.
3.2.3. Hybrid Approach
3.3. Validation and Performance Metrics
3.3.1. Reference Maps
3.3.2. Validation Strategy
- TPs: pixels correctly classified as flooded.
- TNs: pixels correctly classified as non-flooded.
- FPs: pixels incorrectly classified as flooded.
- FNs: pixels incorrectly classified as non-flooded.
4. Results
4.1. Thresholding Method Comparisons
4.2. Best-Performing Indices
4.3. Geographical Evaluation of Classification
5. Discussion
5.1. Effect of Water Coverage Ratio on Method Performance
5.1.1. High Water Coverage
5.1.2. Low Water Coverage
5.1.3. Moderate Water Coverage
5.2. Hybrid Global–Local Thresholding
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Zhou, H.; Zhang, H.; Du, G.; Zhou, J. Urban Flood Risk Warning under Rapid Urbanization. Environ. Res. 2015, 139, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Dharmarathne, G.; Waduge, A.O.; Bogahawaththa, M.; Rathnayake, U.; Meddage, D.P.P. Adapting Cities to the Surge: A Comprehensive Review of Climate-Induced Urban Flooding. Results Eng. 2024, 22, 102123. [Google Scholar] [CrossRef]
- Lin, Y.N.; Yun, S.-H.; Bhardwaj, A.; Hill, E.M. Urban Flood Detection with Sentinel-1 Multi-Temporal Synthetic Aperture Radar (SAR) Observations in a Bayesian Framework: A Case Study for Hurricane Matthew. Remote Sens. 2019, 11, 1778. [Google Scholar] [CrossRef]
- Clement, M.A.; Kilsby, C.G.; Moore, P. Multi-Temporal Synthetic Aperture Radar Flood Mapping Using Change Detection. J. Flood Risk Manag. 2018, 11, 152–168. [Google Scholar] [CrossRef]
- Pulvirenti, L.; Chini, M.; Pierdicca, N.; Boni, G. Use of SAR Data for Detecting Floodwater in Urban and Agricultural Areas: The Role of the Interferometric Coherence. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1532–1544. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, D.; Deng, Z.; Shi, Y.; Ding, Z.; Ning, H.; Zhao, H.; Zhao, J.; Xu, H.; Zhao, X. Application of Red Edge Band in Remote Sensing Extraction of Surface Water Body: A Case Study Based on GF-6 WFV Data in Arid Area. Hydrol. Res. 2021, 52, 1526–1541. [Google Scholar] [CrossRef]
- Levin, N.; Phinn, S. Assessing the 2022 Flood Impacts in Queensland Combining Daytime and Nighttime Optical and Imaging Radar Data. Remote Sens. 2022, 14, 5009. [Google Scholar] [CrossRef]
- Li, L.; Woodley, A.; Chappell, T. Mapping Urban Floods via Spectral Indices and Machine Learning Algorithms. Sustainability 2024, 16, 2493. [Google Scholar] [CrossRef]
- Peng, B.; Meng, Z.; Huang, Q.; Wang, C. Patch Similarity Convolutional Neural Network for Urban Flood Extent Mapping Using Bi-Temporal Satellite Multispectral Imagery. Remote Sens. 2019, 11, 2492. [Google Scholar] [CrossRef]
- Tanim, A.H.; McRae, C.B.; Tavakol-Davani, H.; Goharian, E. Flood Detection in Urban Areas Using Satellite Imagery and Machine Learning. Water 2022, 14, 1140. [Google Scholar] [CrossRef]
- Huang, M.; Jin, S. Rapid Flood Mapping and Evaluation with a Supervised Classifier and Change Detection in Shouguang Using Sentinel-1 SAR and Sentinel-2 Optical Data. Remote Sens. 2020, 12, 2073. [Google Scholar] [CrossRef]
- Gebrehiwot, A.; Hashemi-Beni, L.; Thompson, G.; Kordjamshidi, P.; Langan, T.E. Deep Convolutional Neural Network for Flood Extent Mapping Using Unmanned Aerial Vehicles Data. Sensors 2019, 19, 1486. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Zeng, C.; Xia, G.-S.; Shen, H. An Urban Water Extraction Method Combining Deep Learning and Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 769–782. [Google Scholar] [CrossRef]
- Bangira, T.; Alfieri, S.M.; Menenti, M.; van Niekerk, A. Comparing Thresholding with Machine Learning Classifiers for Mapping Complex Water. Remote Sens. 2019, 11, 1351. [Google Scholar] [CrossRef]
- Zhao, J.; Li, M.; Li, Y.; Matgen, P.; Chini, M. Urban Flood Mapping Using Satellite Synthetic Aperture Radar Data: A Review of Characteristics, Approaches, and Datasets. IEEE Geosci. Remote Sens. Mag. 2024, 13, 2–34. [Google Scholar] [CrossRef]
- Mcfeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Tran, K.H.; Menenti, M.; Jia, L. Surface Water Mapping and Flood Monitoring in the Mekong Delta Using Sentinel-1 SAR Time Series and Otsu Threshold. Remote Sens. 2022, 14, 5721. [Google Scholar] [CrossRef]
- Chini, M.; Hostache, R.; Giustarini, L.; Matgen, P. A Hierarchical Split-Based Approach for Parametric Thresholding of SAR Images: Flood Inundation as a Test Case. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6975–6988. [Google Scholar] [CrossRef]
- Moharrami, M.; Javanbakht, M.; Attarchi, S. Automatic Flood Detection Using Sentinel-1 Images on the Google Earth Engine. Environ. Monit Assess 2021, 193, 248. [Google Scholar] [CrossRef]
- Che, L.; Li, S.; Liu, X. Improved Surface Water Mapping Using Satellite Remote Sensing Imagery Based on Optimization of the Otsu Threshold and Effective Selection of Remote-Sensing Water Index. J. Hydrol. 2025, 654, 132771. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Günen, M.A.; Atasever, U.H. Remote Sensing and Monitoring of Water Resources: A Comparative Study of Different Indices and Thresholding Methods. Sci. Total Environ. 2024, 926, 172117. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liu, D. A Local Thresholding Approach to Flood Water Delineation Using Sentinel-1 SAR Imagery. ISPRS J. Photogramm. Remote Sens. 2020, 159, 53–62. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Wang, J.; Zhang, Y.; Xu, Y.; Yang, O.; Zhang, R.; Wang, J.; Wang, Z.; Lu, F.; et al. The Performance of Landsat-8 and Landsat-9 Data for Water Body Extraction Based on Various Water Indices: A Comparative Analysis. Remote Sens. 2024, 16, 1984. [Google Scholar] [CrossRef]
- Yang, X.; Hong, L. A New Classification Rule-Set for Mapping Surface Water in Complex Topographical Regions Using Sentinel-2 Imagery. Water 2024, 16, 943. [Google Scholar] [CrossRef]
- Xu, X.; Xu, S.; Jin, L.; Song, E. Characteristic Analysis of Otsu Threshold and Its Applications. Pattern Recognit. Lett. 2011, 32, 956–961. [Google Scholar] [CrossRef]
- Yuan, X.; Wu, L.; Peng, Q. An Improved Otsu Method Using the Weighted Object Variance for Defect Detection. Appl. Surf. Sci. 2015, 349, 472–484. [Google Scholar] [CrossRef]
- Yen, J.-C.; Chang, F.-J.; Chang, S. A New Criterion for Automatic Multilevel Thresholding. IEEE Trans. Image Process. 1995, 4, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Ball, G.H.; Hall, D.J. Isodata, a Novel Method of Data Analysis and Pattern Classification; Stanford Research Institute: Menlo Park, CA, USA, 1965. [Google Scholar]
- Niblack, W. An Introduction to Digital Image Processing; Prentice-Hall International: Hoboken, NJ, USA, 1986. [Google Scholar]
- Sauvola, J.; Pietikäinen, M. Adaptive Document Image Binarization. Pattern Recognit. 2000, 33, 225–236. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Wood, R.E. Digital Image Processing, 2nd ed.; Prentice-Hall Inc.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Feng, Q.; Liu, J.; Gong, J. Urban Flood Mapping Based on Unmanned Aerial Vehicle Remote Sensing and Random Forest Classifier—A Case of Yuyao, China. Water 2015, 7, 1437–1455. [Google Scholar] [CrossRef]
- Cavallo, C.; Papa, M.N.; Gargiulo, M.; Palau-Salvador, G.; Vezza, P.; Ruello, G. Continuous Monitoring of the Flooding Dynamics in the Albufera Wetland (Spain) by Landsat-8 and Sentinel-2 Datasets. Remote Sens. 2021, 13, 3525. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Matthews, B.W. Comparison of the Predicted and Observed Secondary Structure of T4 Phage Lysozyme. Biochim. Biophys. Acta (BBA)—Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Fowlkes, E.B.; Mallows, C.L. A Method for Comparing Two Hierarchical Clusterings. J. Am. Stat. Assoc. 1983, 78, 553–569. [Google Scholar] [CrossRef]
- Chicco, D. Ten Quick Tips for Machine Learning in Computational Biology. BioData Min 2017, 10, 35. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The Matthews Correlation Coefficient (MCC) Should Replace the ROC AUC as the Standard Metric for Assessing Binary Classification. BioData Min. 2023, 16, 4. [Google Scholar] [CrossRef]
- Chen, S.; Huang, W.; Chen, Y.; Feng, M. An Adaptive Thresholding Approach toward Rapid Flood Coverage Extraction from Sentinel-1 SAR Imagery. Remote Sens. 2021, 13, 4899. [Google Scholar] [CrossRef]
- Amarnath, G. An Algorithm for Rapid Flood Inundation Mapping from Optical Data Using a Reflectance Differencing Technique. J. Flood Risk Manag. 2014, 7, 239–250. [Google Scholar] [CrossRef]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM+ and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef]
- Atefi, M.R.; Miura, H. Detection of Flash Flood Inundated Areas Using Relative Difference in NDVI from Sentinel-2 Images: A Case Study of the August 2020 Event in Charikar, Afghanistan. Remote Sens. 2022, 14, 3647. [Google Scholar] [CrossRef]
- Tan, J.; Tang, Y.; Liu, B.; Zhao, G.; Mu, Y.; Sun, M.; Wang, B. A Self-Adaptive Thresholding Approach for Automatic Water Extraction Using Sentinel-1 SAR Imagery Based on OTSU Algorithm and Distance Block. Remote Sens. 2023, 15, 2690. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening. Remote Sens. 2017, 9, 596. [Google Scholar] [CrossRef]
- Guo, J.; Wang, X.; Liu, B.; Liu, K.; Zhang, Y.; Wang, C. Remote-Sensing Extraction of Small Water Bodies on the Loess Plateau. Water 2023, 15, 866. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, H.; Wang, C.; Zhang, B. Operational Flood Detection Using Sentinel-1 SAR Data over Large Areas. Water 2019, 11, 786. [Google Scholar] [CrossRef]
- Chen, F.; Chen, X.; Van de Voorde, T.; Roberts, D.; Jiang, H.; Xu, W. Open Water Detection in Urban Environments Using High Spatial Resolution Remote Sensing Imagery. Remote Sens. Environ. 2020, 242, 111706. [Google Scholar] [CrossRef]
- Li, Q.; Lu, W.; Yang, J. A Hybrid Thresholding Algorithm for Cloud Detection on Ground-Based Color Images. J. Atmos. Ocean. Technol. 2011, 28, 1286–1296. [Google Scholar] [CrossRef]
- Lang, F.; Zhu, Y.; Zhao, J.; Hu, X.; Shi, H.; Zheng, N.; Zha, J. Flood Mapping of Synthetic Aperture Radar (SAR) Imagery Based on Semi-Automatic Thresholding and Change Detection. Remote Sens. 2024, 16, 2763. [Google Scholar] [CrossRef]
Metrics | Formula | Range | Optimal Value |
---|---|---|---|
FMI | 0.0–1.0 | 1.0 | |
N = TN + TP + FN + FP | |||
MCC | |||
−1.0–1.0 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van, L.N.; Nguyen, G.V.; Kim, Y.; Do, M.T.T.; Kwon, S.; Lee, J.; Lee, G. Rapid Urban Flood Detection Using PlanetScope Imagery and Thresholding Methods. Water 2025, 17, 1005. https://doi.org/10.3390/w17071005
Van LN, Nguyen GV, Kim Y, Do MTT, Kwon S, Lee J, Lee G. Rapid Urban Flood Detection Using PlanetScope Imagery and Thresholding Methods. Water. 2025; 17(7):1005. https://doi.org/10.3390/w17071005
Chicago/Turabian StyleVan, Linh Nguyen, Giang V. Nguyen, Younghun Kim, May T. T. Do, Seongcheon Kwon, Jinhyeong Lee, and Giha Lee. 2025. "Rapid Urban Flood Detection Using PlanetScope Imagery and Thresholding Methods" Water 17, no. 7: 1005. https://doi.org/10.3390/w17071005
APA StyleVan, L. N., Nguyen, G. V., Kim, Y., Do, M. T. T., Kwon, S., Lee, J., & Lee, G. (2025). Rapid Urban Flood Detection Using PlanetScope Imagery and Thresholding Methods. Water, 17(7), 1005. https://doi.org/10.3390/w17071005