Long Short-Term Memory (LSTM) Networks for Accurate River Flow Forecasting: A Case Study on the Morava River Basin (Serbia)
Abstract
1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.2. Long Short-Term Memory (LSTM) Model
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leščešen, I.; Basarin, B.; Podraščanin, Z.; Mesaroš, M. Changes in Annual and Seasonal Extreme Precipitation over Southeastern Europe. Environ. Sci. Proc. 2023, 26, 48. [Google Scholar] [CrossRef]
- He, C.; Chen, F.; Wang, Y.; Long, A.; He, X. Flood Frequency Analysis of Manas River Basin in China under Non-Stationary Condition. J. Flood Risk Manag. 2021, 14, e12745. [Google Scholar] [CrossRef]
- Sahoo, B.B.; Jha, R.; Singh, A.; Kumar, D. Long Short-Term Memory (LSTM) Recurrent Neural Network for Low-Flow Hydrological Time Series Forecasting. Acta Geophys. 2019, 67, 1471–1481. [Google Scholar] [CrossRef]
- Yu, Q.; Tolson, B.A.; Shen, H.; Han, M.; Mai, J.; Lin, J. Enhancing Long Short-Term Memory (LSTM)-Based Streamflow Prediction with a Spatially Distributed Approach. Hydrol. Earth Syst. Sci. 2024, 28, 2107–2122. [Google Scholar] [CrossRef]
- Khoshkalam, Y.; Rousseau, A.N.; Rahmani, F.; Shen, C.; Abbasnezhadi, K. Applying Transfer Learning Techniques to Enhance the Accuracy of Streamflow Prediction Produced by Long Short-Term Memory Networks with Data Integration. J. Hydrol. 2023, 622, 129682. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X.; Xie, J. Simulating Runoff under Changing Climatic Conditions: A Comparison of the Long Short-Term Memory Network with Two Conceptual Hydrologic Models. J. Hydrol. 2021, 592, 125779. [Google Scholar] [CrossRef]
- Cho, K.; Kim, Y. Improving Streamflow Prediction in the WRF-Hydro Model with LSTM Networks. J. Hydrol. 2022, 605, 127297. [Google Scholar] [CrossRef]
- Nifa, K.; Boudhar, A.; Ouatiki, H.; Elyoussfi, H.; Bargam, B.; Chehbouni, A. Deep Learning Approach with LSTM for Daily Streamflow Prediction in a Semi-Arid Area: A Case Study of Oum Er-Rbia River Basin, Morocco. Water 2023, 15, 262. [Google Scholar] [CrossRef]
- Li, W.; Liu, C.; Hu, C.; Niu, C.; Li, R.; Li, M.; Xu, Y.; Tian, L. Application of a Hybrid Algorithm of LSTM and Transformer Based on Random Search Optimization for Improving Rainfall-Runoff Simulation. Sci. Rep. 2024, 14, 11184. [Google Scholar] [CrossRef]
- Waqas, M.; Humphries, U.W. A Critical Review of RNN and LSTM Variants in Hydrological Time Series Predictions. MethodsX 2024, 13, 102946. [Google Scholar] [CrossRef]
- Sabzevari, T.; Petroselli, A.; Haghighi, A.T.; Babaali, H.R. Comparison of Saturation Models in Complex Hillslopes. Acta Hydrol. Slovaca 2023, 24, 173–181. [Google Scholar] [CrossRef]
- Shi, X.; Ding, H.; Wu, M.; Zhang, N.; Shi, M.; Chen, F.; Li, Y. Effects of Different Types of Drought on Vegetation in Huang-Huai-Hai River Basin, China. Ecol. Indic. 2022, 144, 109428. [Google Scholar] [CrossRef]
- Bo, Y.; Zhang, C.; Fang, X.; Sun, Y.; Li, C.; An, M.; Peng, Y.; Lu, Y. Application of HP-LSTM Models for Groundwater Level Prediction in Karst Regions: A Case Study in Qingzhen City. Water 2025, 17, 362. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Alam, M.S.B.; Hassan, M.; Rozbu, M.R.; Ishtiak, T.; Rafa, N.; Mofijur, M.; Shawkat Ali, A.B.M.; Gandomi, A.H. Deep Learning Modelling Techniques: Current Progress, Applications, Advantages, and Challenges. Artif. Intell. Rev. 2023, 56, 13521–13617. [Google Scholar] [CrossRef]
- Vizi, Z.; Batki, B.; Rátki, L.; Szalánczi, S.; Fehérváry, I.; Kozák, P.; Kiss, T. Water Level Prediction Using Long Short-Term Memory Neural Network Model for a Lowland River: A Case Study on the Tisza River, Central Europe. Env. Sci. Eur. 2023, 35, 92. [Google Scholar] [CrossRef]
- Khan, M.; Hossni, Y. A Comparative Analysis of LSTM Models Aided with Attention and Squeeze and Excitation Blocks for Activity Recognition. Sci. Rep. 2025, 15, 3858. [Google Scholar] [CrossRef]
- Ley, A.; Bormann, H.; Casper, M. Intercomparing LSTM and RNN to a Conceptual Hydrological Model for a Low-Land River with a Focus on the Flow Duration Curve. Water 2023, 15, 505. [Google Scholar] [CrossRef]
- Martel, J.-L.; Arsenault, R.; Turcotte, R.; Castañeda-Gonzalez, M.; Brissette, F.; Armstrong, W.; Mailhot, E.; Pelletier-Dumont, J.; Lachance-Cloutier, S.; Rondeau-Genesse, G.; et al. Exploring the Ability of LSTM-Based Hydrological Models to Simulate Streamflow Time Series for Flood Frequency Analysis. preprint, 2024. [Google Scholar] [CrossRef]
- Gauch, M.; Kratzert, F.; Klotz, D.; Nearing, G.; Lin, J.; Hochreiter, S. Rainfall-Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network. Hydrol. Earth Syst. Sci. 2021, 25, 2045–2062. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Brenner, C.; Schulz, K.; Herrnegger, M. Rainfall-Runoff Modelling Using Long Short-Term Memory (LSTM) Networks. Hydrol. Earth Syst. Sci. 2018, 22, 6005–6022. [Google Scholar] [CrossRef]
- Frame, J.M.; Kratzert, F.; Klotz, D.; Gauch, M.; Shelev, G.; Gilon, O.; Qualls, L.M.; Gupta, H.V.; Nearing, G.S. Deep Learning Rainfall-Runoff Predictions of Extreme Events. Hydrol. Earth Syst. Sci. 2022, 26, 3377–3392. [Google Scholar] [CrossRef]
- Li, W.; Liu, C.; Xu, Y.; Niu, C.; Li, R.; Li, M.; Caihong, H.; Tian, L. An Interpretable Hybrid Deep Learning Model for Flood Forecasting Based on Transformer and LSTM. J. Hydrol. Reg. Stud. 2024, 54, 101873. [Google Scholar]
- Xu, W.; Jiang, Y.; Zhang, X.; Li, Y.; Zhang, R.; Fu, G. Using Long Short-Term Memory Networks for River Flow Prediction. Hydrol. Res. 2020, 51, 1358–1376. [Google Scholar] [CrossRef]
- Le, X.H.; Nguyen, D.H.; Jung, S.; Yeon, M.; Lee, G. Comparison of Deep Learning Techniques for River Streamflow Forecasting. IEEE Access 2021, 9, 71805–71820. [Google Scholar] [CrossRef]
- Cheng, M.; Fang, F.; Kinouchi, T.; Navon, I.M.; Pain, C.C. Long Lead-Time Daily and Monthly Streamflow Forecasting Using Machine Learning Methods. J. Hydrol. 2020, 590, 125376. [Google Scholar] [CrossRef]
- Tanhapour, M.; Soltani, J.; Shakibian, H.; Malekmohammadi, B.; Hlavcova, K.; Kohnova, S. Development of a Multi-Objective Optimal Operation Model of a Dam Using Meteorological Ensemble Forecasts for Flood Control. Water Resour. Manag. 2025. [Google Scholar] [CrossRef]
- Hauswirth, S.M.; Bierkens, M.F.P.; Beijk, V.; Wanders, N. The Suitability of a Seasonal Ensemble Hybrid Framework Including Data-Driven Approaches for Hydrological Forecasting. Hydrol. Earth Syst. Sci. 2023, 27, 501–517. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Zhen, L. Forecasting the River Water Discharge by Artificial Intelligence Methods. Water 2024, 16, 1248. [Google Scholar] [CrossRef]
- Hashemi, R.; Brigode, P.; Garambois, P.; Javelle, P. How Can We Benefit from Regime Information to Make More Effective Use of Long Short-Term Memory (LSTM) Runoff Models? Hydrol. Earth Syst. Sci. 2022, 26, 5793–5816. [Google Scholar] [CrossRef]
- Pyo, J.C.; Pachepsky, Y.; Kim, S.; Abbas, A.; Kim, M.; Kwon, Y.S.; Ligaray, M.; Cho, K.H. Long Short-Term Memory Models of Water Quality in Inland Water Environments. Water Res. X 2023, 21, 100207. [Google Scholar]
- Lees, T.; Reece, S.; Kratzert, F.; Klotz, D.; Gauch, M.; De Bruijn, J.; Kumar Sahu, R.; Greve, P.; Slater, L.; Dadson, S.J. Hydrological Concept Formation inside Long Short-Term Memory (LSTM) Networks. Hydrol. Earth Syst. Sci. 2022, 26, 3079–3101. [Google Scholar] [CrossRef]
- Hunt, K.M.R.; Matthews, G.R.; Pappenberger, F.; Prudhomme, C. Using a Long Short-Term Memory (LSTM) Neural Network to Boost River Streamflow Forecasts over the Western United States. Hydrol. Earth Syst. Sci. 2022, 26, 5449–5472. [Google Scholar] [CrossRef]
- Roudbari, N.S.; Punekar, S.R.; Patterson, Z.; Eicker, U.; Poullis, C. From Data to Action in Flood Forecasting Leveraging Graph Neural Networks and Digital Twin Visualization. Sci. Rep. 2024, 14, 18571. [Google Scholar] [CrossRef] [PubMed]
- Ghaneei, P.; Moradkhani, H. DeepBase: A Deep Learning-Based Daily Baseflow Dataset across the United States. Sci. Data 2025, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Urosev, M.; Dolinaj, D.; Strbac, D. At-Site Hydrological Drought Analysis: Case Study of Velika Morava River at Ljubicevski Most (Serbia). J. Geogr. Inst. Jovan Cvijic SASA 2016, 66, 203–220. [Google Scholar] [CrossRef]
- Srejić, T.; Manojlović, S.; Sibinović, M.; Bajat, B.; Novković, I.; Milošević, M.V.; Carević, I.; Todosijević, M.; Sedlak, M.G. Agricultural Land Use Changes as a Driving Force of Soil Erosion in the Velika Morava River Basin, Serbia. Agriculture 2023, 13, 778. [Google Scholar] [CrossRef]
- Trifković, M.; Marinković, G.; Ilić, B.; Pejičić, G.; Lazić, J. Land Consolidation and Irrigation, Case Study, Municipality of Velika Plana. Arch. Tech. Sci. 2016, 1, 35–45. [Google Scholar] [CrossRef]
- Urošev, M.; Dolinaj, D.; Leščešen, I. Hydrological Droughts in the Južna Morava River Basin (Serbia). Geogr. Pannonica 2016, 20, 197–207. [Google Scholar] [CrossRef]
- Khatun, R.; Pal, S. Effects of Hydrological Modification on Fish Habitability in Riparian Flood Plain River Basin. Ecol. Inf. 2021, 65, 101398. [Google Scholar] [CrossRef]
- Sousa, R.G.C.; de Freitas, H.C.P.; Zacardi, D.M.; Faria-Junior, C.H. Effects of River Dams on the Fish Guilds in the Northwest Region of the Brazilian Amazon. Fish. Res. 2021, 243, 106091. [Google Scholar] [CrossRef]
- Simić, V.; Bănăduc, D.; Curtean-Bănăduc, A.; Petrović, A.; Veličković, T.; Stojković-Piperac, M.; Simić, S. Assessment of the Ecological Sustainability of River Basins Based on the Modified the ESHIPPOfish Model on the Example of the Velika Morava Basin (Serbia, Central Balkans). Front. Env. Sci. 2022, 10, 952692. [Google Scholar] [CrossRef]
- Manojlović, S.; Srejić, T.; Sibinović, M.; Milošević, M.V.; Bajat, B.; Kostadinov, S. Impact of Precipitation and Human Activities on Suspended Sediment Transport Load in the Velika Morava River Basin (Serbia). Arab. J. Geosci. 2022, 15, 1209. [Google Scholar] [CrossRef]
- Bajat, B.; Blagojević, D.; Kilibarda, M.; Luković, J.; Tošić, I. Spatial Analysis of the Temperature Trends in Serbia during the Period 1961–2010. Theor Appl Clim. 2015, 121, 289–301. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistical Approaches for Incorporating Elevation into the Spatial Interpolation of Rainfall. J. Hydrol. 2000, 228, 113–129. [Google Scholar]
- Carrera-Hernández, J.J.; Gaskin, S.J. Spatio Temporal Analysis of Daily Precipitation and Temperature in the Basin of Mexico. J. Hydrol. 2007, 336, 231–249. [Google Scholar] [CrossRef]
- Moral, F.J. Comparison of Different Geostatistical Approaches to Map Climate Variables: Application to Precipitation. Int. J. Climatol. 2010, 30, 620–631. [Google Scholar] [CrossRef]
- Kumarasamy, K.; Belmont, P. Calibration Parameter Selection and Watershed Hydrology Model Evaluation in Time and Frequency Domains. Water 2018, 10, 710. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y. Calibration of a Distributed Hydrological Model in a Data-Scarce Basin Based on GLEAM Datasets. Water 2020, 12, 897. [Google Scholar] [CrossRef]
- Mansour, K.; Decesari, S.; Paglione, M.; Becagli, S.; Rinaldi, M. Nested Cross-Validation Gaussian Process to Model Dimethylsulfide Mesoscale Variations in Warm Oligotrophic Mediterranean Seawater. NPJ Clim. Atmos. Sci. 2024, 7, 277. [Google Scholar] [CrossRef]
- Ghomlaghi, A.; Nasseri, M.; Bayat, B. How to Enhance the Inverse Distance Weighting Method to Detect the Precipitation Pattern in a Large-Scale Watershed. Hydrol. Sci. J. 2022, 67, 2014–2028. [Google Scholar] [CrossRef]
- Tan, J.; Xie, X.; Zuo, J.; Xing, X.; Liu, B.; Xia, Q.; Zhang, Y. Coupling Random Forest and Inverse Distance Weighting to Generate Climate Surfaces of Precipitation and Temperature with Multiple-Covariates. J. Hydrol. 2021, 598, 126270. [Google Scholar] [CrossRef]
- Arpit, D.; Wang, H.; Zhou, Y.; Xiong, C. Ensemble of Averages: Improving Model Selection and Boosting Performance in Domain Generalization. arXiv 2021. [Google Scholar] [CrossRef]
- Wu, H.; Chen, B. Evaluating Uncertainty Estimates in Distributed Hydrological Modeling for the Wenjing River Watershed in China by GLUE, SUFI-2, and ParaSol Methods. Ecol. Eng. 2015, 76, 110–121. [Google Scholar] [CrossRef]
- Blöschl, G.; Bierkens, M.F.P.; Chambel, A.; Cudennec, C.; Destouni, G.; Fiori, A.; Kirchner, J.W.; McDonnell, J.J.; Savenije, H.H.G.; Sivapalan, M.; et al. Twenty-Three Unsolved Problems in Hydrology (UPH)–a Community Perspective. Hydrol. Sci. J. 2019, 64, 1141–1158. [Google Scholar] [CrossRef]
- Onyutha, C. Pros and Cons of Various Efficiency Criteria for Hydrological Model Performance Evaluation. Proc. Int. Assoc. Hydrol. Sci. 2024, 385, 181–187. [Google Scholar]
- Liu, Y.; Wang, H.; Feng, W.; Huang, H. Short Term Real-Time Rolling Forecast of Urban River Water Levels Based on Lstm: A Case Study in Fuzhou City, China. Int. J. Env. Res. Public. Health 2021, 18, 9287. [Google Scholar] [CrossRef]
- Höge, M.; Scheidegger, A.; Baity-Jesi, M.; Albert, C.; Fenicia, F. Improving Hydrologic Models for Predictions and Process Understanding Using Neural ODEs. Hydrol. Earth Syst. Sci. 2022, 26, 5085–5102. [Google Scholar] [CrossRef]
- Creutin, J.D.; Blanchet, J.; Reverdy, A.; Brochet, A.; Lutoff, C.; Robert, Y. Reported Occurrence of Multiscale Flooding in an Alpine Conurbation over the Long Run (1850–2019). Water 2022, 14, 548. [Google Scholar] [CrossRef]
- Ahrendt, S.; Horner-Devine, A.R.; Collins, B.D.; Morgan, J.A.; Istanbulluoglu, E. Channel Conveyance Variability Can Influence Flood Risk as Much as Streamflow Variability in Western Washington State. Water Resour. Res. 2022, 58, e2021WR031890. [Google Scholar] [CrossRef]
- Vinokić, L.; Dotlić, M.; Prodanović, V.; Kolaković, S.; Simonovic, S.P.; Stojković, M. Effectiveness of Three Machine Learning Models for Prediction of Daily Streamflow and Uncertainty Assessment. Water Res. X 2025, 27, 100297. [Google Scholar] [CrossRef]
- Hagemann, M.; Park, M.H. Capacity of Semi-Parametric Regression Models to Predict Extreme-Event Water Quality in the Northeastern US. J. Hydrol. 2017, 547, 575–584. [Google Scholar] [CrossRef]
- Liu, P.; Liang, Z.; Qian, M.; Hu, Y.; Wang, J.; Li, B. Analysis of Flood Streamflow Sensitivity to Precipitation Using the WRF-Hydro Model in a Humid Environment. Hydrol. Res. 2024, 55, 728–748. [Google Scholar] [CrossRef]
- Kupfer, S.; MacPherson, L.R.; Hinkel, J.; Arns, A.; Vafeidis, A.T. A Comprehensive Probabilistic Flood Assessment Accounting for Hydrograph Variability of ESL Events. J. Geophys. Res. Ocean. 2024, 129, e2023JC019886. [Google Scholar] [CrossRef]
- Hu, F.; Yang, Q.; Yang, J.; Luo, Z.; Shao, J.; Wang, G. Incorporating Multiple Grid-Based Data in CNN-LSTM Hybrid Model for Daily Runoff Prediction in the Source Region of the Yellow River Basin. J. Hydrol. Reg. Stud. 2024, 51, 101652. [Google Scholar] [CrossRef]
Velika Morava | Južna Morava | Zapadna Morava | |||||||
---|---|---|---|---|---|---|---|---|---|
Disch. (m3/s) | Prec. (mm) | Temp. (°C) | Disch. (m3/s) | Prec. (mm) | Temp. (°C) | Disch. (m3/s) | Prec. (mm) | Temp. (°C) | |
Mean | 225.12 | 1.77 | 11.6 | 90.31 | 1.633 | 12.40 | 102.92 | 1.789 | 11.40 |
Std. dev. | 213.776 | 4.828 | 8.675 | 102.468 | 4.348 | 68.026 | 99.079 | 4.741 | 8.673 |
Minimum | 23.6 | 0.0 | −22.8 | 6.18 | 0.00 | −17.90 | 2.45 | 0.00 | −22.20 |
Maximum | 2338.0 | 129.3 | 34.4 | 1830.0 | 74.5 | 33.3 | 1590.0 | 73.3 | 33.5 |
Skewness | 2.671 | 5.934 | −0.228 | 3.741 | 4.780 | −0.213 | 3.165 | 4.675 | −0.267 |
Kurtosis | 10.205 | 66.604 | −0.736 | 25.584 | 34.054 | −0.812 | 17.918 | 30.866 | −0.764 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leščešen, I.; Tanhapour, M.; Pekárová, P.; Miklánek, P.; Bajtek, Z. Long Short-Term Memory (LSTM) Networks for Accurate River Flow Forecasting: A Case Study on the Morava River Basin (Serbia). Water 2025, 17, 907. https://doi.org/10.3390/w17060907
Leščešen I, Tanhapour M, Pekárová P, Miklánek P, Bajtek Z. Long Short-Term Memory (LSTM) Networks for Accurate River Flow Forecasting: A Case Study on the Morava River Basin (Serbia). Water. 2025; 17(6):907. https://doi.org/10.3390/w17060907
Chicago/Turabian StyleLeščešen, Igor, Mitra Tanhapour, Pavla Pekárová, Pavol Miklánek, and Zbyněk Bajtek. 2025. "Long Short-Term Memory (LSTM) Networks for Accurate River Flow Forecasting: A Case Study on the Morava River Basin (Serbia)" Water 17, no. 6: 907. https://doi.org/10.3390/w17060907
APA StyleLeščešen, I., Tanhapour, M., Pekárová, P., Miklánek, P., & Bajtek, Z. (2025). Long Short-Term Memory (LSTM) Networks for Accurate River Flow Forecasting: A Case Study on the Morava River Basin (Serbia). Water, 17(6), 907. https://doi.org/10.3390/w17060907