Urgent Necessity for Algal Bloom Mitigation and Derived Resource Recycling
1. Introduction
2. Main Contribution of This Special Issue
3. Conclusions and Future Directions
Funding
Conflicts of Interest
List of Contributions
- Wang, Y.Y.; Wang, K.; Bing, X.J.; Tan, Y.D.; Zhou, Q.H.; Jiang, J.; Zhu, Y.R. Influencing factors for the growth of Cladophora and its cell damage and destruction mechanism: Implication for prevention and treatment. Water 2024, 16, 1890. https://doi.org/10.3390/w16131890.
- Guo, Y.S.; Fu, W.R.; Xiong, N.; He, J.; Zheng, Z. Phosphorus threshold for the growth of Microcystis wesenbergii, Microcystis aeruginosa, and Chlorella vulgaris based on the Monod formula. Water 2023, 15, 4249. https://doi.org/10.3390/w15244249.
- Rodriguez-López, L.; Usta, D.F.B.; Alvarez, L.B.; Duran-Llacer, I.; Bourrel, L.; Frappart, F.; Cardenas, R.; Urrutia, R. Algal pigment estimation models to assess bloom toxicity in a South American lake. Water 2024, 16, 3708. https://doi.org/10.3390/w16243708.
- Yao, Y.; Chen, Y.; Han, R.M.; Chen, D.S.; Ma, H.X.; Han, X.X; Feng, Y.Q.; Shi, C.F. Algal decomposition accelerates denitrification as evidenced by the high-resolution distribution of nitrogen fractions in the sediment–water interface of eutrophic lakes. Water 2024, 16, 341. https://doi.org/10.3390/w16020341.
- Zhao, Q.H.; Wu, B.; Zuo, J.; Xiao, P.; Zhang, H.; Dong, Y.P.; Shang, S.; Ji, G.N.; Geng, R.Z.; Li, R.H. Benthic microbes on the shore of southern Lake Taihu exhibit ecological significance and toxin-producing potential through comparison with planktonic microbes. Water 2024, 16, 3155. https://doi.org/10.3390/w16213155.
References
- Pires, C.; Martins, M.V. Enhancing water management: A comparative analysis of time series prediction models for distributed water flow in supply networks. Water 2024, 16, 1827. [Google Scholar] [CrossRef]
- Thompson, P.A.; Waite, A.M.; McMahon, K. Dynamics of a cyanobacterial bloom in a hypereutrophic, stratified weir pool. Mar. Freshw. Res. 2003, 54, 27–37. [Google Scholar] [CrossRef]
- Dionysiou, D. Overview: Harmful algal blooms and natural toxins in fresh and marine waters—Exposure, occurrence, detection, toxicity, control, management and policy. Toxicon 2010, 55, 907–908. [Google Scholar] [CrossRef] [PubMed]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIRES Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Liu, H.B.; Li, Y.H.; Leng, F.; Schmidt, W. Stage variation of phytoplankton and environmental factors in a large drinking water reservoir: From construction to full operation. Water Air Soil Pollut. 2016, 227, 352. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, C.H.; Yoon, Y.D.; Hwang, S.-J. Harmful cyanobacterial material production in the North Han River (South Korea): Genetic potential and temperature-dependent properties. Int. J. Environ. Res. Public Health 2018, 15, 444. [Google Scholar] [CrossRef]
- Blahova, L.; Sehnal, L.; Lepsova-Skacelova, O.; Szmucova, V.; Babica, P.; Hilscherova, K.; Teikali, J.; Sinoven, K.; Blaha, L. Occurrence of cylindrospermopsin, anatoxin-a and their homologs in the southern Czech Republic—Taxonomical, analytical, and molecular approaches. Harmful Algae 2021, 108, 102101. [Google Scholar] [CrossRef]
- Huo, D.; Gan, N.Q.; Geng, R.Z.; Cao, Q.; Song, L.R.; Yu, G.L.; Li, R.H. Cyanobacterial blooms in China: Diversity, distribution, and cyanotoxins. Harmful Algae 2021, 109, 102106. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Wang, K.; Bing, X.J.; Tan, Y.D.; Zhou, Q.H.; Jiang, J.; Zhu, Y.R. Influencing factors for the growth of Cladophora and its cell damage and destruction mechanism: Implication for prevention and treatment. Water 2024, 16, 1890. [Google Scholar] [CrossRef]
- Li, J.M.; Shimizu, K.; Zhou, Y.L.; Utsumi, M.; Sakharkar, M.K.; Zhang, Z.Y.; Sun, H.W.; Sugiura, N. Biodegradation of microcystins by bacterial communities coexisting with flagellate Monas guttula and concurrent succession of the community structures. J. Water Supply Res. Technol. 2011, 60, 352–363. [Google Scholar] [CrossRef]
- Dittmann, E.; Fewer, D.P.; Neilan, B.A. Cyanobacterial toxins: Biosynthetic routes and evolutionary roots. FEMS Microbiol. Rev. 2013, 37, 23–43. [Google Scholar] [CrossRef] [PubMed]
- Li, J.M.; Li, R.H.; Li, J. Current research scenario for microcystins biodegradation—A review on fundamental knowledge, application prospects and challenges. Sci. Total Environ. 2017, 595, 615–632. [Google Scholar] [CrossRef]
- Xu, S.S.; Yi, X.P.; Liu, W.Y.; Zhang, C.C.; Massey, I.Y.; Yang, F.; Tian, L. A review of nephrotoxicity of microcystins. Toxins 2020, 12, 693. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.Q.; Zhu, G.W.; Gao, G.; Zhang, Y.L.; Li, W.; Paerl, H.W.; Carmichael, W.W. A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management. Environ. Manag. 2010, 45, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Tamele, I.J.; Vasconcelos, V. Microcystin incidence in the drinking water of Mozambique: Challenges for public health protection. Toxins 2020, 12, 368. [Google Scholar] [CrossRef]
- Ofiteru, I.D.; Picioreanu, C. No model is perfect, but some are useful: Agent-based model should inform the action plan to curb algal blooms in Lake Erie. Science 2022, 376, 914–916. [Google Scholar] [CrossRef]
- Paerl, H.W. Controlling cyanobacterial harmful blooms in freshwater ecosystems. Microb. Biotechnol. 2017, 10, 1106–1110. [Google Scholar] [CrossRef]
- Balaji-Prasath, B.; Wang, Y.; Su, Y.P.; Hamilton, D.P.; Lin, H.; Zheng, L.W.; Zhang, Y. Methods to control harmful algal blooms: A review. Environ. Chem. Lett. 2022, 20, 3133–3152. [Google Scholar] [CrossRef]
- Paerl, H.W. Mitigating toxic planktonic cyanobacterial blooms in aquatic ecosystems facing increasing anthropogenic and climatic pressures. Toxins 2018, 10, 76. [Google Scholar] [CrossRef]
- Zepernick, B.N.; Wilhelm, S.W.; Bullerjahn, G.S.; Paerl, H.W. Climate change and the quatic continuum: A cyanobacterial comeback story. Environ. Microbiol. Rep. 2023, 15, 3–12. [Google Scholar] [CrossRef]
- Dilekli, N.; Cazcarro, I. Testing the SDG targets on water and sanitation using the world trade model with a waste, wastewater, and recycling framework. Ecol. Econ. 2019, 165, 106376. [Google Scholar] [CrossRef]
- Kim, J.K.; Kottuparambi, S.; Moh, S.H.; Lee, T.K.; Kim, Y.-J.; Rhee, J.-S.; Choi, E.-M.; Kim, B.H.; Yu, Y.J.; Yarish, C.; et al. Potential applications of nuisance microalgae blooms. J. Appl. Phycol. 2015, 27, 1223–1234. [Google Scholar] [CrossRef]
- Choudhary, P.; Assemany, P.P.; Naaz, F.; Bhattacharya, A.; Castro, J.S.; Couto, E.A.C.; Calijuri, M.L.; Pant, K.K.; Malik, A. A review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass. Sci. Total Environ. 2020, 726, 137961. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, A.A.; Hunt, R.W. Capitalizing on harmful algal blooms: From problems to products. Algal Res. 2021, 55, 102265. [Google Scholar] [CrossRef]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 2008, 54, 621–639. [Google Scholar] [CrossRef]
- Castro, J.S.; Calijuri, M.L.; Assemany, P.P.; Cecon, P.R.; de Assis, I.R.; Ribeiro, V.J. Microalgae biofilm in soil: Greenhouse gas emissions, ammonia volatilization and plant growth. Sci. Total Environ. 2017, 574, 1640–1648. [Google Scholar] [CrossRef]
- Manninen, K.; Huttunen, S.; Seppala, J.; Laitinen, J.; Spilling, K. Resource recycling with algal cultivation: Environmental and social perspectives. J. Clean. Prod. 2016, 134, 495–505. [Google Scholar] [CrossRef]
- Rezasoltani, S.; Champagne, P. An integrated approach for the phycoremediation of Pb (II) and the production of biofertilizer using nitrogen-fixing cyanobacteria. J. Hazard. Mater. 2023, 445, 130448. [Google Scholar] [CrossRef]
- Zhao, Y.K.; Li, Z.J.; Fan, Y.Q.; Santisouk, L.; Lei, Z.F.; Yuan, T.; Shimizu, K.; Utsumi, M. A preliminary test for nitrigen recovery potential of nitrogen fixing cyanobacteria and its granules treating wastewater containing different nitrogen species. Chem. Eng. J. 2024, 490, 151765. [Google Scholar] [CrossRef]
- Li, Z.P.; Zhu, X.F.; Wu, Z.Y.; Sun, T.; Tong, Y.D. Recent advances in cyanotoxin synthesis and applications: A comprehensive review. Microorganisms 2023, 11, 2636. [Google Scholar] [CrossRef]
- Berry, J.P.; Gantar, M.; Perez, M.H.; Berry, G.; Noriega, F.G. Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Mar. Drugs 2008, 6, 117–146. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.; Peigneur, S.; Tytgat, J. Neurotoxins and their binding areas on voltage-gated sodium channels. Front. Pharmacol. 2011, 2, 71. [Google Scholar] [CrossRef] [PubMed]
- Soeriyadi, A.H.; Ongley, S.E.; Kehr, J.C.; Pickford, R.; Dittmann, E.; Neilan, B.A. Tailoring enzyme stringency masks the multispecificity of a lyngbyatoxin (indolactam alkaloid) nonribosomal peptide synthetase. Chembiochem 2022, 23, e202100574. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.C.; Chen, Z.H.; Jiang, Y.M.; Akare, S.; Kolber-Simonds, D.; Condon, K.; Agoulnik, S.; Tendyke, K.; Shen, Y.C.; Wu, K.M.; et al. Apratoxin A shows novel pancreas-targeting activity through the binding of Sec 61. Mol. Cancer Ther. 2016, 15, 1208–1216. [Google Scholar] [CrossRef]
- Sialve, B.; Bernet, N.; Bernard, O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 2009, 27, 409–416. [Google Scholar] [CrossRef]
- Silva, T.A.; Ferreira, J.; Castro, J.S.; Braga, M.Q.; Calijuri, M.L. Microalgae from food agro-industrial effluent as a renewable resource for agriculture: A life cycle approach. Resour. Conserv. Recy. 2022, 186, 106575. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, H. Urgent Necessity for Algal Bloom Mitigation and Derived Resource Recycling. Water 2025, 17, 853. https://doi.org/10.3390/w17060853
Li J, Li H. Urgent Necessity for Algal Bloom Mitigation and Derived Resource Recycling. Water. 2025; 17(6):853. https://doi.org/10.3390/w17060853
Chicago/Turabian StyleLi, Jieming, and Hong Li. 2025. "Urgent Necessity for Algal Bloom Mitigation and Derived Resource Recycling" Water 17, no. 6: 853. https://doi.org/10.3390/w17060853
APA StyleLi, J., & Li, H. (2025). Urgent Necessity for Algal Bloom Mitigation and Derived Resource Recycling. Water, 17(6), 853. https://doi.org/10.3390/w17060853