Historical and Projected Future Hydrological Characteristics of the Mangrove Forest in the Ganges Delta—A Review
Abstract
:1. Introduction
1.1. Mangrove Forests and the Sundarbans
1.2. Climate and Vulnerability of the Sundarbans
1.3. Justification and Review Process
2. Physical Characteristics and Ecology
2.1. Landforms
2.2. Ecological Importance
2.3. Knowledge Gaps
3. Historical Hydrological Indicators
3.1. The Surface Water System
3.2. The Groundwater System
3.3. Water and Soil Salinity
3.4. Tidal Dynamics
3.5. Tropical Cyclones and Storm Surges
3.6. Erosion and Accretion
4. Projected Hydrological Indicators
4.1. Temperature and Rainfall
4.2. Extreme Events
4.3. Sea-Level Rise
4.4. Saline Water Intrusion
5. Challenges Facing the Sundarbans Ecosystem and Necessary Actions
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, N.; Lucas, R.; Bunting, P.; Hardy, A.; Rosenqvist, A.; Simard, M. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 2017, 12, e0179302. [Google Scholar] [CrossRef] [PubMed]
- FAO (Food and Agriculture Organization). The World’s Mangrove: 1980–2005. In FAO Forestry Paper-153, Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2007; ISBN 978-92-5-10-5856-5. [Google Scholar]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Sandilyan, S.; Kathiresan, K. Mangrove conservation: A global perspective. Biodivers. Conserv. 2012, 21, 3523–3542. [Google Scholar] [CrossRef]
- Aziz, A.; Paul, A.R. Bangladesh Sundarbans: Present status of the environment and biota. Diversity 2015, 7, 242–269. [Google Scholar] [CrossRef]
- Katebi, M.N.A. Sundarbans and forestry. In Cyclone’ 91—An Environmental and Perceptional Study; Haider, R., Ed.; BACS: Dhaka, Bangladesh, 2001; pp. 79–100. [Google Scholar]
- BBS (Bangladesh Bureau of Statistics). Statistical Year Book; Bangladesh Bureau of Statistics: Dhaka, Bangladesh, 2001.
- Gopal, B. Future of wetlands in tropical and subtropical Asia, especially in the face of climate change. Aquat. Sci. 2013, 75, 39–61. [Google Scholar] [CrossRef]
- Ericson, J.P.; Vorosmarty, C.J.; Dingman, S.L.; Ward, L.G.; Meybeck, M. Effective sea-level rise and deltas: Causes of change and human dimension implications. Glob. Planet. Change 2005, 50, 63–82. [Google Scholar] [CrossRef]
- Das, S.C.; Wahiduzzaman, M. Climate Change and the Vulnerability of the Sundarbans; Khulna University Studies: Khulna, Bangladesh, 2010; pp. 49–52. [Google Scholar]
- Akonda, A.W.; Khan, M.A.; Khan, S.M.H.; Khan, M.M.H.; Ahmed, R. Red Book of Threatened Mammals of Bangladesh; International Union for Conservation of Nature and Natural Resources (IUCN): Dhaka, Bangladesh, 2000; p. 71. [Google Scholar]
- IUCN-Bangladesh. The Bangladesh Sundarbans: A Photoreal Sojourn; IUCN Bangladesh Country Office: Dhaka, Bangladesh, 2001. [Google Scholar]
- Islam, N. Environmental issues in Bangladesh: An overview. Pak. J. Soc. Sci. 2005, 3, 671–679. [Google Scholar]
- Ministry of Foreign Affairs, Bangladesh. Available online: https://mofa.gov.bd/ (accessed on 11 March 2025).
- Ganguly, D.; Ray, R.; Majumder, N.; Chowdhury, C.; Jana, T.K. Monsoonal influence on evapotranspiration of the tropical mangrove forest in Northeast India. Am. J. Clim. Change 2014, 3, 232–244. [Google Scholar] [CrossRef]
- Ellison, J.C. Mangrove Ecosystems of Asia: Status, Challenges and Management Strategies. In Vulnerability of Mangroves to Climate Change; Faridah-Hanum, I., Latiff, A., Hakeem, K.R., Ozturk, M., Eds.; Springer Science & Business Media: Berlin, Germany, 2014; pp. 213–231. [Google Scholar]
- Barros, D.F.; Albernaz, A.L.M. Possible impacts of climate change on wetlands and its biota in the Brazilian Amazon. Braz. J. Biol. 2014, 74, 810–820. [Google Scholar] [CrossRef]
- Duke, N.C.; Meynecke, J.O.; Dittmann, S.; Ellison, A.M.; Anger, K.; Berger, U.; Cannicci, D.; Diele, K.; Ewel, K.C.; Field, C.D.; et al. A world without mangroves? Science 2007, 317, 41–42. [Google Scholar] [CrossRef]
- Ward, R.D.; Friess, D.A.; Day, R.H.; Mackenzie, R.A. Impacts of climate change on mangrove ecosystems: A region by region overview. Ecosys. Health Sustain. 2016, 2, e01211. [Google Scholar] [CrossRef]
- Ghosh, A.; Schmidt, S.; Fickert, T.; Nüsser, M. The Indian Sundarban mangrove forests: History, utilization, conservation strategies and local perception. Diversity 2015, 7, 149–169. [Google Scholar] [CrossRef]
- Deb, M.; Ferreira, C.M. Potential impacts of the Sundarbans mangrove degradation on future coastal flooding in Bangladesh. J. Hydro-Environ. Res. 2017, 17, 30–46. [Google Scholar] [CrossRef]
- Erwin, K.L. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetl. Ecol. Manag. 2009, 17, 71–84. [Google Scholar] [CrossRef]
- UNESCO. Decision: 43 COM 7B.3 The Sundarbans (Bangladesh) (N 798). 2019. Available online: https://whc.unesco.org/en/decisions/7431 (accessed on 15 January 2025).
- Alongi, D.M. Present state and future of the World’s mangrove forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
- MOEF (Ministry of Environment and Forests). Climate Change and India: A 494 Assessment—A Sectoral and Regional Analysis for 2030s, INCCA Report 2; Ministry of Environment and Forests: New Delhi, India, 2010.
- Islam, M.M. Tracing Mangrove Forest Dynamics of Bangladesh Using Historical Landsat Data. Master’s Thesis, Lund University, Lund, Sweden, 2017. [Google Scholar]
- Samanta, S.; Hazra, S.; Mondal, P.P.; Chanda, A.; Giri, S.; French, J.R.; Nicholls, R.J. Assessment and attribution of mangrove Forest changes in the Indian Sundarbans from 2000 to 2020. Remote Sens. 2021, 13, 4957. [Google Scholar] [CrossRef]
- Gupta, S. Disturbance of mangrove forest due to climate change: The prospects of Sundarbans. Int. J. Multidiscip. App. Bus. Educat. Res. 2021, 2, 1306–1313. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.R.; Codignotto, J.O.; Hay, J.E.; McLean, R.F.; Ragoonaden, S.; Woodroffe, C.D. Coastal systems and low-lying areas. In Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 315–356. [Google Scholar]
- Rahman, M.R.; Asaduzzaman, M. Ecology of Sundarbans, Bangladesh. J. Sci. Found. 2010, 8, 35–47. [Google Scholar] [CrossRef]
- Giri, C.; Pengra, B.; Zhu, Z.; Singh, A.; Tieszen, L.L. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 2007, 73, 91–100. [Google Scholar] [CrossRef]
- CEGIS (Center for Environmental and Geographic Information Services). Effect of Cyclone Sidr on the Sundarbans a Preliminary Assessment; Center for Environmental and Geographic Information Services: Dhaka, Bangladesh, 2007. [Google Scholar]
- Hussain, M.Z. Bangladesh Sundarban Delta Vision 2050: A First Step in Its Formulation: Document 2: A Compilation of Background Information; International Union for Conservation of Nature (IUCN): Dhaka, Bangladesh, 2014. [Google Scholar]
- Siddiqi, N.A. Mangrove Forestry in Bangladesh; Nibedon Press Limited: Chittagong, Bangladesh, 2001. [Google Scholar]
- Sherin, V.R.; Durand, F.; Papa, F.; Islam, A.S.; Gopalakrishna, V.V.; Khaki, M.; Suneel, V. Recent salinity intrusion in the Bengal delta: Observations and possible causes. Cont. Shelf Res. 2020, 202, 104142. [Google Scholar] [CrossRef]
- Akter, J. Environmental Flow Assessment for the Ganges River. Master’s Thesis (Unpublished), Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, 2010; pp. 1–158. [Google Scholar]
- Islam, S.N.; Reinstädtler, S.; Fredaush, J. Challenges of climate change impacts on urban water quality management and planning in coastal towns of Bangladesh. Int. J. Environ. Sust. Dev. 2017, 16, 228–256. [Google Scholar] [CrossRef]
- Dasgupta, S.; Sobhan, I.; Wheeler, D. The impact of climate change and aquatic salinization on mangrove species in the Bangladesh Sundarbans. Ambio 2017, 46, 680–694. [Google Scholar] [CrossRef]
- Haq, S.A. Impact of climate change on “Sundarbans”, the largest mangrove forest: Ways forward. In Proceedings of the 18th Commonwealth Forestry Conference, Edinburgh, UK, 28 June–2 July 2010; Volume 28. [Google Scholar]
- Auerbach, L.W.; Goodbred, S.L.; Mondal, D.R.; Wilson, C.A.; Ahmed, K.R.; Roy, K.; Steckler, M.S.; Small, C.; Gilligan, J.M.; Ackerly, B.A. Flood risk of natural and embanked landscapes on the Ganges-Brahmaputra tidal delta plain. Nat. Clim. Change 2015, 5, 153–157. [Google Scholar] [CrossRef]
- Mondal, M.; Jalal, M.; Khan, M.; Kumar, U.; Rahman, R.; Huq, H. Hydro-meteorological trends in southwest coastal Bangladesh: Perspectives of climate change and human interventions. Am. J. Clim. Change 2013, 2, 62–70. [Google Scholar] [CrossRef]
- Friess, D.A.; Rogers, K.; Lovelock, C.E.; Krauss, K.W.; Hamilton, S.E.; Lee, S.Y.; Lucas, R.; Primavera, J.; Rajkaran, A.; Shi, S. The state of the world’s mangrove forests: Past, present, and future. Annu. Rev. Environ. Res. 2019, 44, 89–115. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidhamm, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Lee, S.Y.; Primavera, J.H.; Dahdouh-Guebas, F.; McKee, K.; Bosire, J.O.; Cannicci, S.; Diele, K.; Fromard, F.; Koedam, N.; Marchand, C.; et al. Ecological role and services of tropical mangrove ecosystems: A reassessment. Glob. Ecol. Biogeogr. 2014, 23, 726–743. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Purbopuspito, J.; Kauffman, J.B.; Warren, M.W.; Sasmito, S.D.; Donato, D.C.; Manuri, S.; Krisnawati, H.; Taberima, S.; Kurnianto, S. The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Change 2015, 5, 1089–1092. [Google Scholar] [CrossRef]
- Rahman, M.M.; Vacik, H. Recruitment of invasive plant species in the Sundarbans following tropical Cyclone Aila. In Proceedings of the American Geophysical Union, Ocean Sciences Meeting, New Orleans, LA, USA, 21–26 February 2016. [Google Scholar]
- Islam, S.; Rahman, M.; Chakma, S. Plant diversity and forest structure of the three protected areas (wildlife sanctuaries) of Bangladesh Sundarbans: Current status and management strategies. In Mangrove Ecosystems of Asia; Faridah-Hanum, I., Latiff, A., Hakeem, K.R., Ozturk, M., Eds.; Springer: New York, NY, USA, 2014. [Google Scholar]
- Islam, S.N. Sundarbans a dynamic ecosystem: An overview of opportunities, threats and tasks. In The Sundarbans: A Disaster-prone Eco-Region: Increasing Livelihood Security; Sen, H.S., Ed.; Springer Nature: Cham, Switzerland, 2019; pp. 29–58. [Google Scholar]
- Merken, R.; Deboelpaep, E.; Teunen, J.; Saura, S.; Koedam, N. Wetland suitability and connectivity for trans-saharan migratory waterbirds. PLoS ONE 2015, 8, e0135445. [Google Scholar] [CrossRef]
- Kathiresan, K.; Bingham, B.L. Biology of mangroves and mangrove ecosystem. Adv. Mar. Biol. 2001, 40, 81–251. [Google Scholar]
- GOB (Government of Bangladesh). Integrated Resources Management Plans for the Sundarbans (2010–2020); Forest Department, Ministry of Environment and Forests: Dhaka, Bangladesh, 2010; Volume 1.
- Zhang, J.; Lindsay, R.; Schweiger, A.; Steele, M. The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophys. Res. Lett. 2013, 40, 720–726. [Google Scholar] [CrossRef]
- Yanagisawa, H.; Koshimura, S.; Miyagi, T.; Imamura, F. Tsunami damage reduction performance of a mangrove forest in Banda Aceh, Indonesia inferred from field data and a numerical model. J. Geophys. Res. Ocean. 2010, 115, C06032. [Google Scholar] [CrossRef]
- McIvor, A.L.; Spencer, T.; Möller, I.; Spalding, M. Storm Surge Reduction by Mangroves. Natural Coastal Protection Series: Report 2. Cambridge Coastal Research Unit Working Paper 41; The Nature Conservancy: Arlington, VA, USA, 2012. [Google Scholar]
- Anonymous. Draft Final Report on Improved Project Planning and Implementation Methods; Volume 1: Main Report; 2nd Coastal Embankment Rehabilitation Project; Bangladesh Water Development Board, Ministry of Water Resources: Noakhali, Bangladesh, 2000.
- Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 2008, 89, 201–219. [Google Scholar] [CrossRef]
- Rodda, S.R.; Thumaty, K.C.; Jha, C.S.; Dadhwal, V.K. Seasonal variations of carbon dioxide, water vapor and energy fluxes in tropical Indian mangroves. Forests 2016, 7, 35. [Google Scholar] [CrossRef]
- Paul, P. Sunderbans absorbs 40 million tonnes carbon dioxide. Deccan Herald, 31 May 2012. [Google Scholar]
- Haque, A.; Nicholls, R.J. Floods and the Ganges-Brahmaputra-Meghna delta. In Ecosystem Services for Well-Being in Deltas: Integrated Assessment for Policy Analysis; Nicholls, R.J., Hutton, C.W., Adger, W.N., Hanson, S.E., Rahman, M.M., Salehin, M., Eds.; Springer Nature: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Dasgupta, S.; Wheeler, D.; Sobhan, M.I.; Bandyopadhyay, S.; Paul, T. Coping with Climate Change in the Sundarbans: Lessons from Multidisciplinary Studies; International Development in Focus; License: CC BY 3.0 IGO; World Bank: Washington, DC, USA, 2020; Available online: http://hdl.handle.net/10986/34770 (accessed on 11 March 2025).
- Convention on Migratory Species (CMS). Fact Sheets: Sundarbans and Climate Change; D-53113; Bonn Convention Publications: Bonn, Germany, 2020. [Google Scholar]
- World Meteorological Organization. Regionalization of Climate Change Information for Impact Assessment and Adaptation. 2008. Available online: https://wmo.int/media/magazine-article/regionalization-of-climate-change-information-impact-assessment-and-adaptation#:~:text=Use%20of%20regionalization%20tools%20to,climate%20change%20and%20paleoclimate%20simulation (accessed on 15 January 2025).
- Nishat, A.; Chowdhury, J.K. Influence of climate change on biodiversity and ecosystems in the Bangladesh Sundarbans. In The Sundarbans: A Disaster-Prone Eco-Region; Sen, H., Ed.; Increasing Livelihood Security; Coastal Research Library; Springer: Cham, Switzerland, 2019; Volume 30, pp. 439–468. [Google Scholar] [CrossRef]
- Khan, E. The Bangladesh Sundarbans; Wildlife Trust of Bangladesh (WTB): Dhaka, Bangladesh, 2011; p. 168. [Google Scholar]
- Anwar, M.S.; Takewaka, S. Analyses on phenological and morphological variations of mangrove forests along the Southwest Coast of Bangladesh. J. Coast. Conserv. 2014, 18, 339–357. [Google Scholar] [CrossRef]
- Islam, S.N.; Gnauck, A. Mangrove wetland ecosystems in Ganges-Brahmaputra delta in Bangladesh. Front. Earth Sci. China 2008, 2, 439–448. [Google Scholar] [CrossRef]
- Nazim, U.; Anisul, H. Salinity response in southwest coastal region of Bangladesh due to Hydraulic and Hydrologic parameters. Int. J. Sustain. Agric. Technol. 2010, 6, 1–7. [Google Scholar]
- Szabo, S.; Hossain, M.S.; Adger, W.N.; Matthews, Z.; Ahmed, S.; Lázár, A.N.; Ahmad, S. Soil salinity, household wealth and food insecurity in tropical deltas: Evidence from southwest coast of Bangladesh. Sustain. Sci. 2016, 11, 411–421. [Google Scholar] [CrossRef]
- Rahman, R.; Salehin, M. Flood risks and reduction approaches in Bangladesh. In Disaster Risk Reduction Approaches in Bangladesh; Disaster Risk Reduction; Shaw, R., Mallick, F., Islam, A., Eds.; Springer: Tokyo, Japan, 2013. [Google Scholar] [CrossRef]
- Mitra, A.; Gangopadhyay, A.; Dube, A.; Schmidt, A.C.; Banerjee, K. Observed changes in water mass properties in the Indian Sundarbans (northwestern Bay of Bengal) during 1980–2007. Curr. Sci. 2009, 97, 1445–1452. [Google Scholar]
- Loucks, C.; Barber-Meyer, S.; Hossain, M.A.A.; Barlow, A.; Chowdhury, R.M. Sea level rise and tigers: Predicted impacts to Bangladesh’s Sundarbans mangroves: A letter. Clim. Change 2010, 98, 291–298. [Google Scholar] [CrossRef]
- Islam, S.N.; Gnauck, A. Water salinity investigation in the Sundarbans rivers in Bangladesh. Int. J. Water 2011, 6, 74–91. [Google Scholar] [CrossRef]
- Shamsudduha, M.; Chandler, R.E.; Taylor, R.G.; Ahmed, K.M. Recent trends in groundwater levels in a highly seasonal hydrological system: The Ganges-Brahmaputra-Meghna delta. Hydrol. Earth Sys. Sci. 2009, 13, 2373–2385. [Google Scholar] [CrossRef]
- Rahman, M.S.; Ahmed, R.; Islam, K. Groundwater recharge potential zones for sustainable water management in Sundarbans, Bangladesh. J. Water Resour. Protect. 2018, 10, 587–602. [Google Scholar]
- Hossain, P.R. Impacts of Climate Change on Coastal Ecosystems of Bangladesh. Doctoral Dissertation, Wageningen University and Research, Wageningen, The Netherlands, 2018. [Google Scholar]
- Wahid, S.M.; Babel, M.S.; Bhuiyan, A.R. Hydrologic monitoring and analysis in the Sundarbans mangrove ecosystem, Bangladesh. J. Hydrol. 2007, 332, 381–395. [Google Scholar] [CrossRef]
- Shoup, R.C.; Lambiase, J.; Cullen, A.B.; Caughey, C.A. A review and technical summary of the AAPG Hedberg Research Conference “Variations in fluvial-deltaic and coastal reservoirs deposited in tropical environments”. AAPG Bull. 2010, 94, 1477–1484. [Google Scholar] [CrossRef]
- Goodbred, S.L.; Kuehl, S.A. Enormous Ganges-Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology 2000, 28, 1083–1086. [Google Scholar] [CrossRef]
- Das, S.; Vincent, J.R. Mangroves protected villages and reduced death toll during Indian super cyclone. Proc. Nat. Acad. Sci. USA 2009, 106, 7357–7360. [Google Scholar] [CrossRef]
- Haque, M.Z.; Reza, M.I.H. Salinity intrusion affecting the ecological integrity of Sundarbans Mangrove Forests, Bangladesh. Int. J. Conserv. Sci. 2017, 8, 131–144. [Google Scholar]
- Awal, M.A. Analysis of possible environmental factors causing top-dying in mangrove forest trees in the Sundarbans in Bangladesh. Sci. Discov. 2014, 2, 1–13. [Google Scholar]
- Pethick, J.; Orford, J.D. Rapid rise in effective sea-level in southwest Bangladesh: Its causes and contemporary rates. Glob. Planet. Change 2013, 111, 237–245. [Google Scholar] [CrossRef]
- Wilson, C.; Goodbred, S.; Small, C.; Gilligan, J.; Sams, S.; Mallick, B.; Hale, R. Widespread infilling of tidal channels and navigable waterways in the human-modified tidal delta plain of southwest Bangladesh. Elem. Sci. Anthr. 2017, 5, 78. [Google Scholar] [CrossRef]
- He, L.; Li, G.; Li, K.; Shu, Y. Estimation of regional sea level change in the Pearl River delta from tide gauge and satellite altimetry data. Estuar. Coast. Shelf Sci. 2014, 141, 69–77. [Google Scholar] [CrossRef]
- Lee, H.S. Estimation of extreme sea levels along the Bangladesh coast due to storm surge and sea level rise using EEMD and EVA. J. Geophys. Res. Ocean. 2013, 118, 4273–4285. [Google Scholar] [CrossRef]
- Dasgupta, S.; Akhter Kamal, F.; Huque Khan, Z.; Choudhury, S.; Nishat, A. River Salinity and Climate Change: Evidence from Coastal Bangladesh. In Asia and the World Economy; World Scientific: Singapore, 2015; pp. 205–242. [Google Scholar] [CrossRef]
- Clarke, D.; Williams, S.; Jahiruddin, M.; Parks, K.; Salehin, M. Projections of on-farm salinity in coastal Bangladesh. Environ. Sci. Process. Impacts 2015, 17, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Diana, J.S. Threatening “white gold”: Impacts of climate change on shrimp farming in coastal Bangladesh. Ocean. Coast. Manag. 2015, 114, 42–52. [Google Scholar] [CrossRef]
- Feist, S.E.; Hoque, M.A.; Islam, M.A.; Ahmed, K.M.; Fowler, M. Recent trends in inland water level change in coastal Bangladesh-implications of sea level rise in low-lying deltas. Glob. Planet. Change 2021, 206, 103639. [Google Scholar] [CrossRef]
- Ali, A. Climate change impacts and adaptation assessment in Bangladesh. Clim. Res. 1999, 12, 109–116. [Google Scholar] [CrossRef]
- Dube, S.K.; Jain, I.; Rao, A.D.; Murty, T.S. Storm surge modelling for the Bay of Bengal and Arabian sea. Nat. Hazards 2009, 51, 3–27. [Google Scholar] [CrossRef]
- GoB (Government of Bangladesh). Cyclone Sidr in Bangladesh: Damage, Loss and Needs Assessment for Disaster Recovery and Reconstruction; GoB: Dhaka, Bangladesh, 2008.
- Mukhopadhyay, A.; Mondal, P.; Ghosh, T. Mangrove forest: An ecological buffer against cyclones. Mar. Ecol. Prog. Ser. 2015, 529, 75–86. [Google Scholar]
- Ghosh, T.; Hazra, S.; Mukhopadhyay, A. Impact of tropical cyclones on mangroves of the Sundarbans. J. Coast. Conserv. 2016, 20, 53–65. [Google Scholar]
- Paul, B.K. Why relatively fewer people died? The case of Bangladesh’s cyclone Sidr. Nat. Hazards 2009, 50, 289–304. [Google Scholar] [CrossRef]
- Roy, K.; Alam, K. Cyclones, saltwater intrusion, and migration in the Sundarbans. Clim. Change 2016, 138, 227–241. [Google Scholar]
- Wikipedia: The Free Encyclopedia. Available online: https://en.wikipedia.org/wiki/Tropical_cyclone_effects_by_region?utm_source=chatgpt.com (accessed on 21 February 2025).
- Rahman, M.R.; Alam, K.; Murray, F. Impact of climate change on the Sundarbans ecosystem. Environ. Sci. Policy 2020, 107, 35–45. [Google Scholar]
- Das, S. Cyclone Amphan: Climate change and future of Sundarbans. Econ. Political Wkly. 2019, 54, 34–36. [Google Scholar]
- Rahman, A.F.; Danilo, D.; Bassil, E. Response of the Sundarbans coastline to sea level rise and decreased sediment flow: A remote sensing assessment. Remote Sens. Environ. 2011, 115, 3121–3128. [Google Scholar] [CrossRef]
- Higgins, S.; Overeem, I.; Rogers, K.; Kalina, E. River linking in India: Downstream impacts on water discharge and suspended sediment transport to deltas. Elem. Sci. Anthr. 2018, 6, 20. [Google Scholar] [CrossRef]
- Hoque, A.; Kumar, D.; Paul, A.K.; Rahman, M.; Paul, G.C.; Aoki, S.I. Sedimentation in dune forests, mangrove forests and cc block system and associated topographic changes. J. Bangladesh Acad. Sci. 2019, 43, 67–78. [Google Scholar] [CrossRef]
- Thampanya, U. Mangroves and Sediment Dynamics Along the Coasts of Southern Thailand. Ph.D. Dissertation, UNESCO-IHE Institute, Delft, The Netherlands, 2006. [Google Scholar]
- Spalding, M.; McIvor, A.; Tonneijck, F.H.; Tol, S.; Van Eijk, P. Mangroves for Coastal Defense: Guidelines for Coastal Managers & Policy Makers; Wetlands International: Ede, The Netherlands, 2014; p. 42. [Google Scholar]
- Antolinez, J.A.A.; Méndez, F.J.; Camus, P.; Vitousek, S.; González, E.M.; Ruggiero, P.; Barnard, P. A multiscale climate emulator for long-term morphodynamics (MUSCLE-morpho). J. Geophys. Res. Ocean. 2015, 121, 775–791. [Google Scholar] [CrossRef]
- Sohel, M.S.I.; Hore, S.K.; Salam, M.A.; Hoque, M.A.A.; Ahmed, N.; Rahman, M.M.; Khan, H.M.; Rahman, S. Analysis of erosion-accretion dynamics of major rivers of world’s largest mangrove forest using geospatial techniques. Region. Stud. Mar. Sci. 2021, 46, 101901. [Google Scholar] [CrossRef]
- Hale, R.P.; Wilson, C.A.; Bomer, E.J. Seasonal variability of forces controlling sedimentation in the Sundarbans national forest, Bangladesh. Front. Earth Sci. 2019, 7, 211. [Google Scholar] [CrossRef]
- Uzzaman, K.M.M.; Miah, M.G.; Abdullah, H.M.; Islam, M.R.; Afrad, M.S.I.; Hossain, M.J. Thirty-year spatiotemporal change record of Sundarban mangrove forest in Bangladesh. Ann. Bangladesh Agric. 2020, 24, 15–32. [Google Scholar] [CrossRef]
- Mukherjee, D.; Paul, A.K. Mangrove sensitivities to climate change and its impacts in the Sundarbans: A case study in the Patibania Island of south western Sundarbans, India. In Modern Cartography Series; Academic Press: Cambridge, MA, USA, 2021; Volume 10, pp. 353–385. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Climate change 2007: The physical basis. Advice for policy makers. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, I.; Jones, R.; Rupa Kumar, K.; Kwon, W.T.; Laprise, R.; et al. Regional climate projections. In Climate Change 2007: The Physical Science Basis; Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Gopal, B.; Chauhan, M. Biodiversity and its conservation in the Sundarbans mangrove ecosystem. Aquat. Sci. 2006, 68, 338–354. [Google Scholar] [CrossRef]
- Mainuddin, M.; Peña-Arancibia, J.L.; Karim, F.; Hasan, M.M.; Mojid, M.A.; Kirby, J.M. Long-term spatio-temporal variability and trends in rainfall and temperature extremes and their potential risk to rice production in Bangladesh. PLoS Clim. 2022, 1, e0000009. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Hutton, C.W.; Adger, W.N.; Hanson, S.E.; Rahman, M.M.; Salehin, M. Ecosystem Services for Well-Being in Deltas: Integrated Assessment for Policy Analysis; Springer Nature: Cham, Switzerland, 2018; ISBN 978-3-319-71092-1. [Google Scholar] [CrossRef]
- Syvitski, J.P.; Kettner, A.J.; Overeem, I.; Hutton, E.W.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Attila, J.; Kauppila, P.; Kallio, K.Y.; Alasalmi, H.; Keto, V.; Bruun, E.; Koponen, S. Applicability of Earth Observation chlorophyll-a data in assessment of water status via MERIS-With implications for the use of OLCI sensors. Remote Sens. Environ. 2018, 212, 273–287. [Google Scholar] [CrossRef]
- Mülmenstädt, J.; Salzmann, M.; Kay, J.E.; Zelinka, M.D.; Ma, P.L.; Nam, C.; Kretzschmar, J.; Hörnig, S.; Quaas, J. An underestimated negative cloud feedback from cloud lifetime changes. Nat. Clim. Chan. 2021, 11, 508–513. [Google Scholar] [CrossRef]
- Wang, C.; Soden, B.J.; Yang, W.; Vecchi, G.A. Compensation between cloud feedback and aerosol01038-1fnteraction in CMIP6 models. Geophys. Res. Lett. 2021, 48, e2020GL091024. [Google Scholar] [CrossRef]
- Chowdhury, K.R. Tidal River Plan Could Allay Climate Threat in Southwest. 2009. Available online: https://bdnews24.com/bangladesh/tidal-river-plan-could-allay-climate-threat-in-southwest (accessed on 11 March 2025).
- CEGIS (Center for Environmental and Geographic Information Services). Coastal Land Use Zoning in the Southwest: Impact of Sea Level Rise on Land Use Suitability and Adaptation Options; Center for Environmental and Geographic Information Services: Dhaka, Bangladesh, 2006.
- FitzGerald, D.M.; Fenster, M.S.; Argow, B.A.; Buynevich, I.V. Coastal impacts due to Sea-level rise. Annu. Rev. Earth Planet. Sci. 2008, 36, 601–647. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Change 2011, 109, 33–57. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Change 2011, 109, 5–31. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Emissions Gap Report; UNEP: Nairobi, Kenya, 2019; ISBN 978-92-807-3766-0. [Google Scholar]
- Karim, M.F.; Mimura, N. Impacts of climate change and sea-level rise on cyclonic storm surge floods in Bangladesh. Glob. Environ. Change 2008, 18, 490–500. [Google Scholar] [CrossRef]
- DoE. Assessment of Sea Level Rise on Bangladesh Coast through Trend Analysis. Climate Change Cell (CCC); Department of Environment, Ministry of Environment and Forests: Dhaka, Bangladesh, 2016.
- Jagtap, T.G.; Ansari, Z.A.; Coutinho, F.B.; Charulata, S.; Gaidhane, D.M. Impact of climate change on mangrove forests along the southern west coast: A case study from Kasargod, Kerala, India. In Vulnerability and Adaptations Due to Climate Change on Indian Agriculture, Forestry and Natural Ecosystem; Proceeding of Workshop; Ravindranath, N.H., Sharma, S., Garg, A., Bhattacharya, S., Murthy, I., Eds.; NATCOM Publication: New Delhi, India, 2003; pp. 136–149. [Google Scholar]
- Arefin, A.B.M.S. Climate change impact in Bangladesh with reference to forest and biodiversity. In Community Action in a Climate Change Regime: Managing Biodiversity, Regional Centre for Development Cooperation; Panda, G., Pandia, B.P., Eds.; Regional Centre for Development Cooperation: Bhubaneswar, India, 2011; pp. 4–14. [Google Scholar]
- Kanan, A.H.; Pirotti, F.; Masiero, M.; Rahman, M.M. Mapping inundation from sea level rise and its interaction with land cover in the Sundarbans mangrove forest. Clim. Change 2023, 176, 104. [Google Scholar] [CrossRef]
- SRDI (Soil Resources Development Institute). Soil Salinity in Bangladesh; Soil Resources Development Institute: Dhaka, Bangladesh, 2000.
- Hay, J.E.; Mimura, N. Supporting climate change vulnerability and adaptation assessments in the Asia-Pacific Region-An example of sustainability science. Sustain. Sci. 2006, 1, 25–35. [Google Scholar] [CrossRef]
- Uddin, M.S.; Shah, M.A.R.; Khanom, S.; Nesha, M.K. Climate change impacts on the Sundarbans mangrove ecosystem services and dependent livelihoods in Bangladesh. Asian J. Conserv. Biol. 2013, 2, 152–156. [Google Scholar]
- Barua, P.; Chowdhury, S.N.; Sarkar, S. Climate change and its risk reduction by mangrove ecosystem of Bangladesh. Bangladesh Res. Pub. J. 2010, 4, 218–225. [Google Scholar]
- Dasgupta, S.; Sobhan, I.; Wheeler, D. Impact of Climate Change and Aquatic Salinization on Mangrove Species and Poor Communities in the Bangladesh Sundarbans. World Bank Policy Research Working Paper No. 7736. 2016. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2811384 (accessed on 16 January 2025).
- Mondal, M.; Mukherjee, A.; Das, K.; Puppala, H. Understanding the susceptibility of groundwater of Sundarbans with hydroclimatic variability and anthropogenic influences: A mini review. Groundw. Sust. Dev. 2024, 25, 101135. [Google Scholar] [CrossRef]
- Siddique, M.R.; Hossain, M.; Rashid, A.M.; Khan, N.A.; Shuvo, S.N.; Hassan, M.Z. Evaluating co-management in the Sundarbans mangrove forest of Bangladesh: Success and limitations from local forest users’ perspectives. Ecol. Soc. 2024, 29, 8. [Google Scholar] [CrossRef]
- Sánchez-Triana, E.; Paul, T.; Leonard, O. Building Resilience for Sustainable Development of the Sundarbans. The International Bank for Reconstruction and Development; Strategy Report, Report No. 88061–IN; The World Bank: Washington, DC, USA, 2014; Available online: https://openknowledge.worldbank.org/server/api/core/bitstreams/fc564a84-1e6f-512b-92dd-61cecc6dd4b5/content (accessed on 13 February 2025).
Aspects | Details |
---|---|
Seasonal fluctuations | Groundwater levels fluctuate seasonally, influenced by monsoon rains (June–September). |
Groundwater recharge | Wet season recharge from aquifers is insufficient to compensate for depletion during the dry season. |
Impact of over-extraction | Over-extraction for agriculture and reduced freshwater inflows lead to significant groundwater depletion. |
Link to river flow | Groundwater hydrology is influenced by the Ganges River flow, critical for maintaining water balance. |
Salinity intrusion | Declining groundwater levels increase salinity intrusion, especially during the dry season, affecting agriculture and ecosystems. |
Environmental implications | Reduced freshwater flow allows seawater to encroach inland, compromising water quality and ecosystem health. |
Key solution | Sustainable groundwater management is essential to mitigate depletion and salinity issues. |
Aspects | Details |
---|---|
Cause of salinity intrusion | Reduced freshwater flow from the Ganges River, exacerbated by the Farakka Barrage. |
Change in river discharge in the Ganges River | Decreased from 3700 m3/s in 1962 to 364 m3/s in 2006. |
Salinity increase timeline | Significant rise observed since the mid-1970s. |
Area affected | Approximately 60% of the Sundarbans, with high salinity in the Southwestern region. |
Salinity levels (Southwest) | Increased from 38.898 dS/m to 54.025–69.152 dS/m. |
Factors influencing salinity | Climate, hydrology, rainfall, topography, tidal flooding. |
Consequences | Decreased freshwater availability, species shifts in mangrove ecosystems, soil salinization, impacts on agriculture. |
Climate change impact | Rising sea levels and climate change contribute to higher salinity. |
Category | Key Information |
---|---|
Vulnerable region | Sundarbans, located in the Bay of Bengal |
Ecological significance | Mangrove forest serves as a natural buffer against storm surges and cyclones |
Historical cyclones | 1970 Bhola Cyclone (300,000 deaths), Cyclone Sidr (2007), Cyclone Aila (2009), Cyclone Amphan (2020) |
Cyclone impacts | Severe storm surges, destruction of homes, farmland, infrastructure; increased salinity, soil erosion, mangrove damage |
Biodiversity loss | Cyclones damage plant and animal species; degradation of mangrove ecosystems |
Socio-economic impact | Loss of livelihoods (agriculture, fishing, forestry), poverty, food insecurity, migration |
Climate change effects | Rising sea levels, more intense and frequent cyclones, greater risk to both ecosystem and communities |
Urgent actions needed | Climate change adaptation, disaster resilience, sustainable management, enhanced disaster preparedness |
Factor | Description |
---|---|
Coastal dynamics | Interaction of landforms, climate, tides, and freshwater causes erosion and accretion. |
Main erosion areas | Major riverbanks and Bay of Bengal land–water interface. |
Key drivers of erosion | Reduced Ganges discharge, decreased freshwater flow. |
Mangrove role | Mangroves trap sediment, reduce erosion, and promote vegetation growth. |
Sediment issues | Limited sediment supply, particularly from the Ganges River, hinders forest growth and accretion. |
Highest erosion rates | Passur, Baleshwar, Shibsa Rivers. |
Accretion rates | Lower accretion compared to erosion, notable in Passur and Baleshwar Rivers. |
Regional erosion | Southern regions suffer higher erosion (94 ha/y), while northern and central regions experience less erosion. |
Human impact | Dams, embankments, and mangrove exploitation affect hydrology, sedimentation, and forest health. |
Rising sea levels | Impact sediment availability, further hindering land formation. |
Future threats | Declining sediment concentration could lead to submergence, particularly in already sediment-deprived areas. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mojid, M.A.; Mainuddin, M.; Karim, F.; Wahid, S.M. Historical and Projected Future Hydrological Characteristics of the Mangrove Forest in the Ganges Delta—A Review. Water 2025, 17, 838. https://doi.org/10.3390/w17060838
Mojid MA, Mainuddin M, Karim F, Wahid SM. Historical and Projected Future Hydrological Characteristics of the Mangrove Forest in the Ganges Delta—A Review. Water. 2025; 17(6):838. https://doi.org/10.3390/w17060838
Chicago/Turabian StyleMojid, Mohammad A., Mohammed Mainuddin, Fazlul Karim, and Shahriar M. Wahid. 2025. "Historical and Projected Future Hydrological Characteristics of the Mangrove Forest in the Ganges Delta—A Review" Water 17, no. 6: 838. https://doi.org/10.3390/w17060838
APA StyleMojid, M. A., Mainuddin, M., Karim, F., & Wahid, S. M. (2025). Historical and Projected Future Hydrological Characteristics of the Mangrove Forest in the Ganges Delta—A Review. Water, 17(6), 838. https://doi.org/10.3390/w17060838