Permeable Interlocking Concrete Pavements: A Sustainable Solution for Urban and Industrial Water Management
Abstract
:1. Introduction
2. Materials and Methods
- Subgrade: This is the in situ soil whose properties determine the feasible type of permeable pavement cross-section and the required thickness to withstand traffic loads and manage stormwater;
- Permeable base course: This layer is composed of a compacted, unbound, 12.5–25 mm particle size, openly graded, crushed, and angular material, providing the primary load-bearing and water storage function. The material should meet [29], or for industrial pavements [30]. The Young’s modulus (E) describes the subgrade load-bearing capacity. The permeability of the base granular materials refers to the material compacted to at least 98% of the modified Proctor density;
- Bedding layer: This layer is composed of a 20–40 mm thick layer compliant with ASTM No. 8 for urban roads or [29] for industrial pavements. It consists of small-sized, crushed 2–5 mm stones with an open gradation;
- Joint filling aggregate: A uniform aggregate fills the joints between the pavers, enhancing load distribution. This material complies with ASTM No. 8 and 9 for urban pavements or ASTM C144 [31] for industrial pavements;
- Monolithic concrete pavers to permit the rapid infiltration of rainfall.
- Front forklift: A two-axle vehicle with the majority of the load carried by the front axle. For load repetition calculations, only the twin front axle is considered, as it experiences the highest load;
- Side forklift: It consists of two axle groups, each containing one or two axles. Since one side bears most of the load, only the wheels on the lifting side are included in the load repetition analysis;
- Gantry crane: Comprising two groups of axles, each with two single-wheel axles. As front and rear wheels may carry different loads, both wheels on each side are considered for repetition calculations;
- Central forklift with two steering tandem axles;
- Mobile crane: A two-axle vehicle where the front axle, equipped with twin wheels, bears the highest load. Consequently, the wheels on the front axle are used for load repetition calculations in pavement design.
3. Results and Discussion
3.1. Urban PICPs Design
- Subgrade Bearing Capacity: The ability of the subgrade to support loads significantly affects the base thickness. Pavements on low-strength subgrades (Esubgrade = 30 MPa) require a thicker base to distribute loads effectively, while high-strength subgrades (Esubgrade = 150 MPa) can support thinner base layers.
- Traffic Intensity: The number of commercial vehicle passes directly impacts the required base thickness. Under low traffic conditions (400,000 vehicle passes), the base layer thickness is primarily dictated by hydraulic performance rather than structural strength, often resulting in a minimum thickness of 100 mm. However, as traffic volume increases (up to 4,000,000 vehicle passes), the base should be thickened to 395 mm to accommodate repeated load cycles.
- Hydraulic Performance Requirements: The PermPave model dictates the minimum base thickness required to store and infiltrate stormwater. For subgrades with low permeability (SC, 5.0 × 10−7 m/s), the base needs to be thicker to compensate for the slow infiltration rate. In contrast, for high-permeability subgrades (SW, 2.5 × 10−4 m/s), a thinner base is enough, as stormwater infiltrates more efficiently.
3.2. Industrial PICPs Design
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Cacciuttolo, C.; Garrido, F.; Painenao, D.; Sotil, A. Evaluation of the Use of Permeable Interlocking Concrete Pavement in Chile: Urban Infrastructure Solution for Adaptation and Mitigation against Climate Change. Water 2023, 15, 4219. [Google Scholar] [CrossRef]
- Cakir, R.; Raimonet, M.; Sauvage, S.; Paredes-Arquiola, J.; Grusson, Y.; Roset, L.; Meaurio, M.; Navarro, E.; Sevilla-Callejo, M.; Lechuga-Crespo, J.L.; et al. Hydrological Alteration Index as an Indicator of the Calibration Complexity of Water Quantity and Quality Modeling in the Context of Global Change. Water 2020, 12, 115. [Google Scholar] [CrossRef]
- Kargas, G.; Kerkides, P.; Poulovassilis, A. Infiltration of rain water in semi-arid areas under three land surface treatments. Soil Tillage Res. 2012, 120, 15–24. [Google Scholar] [CrossRef]
- Vorobevskii, I.; Al Janabi, F.; Schneebeck, F.; Bellera, J.; Krebs, P. Urban floods: Linking the overloading of a storm water sewer system to precipitation parameters. Hydrology 2020, 7, 35. [Google Scholar] [CrossRef]
- Gad, M.; Abdo, S.M.; Hu, A.; El-Liethy, M.A.; Hellal, M.S.; Doma, H.S.; Ali, G.H. Performance Assessment of Natural Wastewater Treatment Plants by Multivariate Statistical Models: A Case Study. Sustainability 2022, 14, 7658. [Google Scholar] [CrossRef]
- Corazza, M.V.; Moretti, L.; Di Mascio, P.; Del Serrone, G.; Cera, L. Predictive Model to assess Pollution from Road Runoff Waters as a Tool to Increase Sustainable Mobility. In Proceedings of the 2024 IEEE International Conference on Environment and Electrical Engineering and 2024 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Rome, Italy, 17–20 June 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Gale, I.; Neumann, I.; Calow, R.; Moench, M. The Effectiveness of Artificial Recharge of Groundwater: A Review; British Geological Survey: Nottingham, UK, 2002; p. 60. [Google Scholar]
- Moretti, L.; Cantisani, G.; Carpiceci, M.; D’Andrea, A.; Del Serrone, G.; Di Mascio, P.; Loprencipe, G. Effect of Sampietrini Pavers on Urban Heat Islands. Int. J. Environ. Res. Public Health 2021, 18, 13108. [Google Scholar] [CrossRef]
- Collins, K.A.; Hunt, W.F.; Hathaway, J.M. Hydrologic comparison of four types of permeable pavement and standard asphalt in Eastern North Carolina. J. Hydrol. Eng. 2008, 13, 1146–1157. [Google Scholar] [CrossRef]
- Alam, T.; Mahmoud, A.; Jones, K.D.; Bezares-Cruz, J.C.; Guerrero, J. A Comparison of Three Types of Permeable Pavements for Urban Runoff Mitigation in the Semi-Arid South Texas, U.S.A. Water 1992, 11, 1992. [Google Scholar] [CrossRef]
- Abebe, H.E. Structural Design of Unpaved Roads for Solar and Wind Farms. Master Degree’s Thesis, Politecnico di Torino, Torino, Italy, 2023. [Google Scholar]
- Žuraulis, V.; Sivilevičius, H.; Šabanovič, E.; Ivanov, V.; Skrickij, V. Variability of Gravel Pavement Roughness: An Analysis of the Impact on Vehicle Dynamic Response and Driving Comfort. Appl. Sci. 2021, 11, 7582. [Google Scholar] [CrossRef]
- Xie, N.; Akin, M.; Shi, X. Permeable concrete pavements: A review of environmental benefits and durability. J. Clean. Prod. 2019, 210, 1605–1621. [Google Scholar] [CrossRef]
- Thives, L.P.; Ghisi, E.; Brecht, D.G.; Pires, D.M. Filtering capability of porous asphalt pavements. Water 2018, 10, 206. [Google Scholar] [CrossRef]
- Hein, D.K.; Eng, P. Development of an ASCE standard for permeable interlocking concrete pavement. In Proceedings of the 2014 Conference of the Transportation Association of Canada Montréal, Montreal, QC, Canada, 28 September–1 October 2014; Volume 416, pp. 1–15. [Google Scholar]
- Imran, H.M.; Akib, S.; Karim, M.R. Permeable pavement and stormwater management systems: A review. Environ. Technol. 2013, 34, 2649–2656. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.K.; Armitage, N.P. The Link between Permeable Interlocking Concrete Pavement (PICP) Design and Nutrient Removal. Water 2020, 12, 1714. [Google Scholar] [CrossRef]
- Construction Industry Research and Information Association (CIRIA). Sustainable Drainage Systems. Hydraulic, Structural and Water Quality Advice; Report C609; CIRIA: London, UK, 2004. [Google Scholar]
- Piano Regionale di Risanamento Delle Acque (PRRA) Regione Lombardia. DCR VII/402. 2002. Available online: https://www.regione.lombardia.it/wps/portal/istituzionale/HP/DettaglioRedazionale/servizi-e-informazioni/Enti-e-Operatori/territorio/governo-delle-acque/piano-tutela-acque-pta/piano-tutela-acque-pta (accessed on 29 January 2025). (In Italian).
- Legge regionale n. 12 del 13 Agosto 2011–Bollettino Ufficiale della Regione Lazio Numero 103. Available online: https://www.consiglio.regione.lazio.it/consiglio-regionale/?vw=leggiregionalidettaglio&id=9266&sv=vigente (accessed on 10 January 2025). (In Italian).
- Regolamento Locale d’Igiene—Titolo III, Regione Lombardia, 20 October 1992. Available online: https://www.indicenormativa.it/sites/default/files/2017-08/RLI_Melegnano.pdf (accessed on 1 February 2025). (In Italian).
- Hashim, T.M.; Al-Fatlawi, T.J.; Al-Abody, A.A.M.; Musa, D.A.R.; Nasr, M.S. The behavior of permeable interlocking concrete pavement under different rainfall intensities and design conditions. Int. J. Pavement Eng. 2023, 24, 2152026. [Google Scholar] [CrossRef]
- Shubbar, A.; Nasr, M.S.; Kadhim, A.; Hashim, T.M.; Sadique, M. Performance Comparison of 45° and 90° Herringboned Permeable Interlocking Concrete Pavement. Infrastructures 2023, 8, 97. [Google Scholar] [CrossRef]
- Sehgal, K.; Drake, J.; Seters, T.V.; Vander Linden, W.K. Improving restorative maintenance practices for mature permeable interlocking concrete pavements. Water 2018, 10, 1588. [Google Scholar] [CrossRef]
- Hassani, A.; Mohammad, S.; Ghoddusi, P. Runoff infiltration through permeable block pavements. In Proceedings of the Institution of Civil Engineers-Transport; Thomas Telford Ltd.: London, UK, 2010; Volume 163, pp. 183–190. [Google Scholar]
- Alsubih, M.; Arthur, S.; Wright, G.; Allen, D. Experimental study on the hydrological performance of a permeable pavement. Urban Water J. 2017, 14, 427–4434. [Google Scholar] [CrossRef]
- Smith, D.R.; Hein, D.K. Development of a National ASCE standard for permeable interlocking concrete pavement. In Proceedings of the Second Conference on Green Streets, Highways, and Development, Austin, TX, USA, 3–6 November 2013; pp. 89–105. [Google Scholar]
- Di Mascio, P.; Moretti, L.; Capannolo, A. Concrete Block Pavements in Urban and Local Roads: Analysis of Stress-Strain Condition and Proposal for a Catalogue. J. Traffic Transp. Eng. 2019, 6, 557–566. [Google Scholar] [CrossRef]
- ASTM C33; Standard Specification for Concrete Aggregates. American Society for Testing and Materials ASTM: Philadelphia, PA, USA, 2013.
- ASTM D2940; Standard Specification for Graded Aggregate Material for Bases or Subbases for Highways or Airports. American Society for Testing and Materials ASTM: Philadelphia, PA, USA, 2015.
- ASTM C144; Standard Specification for Aggregate for Masonry Mortar. ASTM International: West Conshohocken, PA, USA, 2004.
- DesignPave v2.0. A Mechanistic Design Software for Concrete Block Pavement, Rahman, M.M., Beecham, S., Eds.; Concrete Mawsonry Association Australia: Artarmon, NSW, Australia, 2018.
- CMAA. PA02: Concrete Segmental Pavement-Design Guide for Residential Accessways and Roads; Concrete Masonry Association of Australia: St Leonards, Australia, 2014; pp. 1–11. [Google Scholar]
- ISPRA. Available online: https://scia.isprambiente.it/ (accessed on 27 January 2025).
- McNear Brick & Block. Structural Design of Interlocking Concrete Pavement for Roads and Parking Lots; Tech Note PAV-TEC-004-23; Interlocking Concrete Pavement Institute: Herndon, VA, USA, 2023. [Google Scholar]
- Consiglio Nazionale delle Ricerche. Catalogo delle Pavimentazioni Stradali. In Consiglio Nazionale delle Ricerche, Bollettino Ufficiale; Terra, M., Ed.; Consiglio Nazionale delle Ricerche: Rome, Italy, 1995; Volume 178, p. 95. (In Italian) [Google Scholar]
- ASTM D2487; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International: West Conshohocken, PA, USA, 2011; pp. 1–16. [CrossRef]
- Corazza, M.V.; Robinson, M. Water management technology for implementing a water culture for bus operators. J. Clean. Prod. 2024, 434, 140172. [Google Scholar] [CrossRef]
- Ullidtz, P. Pavement Analysis. In Development in Civil Engineering; Elsevier: Amsterdam, The Netherlands, 1987; Volume 19. [Google Scholar]
- Edwards, J.M.; Valkering, C.P. Structural design of asphalt pavements for road vehicles—The influence of high temperatures. Highw. Road Constr. 1974, 42, 1–9. [Google Scholar]
- AASHTO. Guide for Design of Pavement Structures; AASHTO: Washington, DC, USA, 1993. [Google Scholar]
- Loprencipe, G.; Cantisani, G. Evaluation methods for improving surface geometry of concrete floors: A case study. Case Stud. Struct. Eng. 2015, 4, 14–25. [Google Scholar] [CrossRef]
- Miner, M.A. Cumulative Damage in Fatigue. J. Appl. Mech. 1945, 12, A159–A164. [Google Scholar] [CrossRef]
Variable (Acronym) | Value | Unit |
---|---|---|
Runoff coefficient [26] (φ) | 0.3 | - |
Annual exceedance probability (AEP) | 5 | % |
Rainfall duration (d) | 30 | min |
Rainfall height | 51.2 | mm |
Average rainfall intensity (i) | 80 | mm/h |
Young’s Modulus (MPa) | Soil Classification [37] | Hydraulic Conductivity (m/s) |
---|---|---|
150 | SW | 2.5 × 10−4 |
90 | SM | 2.5 × 10−6 |
30 | SC | 5.0 × 10−7 |
Subgrade | Minimum Base Thickness (mm) |
---|---|
SW | 100 |
SM | 240 |
SC | 270 |
Base Young’s Modulus (MPa) | Urban Pavement | Industrial Pavement |
---|---|---|
271 | 1U | 1I |
341 | 2U | 2I |
373 | 3U | 3I |
405 | 4U | 4I |
435 | 5U | 5I |
464 | 6U | 6I |
492 | 7U | 7I |
520 | 8U | 8I |
547 | 9U | 9I |
573 | 10U | 10I |
400,000 Passes | 1,500,000 Passes | 4,000,000 Passes | |||||||
---|---|---|---|---|---|---|---|---|---|
Subgrade | Base | ||||||||
v [-] 0.4 | v [-] 0.35 | ||||||||
Sheet | E | E | PermPave Thickness | DesignPave Thickness | Design Thickness | DesignPave Thickness | Design Thickness | DesignPave Thickness | Design Thickness |
[-] | [MPa] | [MPa] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] |
1U | 30 | 271 | 270 | 235 | 270 | 315 | 315 | 395 | 395 |
2U | 341 | 215 | 270 | 295 | 295 | 365 | 365 | ||
3U | 373 | 210 | 270 | 285 | 285 | 355 | 355 | ||
4U | 405 | 205 | 270 | 275 | 275 | 345 | 345 | ||
5U | 435 | 200 | 270 | 270 | 270 | 335 | 335 | ||
6U | 464 | 195 | 270 | 265 | 270 | 330 | 330 | ||
7U | 492 | 190 | 270 | 260 | 270 | 325 | 325 | ||
8U | 520 | 185 | 270 | 255 | 270 | 320 | 320 | ||
9U | 547 | 180 | 270 | 250 | 270 | 315 | 315 | ||
10U | 573 | 180 | 270 | 245 | 270 | 310 | 310 | ||
1U | 90 | 271 | 240 | 140 | 240 | 205 | 240 | 270 | 270 |
2U | 341 | 125 | 240 | 190 | 240 | 250 | 250 | ||
3U | 373 | 120 | 240 | 185 | 240 | 240 | 240 | ||
4U | 405 | 115 | 240 | 180 | 240 | 235 | 240 | ||
5U | 435 | 115 | 240 | 175 | 240 | 230 | 240 | ||
6U | 464 | 110 | 240 | 170 | 240 | 225 | 240 | ||
7U | 492 | 110 | 240 | 165 | 240 | 220 | 240 | ||
8U | 520 | 105 | 240 | 165 | 240 | 215 | 240 | ||
9U | 547 | 105 | 240 | 160 | 240 | 215 | 240 | ||
10U | 573 | 100 | 240 | 160 | 240 | 210 | 240 | ||
1U | 150 | 271 | 100 | 100 | 100 | 155 | 155 | 215 | 215 |
2U | 341 | 100 | 100 | 140 | 140 | 195 | 195 | ||
3U | 373 | 100 | 100 | 135 | 135 | 190 | 190 | ||
4U | 405 | 100 | 100 | 135 | 135 | 185 | 185 | ||
5U | 435 | 100 | 100 | 130 | 130 | 180 | 180 | ||
6U | 464 | 100 | 100 | 125 | 125 | 180 | 180 | ||
7U | 492 | 100 | 100 | 125 | 125 | 175 | 175 | ||
8U | 520 | 100 | 100 | 120 | 120 | 170 | 170 | ||
9U | 547 | 100 | 100 | 120 | 120 | 170 | 170 | ||
10U | 573 | 100 | 100 | 120 | 120 | 165 | 165 |
100,000 Passes | 250,000 Passes | 400,000 Passes | |||||||
---|---|---|---|---|---|---|---|---|---|
Subgrade | Base | ||||||||
v [-] 0.4 | v [-] 0.35 | ||||||||
Sheet | E | E | PermPave Thickness | DesignPave Thickness | Design Thickness | DesignPave Thickness | Design Thickness | DesignPave Thickness | Design Thickness |
[-] | [MPa] | [MPa] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] |
1I | 30 | 271 | 270 | 1380 | 1380 | 1585 | 1585 | 1760 | 1760 |
2I | 341 | 1280 | 1280 | 1470 | 1470 | 1630 | 1630 | ||
3I | 373 | 1240 | 1240 | 1430 | 1430 | 1585 | 1585 | ||
4I | 405 | 1210 | 1210 | 1390 | 1390 | 1540 | 1540 | ||
5I | 435 | 1180 | 1180 | 1360 | 1360 | 1505 | 1505 | ||
6I | 464 | 1155 | 1155 | 1330 | 1330 | 1475 | 1475 | ||
7I | 492 | 1135 | 1135 | 1305 | 1305 | 1445 | 1445 | ||
8I | 520 | 1115 | 1115 | 1280 | 1280 | 1420 | 1420 | ||
9I | 547 | 1095 | 1095 | 1260 | 1260 | 1395 | 1395 | ||
10I | 573 | 1080 | 1080 | 1240 | 1240 | 1375 | 1375 | ||
1I | 90 | 271 | 240 | 915 | 915 | 1070 | 1070 | 1205 | 1205 |
2I | 341 | 845 | 845 | 995 | 995 | 1115 | 1115 | ||
3I | 373 | 820 | 820 | 965 | 965 | 1085 | 1085 | ||
4I | 405 | 800 | 800 | 940 | 940 | 1055 | 1055 | ||
5I | 435 | 780 | 780 | 915 | 915 | 1030 | 1030 | ||
6I | 464 | 765 | 765 | 900 | 900 | 1010 | 1010 | ||
7I | 492 | 750 | 750 | 880 | 880 | 990 | 990 | ||
8I | 520 | 735 | 735 | 865 | 865 | 970 | 970 | ||
9I | 547 | 725 | 725 | 850 | 850 | 955 | 955 | ||
10I | 573 | 715 | 715 | 840 | 840 | 940 | 940 | ||
1I | 150 | 271 | 100 | 740 | 740 | 885 | 885 | 1010 | 1010 |
2I | 341 | 690 | 690 | 825 | 825 | 935 | 935 | ||
3I | 373 | 670 | 670 | 800 | 800 | 905 | 905 | ||
4I | 405 | 650 | 650 | 775 | 775 | 885 | 885 | ||
5I | 435 | 635 | 635 | 760 | 760 | 860 | 860 | ||
6I | 464 | 620 | 620 | 745 | 745 | 845 | 845 | ||
7I | 492 | 610 | 610 | 730 | 730 | 830 | 830 | ||
8I | 520 | 600 | 600 | 715 | 715 | 815 | 815 | ||
9I | 547 | 590 | 590 | 705 | 705 | 800 | 800 | ||
10I | 573 | 580 | 580 | 695 | 695 | 790 | 790 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moretti, L.; Altobelli, L.; Cantisani, G.; Del Serrone, G. Permeable Interlocking Concrete Pavements: A Sustainable Solution for Urban and Industrial Water Management. Water 2025, 17, 829. https://doi.org/10.3390/w17060829
Moretti L, Altobelli L, Cantisani G, Del Serrone G. Permeable Interlocking Concrete Pavements: A Sustainable Solution for Urban and Industrial Water Management. Water. 2025; 17(6):829. https://doi.org/10.3390/w17060829
Chicago/Turabian StyleMoretti, Laura, Luigi Altobelli, Giuseppe Cantisani, and Giulia Del Serrone. 2025. "Permeable Interlocking Concrete Pavements: A Sustainable Solution for Urban and Industrial Water Management" Water 17, no. 6: 829. https://doi.org/10.3390/w17060829
APA StyleMoretti, L., Altobelli, L., Cantisani, G., & Del Serrone, G. (2025). Permeable Interlocking Concrete Pavements: A Sustainable Solution for Urban and Industrial Water Management. Water, 17(6), 829. https://doi.org/10.3390/w17060829