Understanding Lowland Rice Farmers’ Knowledge of Soil Fertilization Practices and Perceptions of Nitrogen-Induced Water Pollution Risks in the Ouémé Watershed, Central Benin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Demographic Characteristics of Region
2.3. Methodology, Sampling, and Data Collection
2.4. Selection of Dependent and Explanatory Variables
2.5. Data Analysis
3. Results
3.1. Characteristics of Rice Farmers and Rice System
3.2. Soil Fertilization Practices in Lowland Rainfed Rice Cropping
3.3. Factors Influencing the Adoption of Pro-Environmental Fertilization Practices in Lowland Rainfed Rice Cropping
3.4. Rice Farmers’ Perception of Water Pollution Risk by Nitrogen and Influencing Factors
3.5. Factors Influencing Rice Farmers’ Knowledge of the Hydrographic Network and Observations of Eutrophication
4. Discussion
4.1. Soil Fertilization Practices of Farmers in Rice Cultivation in Central Benin
4.2. Rice Farmers’ Perceptions and Factors Influencing Awareness of Nitrogen-Related Water Pollution Risks
4.3. Limitations and Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huy, D.Q.; Keeni, M.; Fuyuki, K. An Analysis of Environmental and Economic Impacts of the System of Rice Intensification: A Case Study in Thai Binh Province, Vietnam. Asian J. Agric. Rural Dev. 2024, 14, 1–9. [Google Scholar] [CrossRef]
- Sievers, B.L.; Hyder, S.; Claes, F.; Karlsson, E.A. Ingrained: Rice Farming and the Risk of Zoonotic Spillover, Examples from Cambodia. One Health 2024, 18, 100696. [Google Scholar] [CrossRef] [PubMed]
- Bouman, B.A.M.; Humphreys, E.; Tuong, T.P.; Barker, R. Rice and Water. Adv. Agron. 2007, 92, 187–237. [Google Scholar] [CrossRef]
- Qiu, B.; Yu, L.; Yang, P.; Wu, W.; Chen, J.; Zhu, X.; Duan, M. Mapping Upland Crop–Rice Cropping Systems for Targeted Sustainable Intensification in South China. Crop J. 2024, 12, 614–629. [Google Scholar] [CrossRef]
- Dossou-Yovo, E.R.; Devkota, K.P.; Akpoti, K.; Danvi, A.; Duku, C.; Zwart, S.J. Thirty Years of Water Management Research for Rice in Sub-Saharan Africa: Achievement and Perspectives. Field Crops Res. 2022, 283, 108548. [Google Scholar] [CrossRef]
- Rodenburg, J.; Zwart, S.J.; Kiepe, P.; Narteh, L.T.; Dogbe, W.; Wopereis, M.C.S. Sustainable Rice Production in African Inland Valleys: Seizing Regional Potentials through Local Approaches. Agric. Syst. 2014, 123, 1–11. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.Fao.Org/Faostat/En/#data (accessed on 15 November 2023).
- Arouna, A.; Fatognon, I.A.; Saito, K.; Futakuchi, K. Moving toward Rice Self-Sufficiency in Sub-Saharan Africa by 2030: Lessons Learnt from 10 Years of the Coalition for African Rice Development. SSRN J. 2021, 21, 100291. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Sie, M.; Hijmans, R.J.; Otsuka, K. Increasing Rice Production in Sub-Saharan Africa: Challenges and Opportunities. Adv. Agron. 2007, 94, 55–133. [Google Scholar] [CrossRef]
- Sakurai, T. Intensification of Rainfed Lowland Rice Production in West Africa: Present Status and Potential Green Revolution. Dev. Econ. 2006, 44, 232–251. [Google Scholar] [CrossRef]
- Yameogo, P.L. Managing Seasonal Soil Nitrogen Dynamics in Inland Valleys of the West African Savanna Zone. Ph.D. Thesis, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Bonn, Germany, 2017. [Google Scholar]
- Ilboudo, A.; Soulama, S.; Hien, E.; Zombre, P. Perceptions Paysannes de La Dégradation Des Ressources Naturelles Des Bas-Fonds En Zone Soudano-Sahélienne: Cas Du Sous Bassin Versant Du Nakanbé-Dem Au Burkina Faso. Int. J. Biol. Chem. Sci. 2020, 14, 883–895. [Google Scholar] [CrossRef]
- Camara, M.; Kébé, M.; Kouamé, M.M. Intensification de La Riziculture de Bas-Fonds Dans Le Sine-Saloum (Sénégal). Cah. Agric. 2008, 17, 451–455. [Google Scholar] [CrossRef]
- Jiang, Q.; Qi, Z.; Xue, L.; Bukovsky, M.; Madramootoo, C.A.; Smith, W. Assessing Climate Change Impacts on Greenhouse Gas Emissions, N Losses in Drainage and Crop Production in a Subsurface Drained Field. Sci. Total Environ. 2020, 705, 135969. [Google Scholar] [CrossRef] [PubMed]
- Penuelas, J.; Coello, F.; Sardans, J. A Better Use of Fertilizers Is Needed for Global Food Security and Environmental Sustainability. Agric. Food Secur. 2023, 12, 5. [Google Scholar] [CrossRef]
- Serpantié, G.; Dorée, A.; Fusillier, J.-L.; Moity-Maizi, P.; Lidon, B.; Douanio, M.; Sawadogo, A.; Bossa, A.Y.; Hounkpè, J. Nouveaux Risques Dans Les Bas-Fonds Des Terroirs Soudaniens. Une Étude de Cas Au Burkina Faso. Cah. Agric. 2019, 28, 19. [Google Scholar] [CrossRef]
- Haefele, S.M.; Saito, K.; N’Diaye, K.M.; Mussgnug, F.; Nelson, A.; Wopereis, M.C.S. Increasing Rice Productivity through Improved Nutrient Use in Africa. In Realizing Africa’s Rice Promise; CABI Publishing: Wallingford, UK, 2013; pp. 250–264. [Google Scholar] [CrossRef]
- Ouedraogo, I.; Vanclooster, M. Challenges of Groundwater Pollution and Management in Transboundary Basins at the African Scale. Proc. Int. Assoc. Hydrol. Sci. 2021, 384, 69–74. [Google Scholar] [CrossRef]
- Loko, Y.L.E.; Gbemavo, C.D.S.J.; Djedatin, G.; Ewedje, E.-E.; Orobiyi, A.; Toffa, J.; Tchakpa, C.; Sedah, P.; Sabot, F. Characterization of Rice Farming Systems, Production Constraints and Determinants of Adoption of Improved Varieties by Smallholder Farmers of the Republic of Benin. Sci. Rep. 2022, 12, 3959. [Google Scholar] [CrossRef]
- Totin, E.; van Mierlo, B.; Saïdou, A.; Mongbo, R.; Agbossou, E.; Stroosnijder, L.; Leeuwis, C. Barriers and Opportunities for Innovation in Rice Production in the Inland Valleys of Benin. NJAS: Wagening. J. Life Sci. 2022, 60–63, 57–66. [Google Scholar] [CrossRef]
- Chabi, A.; Oloukoi, J.; Mama, V.J.; Kiepe, P. Inventaire Par Télédétection Des Agro-Écosystèmes de Bas-Fonds Dans Le Centre Du Bénin. Cah. Agric. 2010, 19, 446–453. [Google Scholar] [CrossRef]
- Niang, A.; Becker, M.; Ewert, F.; Tanaka, A.; Dieng, I.; Saito, K. Nutrient Cycling in Agroecosystems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 293–305. [Google Scholar]
- Bado, V.B.; Djaman, K.; Mel, V.C. Developing Fertilizer Recommendations for Rice in Sub-Saharan Africa, Achievements and Opportunities. Paddy Water Environ. 2018, 16, 571–586. [Google Scholar] [CrossRef]
- Anago, F.N.; Dagbenonbakin, G.D.; Oussou, C.T.B.; Agbangba, E.C. Assessment of Nutritional Status of Rainfed Rice in Benin Using Diagnosis and Recommendation Integrated System (DRIS). Int. J. Plant Soil Sci. 2020, 32, 4–83. [Google Scholar] [CrossRef]
- Tanaka, A.; Saito, K.; Azoma, K.; Kobayashi, K. Factors Affecting Variation in Farm Yields of Irrigated Lowland Rice in Southern-Central Benin. Eur. J. Agron. 2013, 44, 46–53. [Google Scholar] [CrossRef]
- Saha, B.; Fatima, A.; Saha, S.; Sahoo, S.K.; Poddar, P. Environmental Pollution Due to Improper Use of Chemical Fertilizers and Their Remediation. In Environmental Contaminants; Apple Academic Press: Williston, VT, USA, 2024; ISBN 978-1-003-41223-6. [Google Scholar]
- Conley, D.J. Controlling Euthrophication: Nitrogen and Phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, G.; Mo, Y.; Cai, M.; Bian, X. Evaluation of Optimal Nitrogen Rate for Corn Production under Mulched Drip Fertigation and Economic Benefits. Field Crops Res. 2018, 216, 225–233. [Google Scholar] [CrossRef]
- Stewart, W.M.; Roberts, T.L. Food Security and the Role of Fertilizer in Supporting It. Procedia Eng. 2012, 46, 76–82. [Google Scholar] [CrossRef]
- Robertson, G.P.; Vitousek, P.M. Nitrogen in Agriculture: Balancing the Cost of an Essential Resource. Annu. Rev. Environ. Resour. 2009, 34, 97–125. [Google Scholar] [CrossRef]
- Stuart, D.; Schewe, R.L.; McDermott, M. Reducing Nitrogen Fertilizer Application as a Climate Change Mitigation Strategy: Understanding Farmer Decision-Making and Potential Barriers to Change in the US. Land Use Policy 2014, 36, 210–218. [Google Scholar] [CrossRef]
- Dulal, H.B.; Brodnig, G.; Shah, K.U. Capital Assets and Institutional Constraints to Implementation of Greenhouse Gas Mitigation Options in Agriculture. Mitig Adapt Strat. Glob. Change 2011, 16, 1–23. [Google Scholar] [CrossRef]
- Barnes, A.P.; Willock, J.; Hall, C.; Toma, L. Farmer Perspectives and Practices Regarding Water Pollution Control Programmes in Scotland. Agric. Water Manag. 2009, 96, 1715–1722. [Google Scholar] [CrossRef]
- Bourceret, A.; Amblard, L.; Mathias, J.-D. How Do Farmers’ Environmental Preferences Influence the Efficiency of Information Instruments for Water Quality Management? Evidence from a Social-Ecological Agent-Based Model. Ecol. Model. 2023, 478, 110300. [Google Scholar] [CrossRef]
- Gachango, F.G.; Andersen, L.M.; Pedersen, S.M. Adoption of Voluntary Water-Pollution Reduction Technologies and Water Quality Perception among Danish Farmers. Agric. Water Manag. 2015, 158, 235–244. [Google Scholar] [CrossRef]
- Dessart, F.J.; Barreiro-Hurlé, J.; Van Bavel, R. Behavioural Factors Affecting the Adoption of Sustainable Farming Practices: A Policy-Oriented Review. Eur. Rev. Agric. Econ. 2019, 46, 417–471. [Google Scholar] [CrossRef]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Ajzen, I. From Intentions to Actions: A Theory of Planned Behavior. In Action Control; Kuhl, J., Beckmann, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 11–39. ISBN 978-3-642-69748-7. [Google Scholar]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research; Addison-Wesley: Reading, MA, USA, 1975. [Google Scholar]
- Ajzen, I. The Theory of Planned Behaviour: Reactions and Reflections. Psychol. Health 2011, 26, 1113–1127. [Google Scholar] [CrossRef]
- Daxini, A.; O’Donoghue, C.; Ryan, M.; Buckley, C.; Barnes, A.P.; Daly, K. Which Factors Influence Farmers’ Intentions to Adopt Nutrient Management Planning? J. Environ. Manag. 2018, 224, 350–360. [Google Scholar] [CrossRef]
- Zeng, Z.; Cleon, C.B. Factors Affecting the Adoption of a Land Information System: An Empirical Analysis in Liberia. Land Use Policy 2018, 73, 353–362. [Google Scholar] [CrossRef]
- Waiswa, D.; Muriithi, B.W.; Murage, A.W.; Ireri, D.M.; Maina, F.; Chidawanyika, F.; Yavuz, F. The Role of Social-Psychological Factors in the Adoption of Push-Pull Technology by Small-Scale Farmers in East Africa: Application of the Theory of Planned Behavior. Heliyon 2025, 11, e41449. [Google Scholar] [CrossRef]
- Savari, M.; Gharechaee, H. Application of the Extended Theory of Planned Behavior to Predict Iranian Farmers’ Intention for Safe Use of Chemical Fertilizers. J. Clean. Prod. 2020, 263, 121512. [Google Scholar] [CrossRef]
- Zeweld, W.; Van Huylenbroeck, G.; Tesfay, G.; Speelman, S. Smallholder Farmers’ Behavioural Intentions towards Sustainable Agricultural Practices. J. Environ. Manag. 2017, 187, 71–81. [Google Scholar] [CrossRef]
- Macgregor, C.J.; Warren, C.R. Adopting Sustainable Farm Management Practices within a Nitrate Vulnerable Zone in Scotland: The View from the Farm. Agric. Ecosyst. Environ. 2006, 113, 108–119. [Google Scholar] [CrossRef]
- Ackers, H.L.; Ackers-Johnson, J. Can (Imported) Knowledge Change Systems? Understanding the Dynamics of Behaviour Change. In Mobile Professional Voluntarism and International Development; Palgrave Macmillan: New York, NY, USA, 2017; pp. 79–111. ISBN 978-1-137-55832-9. [Google Scholar]
- Massfeller, A.; Meraner, M.; Hüttel, S.; Uehleke, R. Farmers’ Acceptance of Results-Based Agri-Environmental Schemes: A German Perspective. Land Use Policy 2022, 120, 106281. [Google Scholar] [CrossRef]
- Michie, S.; Van Stralen, M.M.; West, R. The Behaviour Change Wheel: A New Method for Characterising and Designing Behaviour Change Interventions. Implement. Sci. 2011, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Tensi, A.F.; Ang, F.; Van Der Fels-Klerx, H.J. Behavioural Drivers and Barriers for Adopting Microbial Applications in Arable Farms: Evidence from the Netherlands and Germany. Technol. Forecast. Soc. Change 2022, 182, 121825. [Google Scholar] [CrossRef]
- Slijper, T.; Tensi, A.F.; Ang, F.; Ali, B.M.; Van Der Fels-Klerx, H.J. Investigating the Relationship between Knowledge and the Adoption of Sustainable Agricultural Practices: The Case of Dutch Arable Farmers. J. Clean. Prod. 2023, 417, 138011. [Google Scholar] [CrossRef]
- Perez-Espejo, R.; Ibarra, A.A.; Escobedo-Sagaz, J.L. Agriculture and Water Pollution: Farmers’ Perceptions in Central Mexico. Int. J. Water Resour. Dev. 2011, 27, 263–273. [Google Scholar] [CrossRef]
- Stuart, D.; Denny, R.C.H.; Houser, M.; Reimer, A.P.; Marquart-Pyatt, S. Farmer Selection of Sources of Information for Nitrogen Management in the US Midwest: Implications for Environmental Programs. Land Use Policy 2018, 70, 289–297. [Google Scholar] [CrossRef]
- Prokopy, L.S.; Floress, K.; Arbuckle, J.G.; Church, S.P.; Eanes, F.R.; Gao, Y.; Gramig, B.M.; Ranjan, P.; Singh, A.S. Adoption of Agricultural Conservation Practices in the United States: Evidence from 35 Years of Quantitative Literature. J. Soil Water Conserv. 2019, 74, 520–534. [Google Scholar] [CrossRef]
- Stuart, D.; Gillon, S. Scaling up to Address New Challenges to Conservation on US Farmland. Land Use Policy 2013, 31, 223–236. [Google Scholar] [CrossRef]
- Kassie, M.; Teklewold, H.; Jaleta, M.; Marenya, P.; Erenstein, O. Understanding the Adoption of a Portfolio of Sustainable Intensification Practices in Eastern and Southern Africa. Land Use Policy 2015, 42, 400–411. [Google Scholar] [CrossRef]
- Khalsa, S.D.S.; Rudnick, J.; Lubell, M.; Sears, M.; Brown, P.H. Linking Agronomic and Knowledge Barriers to Adoption of Conservation Practices for Nitrogen Management. Front. Agron. 2022, 4, 915378. [Google Scholar] [CrossRef]
- Han, H.; Zhao, L. Farmers’ Character and Behavior of Fertilizer Application -Evidence from a Survey of Xinxiang County, Henan Province, China. Agric. Sci. China 2009, 8, 1238–1245. [Google Scholar] [CrossRef]
- Michel-Guillou, É. L’environnement, l’eau et les agriculteurs: Entre conscience environnementale et défense du métier. Bull. Psychol. 2009, 502, 381–388. [Google Scholar] [CrossRef]
- Toma, L.; Mathijs, E. Environmental Risk Perception, Environmental Concern and Propensity to Participate in Organic Farming Programmes. J. Environ. Manag. 2007, 83, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Inman, A.; Winter, M.; Wheeler, R.; Vrain, E.; Lovett, A.; Collins, A.; Jones, I.; Johnes, P.; Cleasby, W. An Exploration of Individual, Social and Material Factors Influencing Water Pollution Mitigation Behaviours within the Farming Community. Land Use Policy 2018, 70, 16–26. [Google Scholar] [CrossRef]
- Okumah, M.; Martin-Ortega, J.; Novo, P. Effects of Awareness on Farmers’ Compliance with Diffuse Pollution Mitigation Measures: A Conditional Process Modelling. Land Use Policy 2018, 76, 36–45. [Google Scholar] [CrossRef]
- Caswell, M.; Fuglie, K.; Ingram, C.; Jans, S.; Kascak, C. Adoption of Agricultural Production Practices: Lessons Learned from the U.S. Department of Agriculture Area Studies Project; Economic Research Service USA Department of Agriculture: Washington, DC, USA, 2001.
- Ma, S.; Swinton, S.M.; Lupi, F.; Jolejole-Foreman, C. Farmers’ Willingness to Participate in Payment-for-Environmental-Services Programmes. J. Agric. Econ. 2012, 63, 604–626. [Google Scholar] [CrossRef]
- Wabi, M.A. Identification of Socio-Economic Characteristics and Farmers’ Practices Affecting Rice (Oryza Spp.) Yields in Benin (West Africa). J. Agric. Rural Dev. Trop. Subtrop. 2022, 121, 257–271. [Google Scholar] [CrossRef]
- Amoussou, E. Variabilité Pluviométrique et DynamiqueVariabilité Dynamique Hydro-Sédimentaire du Bassin du Bassin Versant du Complexe Fluvio-Lagunairegunaire Mono-Ahémé-Couffo (Afrique de l’Ouest). Ph.D. Thesis, Université de Bourgogne, Dijon, France, 2011. [Google Scholar]
- Kodja, D.J. Indicateurs Des Évènements Hydroclimatiques Extrêmes Dans Le Bassin Versant de l’Oueme à l’exutoire de Bonou En Afrique de l’Ouest. Ph.D. Thesis, Université de Montpellier, Montpellier, France, 2018. [Google Scholar]
- Hounkpè, J.; Diekkrüger, B.; Badou, D.; Afouda, A. Change in Heavy Rainfall Characteristics over the Ouémé River Basin, Benin Republic, West Africa. Climate 2016, 4, 15. [Google Scholar] [CrossRef]
- Wabi, M.A.; Vanhove, W.; Idohou, R.; Hounkpèvi, A.; Kakaï, R.L.G.; Van Damme, P. Midterm Change in Rainfall Distribution in North and Central Benin: Implications for Agricultural Decision Making. Env. Dev. Sustain. 2023, 26, 27431–27456. [Google Scholar] [CrossRef]
- Obada, E.; Alamou, E.A.; Biao, E.I.; Zandagba, E.B.J. Interannual Variability and Trends of Extreme Rainfall Indices over Benin. Climate 2021, 9, 160. [Google Scholar] [CrossRef]
- Lohou, F.; Kergoat, L.; Guichard, F.; Boone, A.; Cappelaere, B.; Cohard, J.M.; Demarty, J.; Galle, S.; Grippa, M.; Peugeot, C.; et al. Surface Response to Rain Events throughout the West African Monsoon. Atmos. Chem. Phys. 2014, 14, 3883–3898. [Google Scholar] [CrossRef]
- Gnanglè, C.P.; Glèlè Kakaï, R.; Assogbadjo, A.E.; Vodounnon, S.; Yabi, J.A.; Sokpon, N. Tendances climatiques passées, modélisation, perceptions et adaptations locales au Benin. Climatologie 2011, 8, 27–40. [Google Scholar] [CrossRef]
- Wabi, M.A. Risques agro-météorologiques et production du riz pluvial (Oryza spp.) au Bénin (Afrique de l’Ouest). Sci. Vie Terre Agron. 2021, 9, 73–80. [Google Scholar]
- Saito, K.; Fukuta, Y.; Yanagihara, S.; Ahouanton, K.; Sokei, Y. Identifying High-Yielding Rice Varieties Adapted to Rainfed Upland Conditions in Benin and Their Plant Characteristics. Trop. Agr. Develop. 2014, 58, 51–57. [Google Scholar]
- Sognon, D.P.; Assongba, Y.F.; Ahouanvoegbe, P.; Vodounon, S.H.T. Astreintes climatiques et production d’igname dans la Commune de Glazoué au Centre Bénin, Afrique de l’Ouest. Afr. Sci. 2021, 17, 207–222. [Google Scholar]
- Kouévi, T.A.; Kpossilandé, M.L.W.; Vodouhê, D.S.; Tossou, C.R. Analysis of Agricultural Innovation Dynamics in Rural Areas: A Case Study of Rice Parboiling in the Municipality of Glazoué in Benin, between 2013 and 2021. Int. J. Agr. Ext. 2023, 11, 275–292. [Google Scholar] [CrossRef]
- OCIS-CCI BENIN. Analyse d’Opportunité: Filière Riz Au BENIN 2024. Available online: https://cci.bj/admin1/public/upload/publications/file_018cc803e9af539174d6f54f3b6b6e0b.pdf (accessed on 4 February 2025).
- King, C.D.; Stephens, C.G.; Lynch, J.P.; Jordan, S.N. Farmers’ Attitudes towards Agricultural Plastics—Management and Disposal, Awareness and Perceptions of the Environmental Impacts. Sci. Total Environ. 2023, 864, 160955. [Google Scholar] [CrossRef]
- Greene, J.C.; Caracelli, V.J.; Graham, W.F. Toward a Conceptual Framework for Mixed-Method Evaluation Designs. Educ. Eval. Policy Anal. 1989, 11, 255–274. [Google Scholar] [CrossRef]
- Creswell, J.W.; Clark, V.L.P. Designing and Conducting Mixed Methods Research; SAGE: Washington, DC, USA, 2011; ISBN 978-1-4129-7517-9. [Google Scholar]
- Zohrabi, M. Mixed Method Research: Instruments, Validity, Reliability and Reporting Findings. Theory Pract. Lang. Stud. 2013, 3, 254–262. [Google Scholar] [CrossRef]
- Addae-Frimpomaah, F.; Amenorpe, G.; Denwar, N.N.; Amiteye, S.; Adazebra, G.A.; Sossah, F.L.; Akaba, S.; Issah, A.R.; Amoatey, H.M. Participatory Approach of Preferred Traits, Production Constraints and Mitigation Strategies: Implications for Soybean Breeding in Guinea Savannah Zone of Ghana. Heliyon 2022, 8, e09497. [Google Scholar] [CrossRef]
- Dahlmann, H.; Stephan, R.; Stahl, K. Upstream-Downstream Asymmetries of Drought Impacts in Major River Basins of the European Alps. Front. Water 2022, 4, 1061991. [Google Scholar] [CrossRef]
- Dagnelie, P. Statistiques Théoriques et Appliquées In Theoretical and Applied Statistics; De Boeck & Larcier SA: Paris, France, 1998. [Google Scholar]
- Soulard, C.T. Les Agriculteurs et La Pollution Des Eaux. Proposition d’une Géographie Des Pratiques. Nat. Sci. Sociétés 2005, 13, 154–164. [Google Scholar] [CrossRef]
- Salhi, S.; Tonneau, J.P.; Ferfera, M.Y. La compréhension et la participation des acteurs peuvent-elles apporter une contribution aux politiques de preservation de l’environnement? Les Cah. Du Cread 2015, 31, 107–125. [Google Scholar]
- Sebillotte, M. Agriculture et Risques de Pollution Diffuse Par Les Produits Phytosanitaires. La Houille Blanche 2009, 85, 144–149. [Google Scholar] [CrossRef]
- Zabor, E.C.; Reddy, C.A.; Tendulkar, R.D.; Patil, S. Logistic Regression in Clinical Studies. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 271–277. [Google Scholar] [CrossRef]
- Bekele, W.; Drake, L. Soil and Water Conservation Decision Behavior of Subsistence Farmers in the Eastern Highlands of Ethiopia: A Case Study of the Hunde-Lafto Area. Ecol. Econ. 2003, 46, 437–451. [Google Scholar] [CrossRef]
- Tesfahunegn, G.B.; Mekonen, K.; Tekle, A. Farmers’ Perception on Causes, Indicators and Determinants of Climate Change in Northern Ethiopia: Implication for Developing Adaptation Strategies. Appl. Geogr. 2016, 73, 1–12. [Google Scholar] [CrossRef]
- Funk, C.; Raghavan Sathyan, A.; Winker, P.; Breuer, L. Changing Climate—Changing Livelihood: Smallholder’s Perceptions and Adaption Strategies. J. Environ. Manag. 2020, 259, 109702. [Google Scholar] [CrossRef]
- Williams, R.; Jorgensen, A. Comparing Logit & Probit Coefficients between Nested Models. Soc. Sci. Res. 2023, 109, 102802. [Google Scholar] [CrossRef]
- Lever, J.; Krzywinski, M.; Altman, N. Logistic Regression. Nat. Methods 2016, 13, 541–542. [Google Scholar] [CrossRef]
- Batungwanayo, P.; Habarugira, V.; Vanclooster, M.; Ndimubandi, J.; Koropitan, A.F.; Nkurunziza, J.d.D. Confronting Climate Change and Livelihood: Smallholder Farmers’ Perceptions and Adaptation Strategies in Northeastern Burundi. Reg. Environ. Change 2023, 23, 47. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing Nitrogen for Sustainable Development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Jansson, S.L.; Persson, J. Mineralization and Immobilization of Soil Nitrogen. In Nitrogen in Agricultural Soils; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 1982; pp. 229–252. ISBN 978-0-89118-216-0. [Google Scholar]
- Tang, Y.; Yang, C. Which Factors Influence Chinese Farmers to Adopt Formulated Fertilization Technology? IOP Conf. Ser. Earth Environ. Sci. 2019, 295, 012039. [Google Scholar] [CrossRef]
- Doss, C.R.; Morris, M.L. How Does Gender Affect the Adoption of Agricultural Innovations? Agric. Econ. 2000, 25, 27–39. [Google Scholar] [CrossRef]
- Zhu, W.; Yin, B.; Su, L.; Liu, C.; Zhang, L.; Wang, L. The Improvement of Soil Properties in Rice Cropping Systems Using an Integrated Fertilization Method to Increase Rice Yield. Soil Use Manag. 2024, 40, e13073. [Google Scholar] [CrossRef]
- Becker, M.; Johnson, D.E.; Wopereis, M.C.S.; Sow, A. Rice Yield Gaps in Irrigated Systems along an Agro-ecological Gradient in West Africa. Z. Pflanzenernähr. Bodenk. 2003, 166, 61–67. [Google Scholar] [CrossRef]
- Qi, X. Factors Influencing Farmers’ Adoption of Eco-Friendly Fertilization Technology in Grain Production: An Integrated Spatial–Econometric Analysis in China. J. Clean. Prod. 2021, 310, 127536. [Google Scholar] [CrossRef]
- Dixon, A.B.; Wood, A.P. Wetland Cultivation and Hydrological Management in Eastern Africa: Matching Community and Hydrological Needs through Sustainable Wetland Use. Nat. Resour. Forum 2003, 27, 117–129. [Google Scholar] [CrossRef]
- Smith, C.M.; Peterson, J.M.; Leatherman, J.C. Attitudes of Great Plains Producers about Best Management Practices, Conservation Programs, and Water Quality. J. Soil Water Conserv. 2007, 62, 97A–103A. [Google Scholar]
- Pare, S.; Bonzi-Coulibaly, L.Y. Water Quality Issues in West and Central Africa: Present Status and Future Challenges. Understanding Freshwater Quality Problems in a Changing World. In Proceedings of the H04, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, 23 July 2013; pp. 87–95. [Google Scholar]
- Nyenje, P.M.; Foppen, J.W.; Uhlenbrook, S.; Kulabako, R.; Muwanga, A. Eutrophication and Nutrient Release in Urban Areas of Sub-Saharan Africa—A Review. Sci. Total Environ. 2010, 408, 447–455. [Google Scholar] [CrossRef]
- Lukhele, T.; Msagati, T.A.M. Eutrophication of Inland Surface Waters in South Africa: An Overview. Int. J. Environ. Res. 2024, 18, 27. [Google Scholar] [CrossRef]
- Omo-Irabor, O.O.; Olobaniyi, S.B.; Oduyemi, K.; Akunna, J. Surface and Groundwater Water Quality Assessment Using Multivariate Analytical Methods: A Case Study of the Western Niger Delta, Nigeria. Phys. Chem. Earth Parts A/B/C 2008, 33, 666–673. [Google Scholar] [CrossRef]
- Bundy, L.G.; Andraski, T.W. Soil Nitrate Tests Improve Nitrogen Recommendations and Protect Water Quality; American Society of Agricultural Engineers (ASAE): St. Joseph, MI, USA, 1995. [Google Scholar]
- Mertz, O.; Mbow, C.; Reenberg, A.; Diouf, A. Farmers’ Perceptions of Climate Change and Agricultural Adaptation Strategies in Rural Sahel. Environ. Manag. 2008, 43, 804–816. [Google Scholar] [CrossRef] [PubMed]
- Sofoluwe, N.A.; Tijani, A.A.; Baruwa, O.I. Farmers’ Perception and Adaptation to Climate Change in Osun State, Nigeria. Afr. J. Agric. Res. 2011, 6, 4789–4794. [Google Scholar]
- Widdison, P.E.; Hudson, R.; Burt, T.P. Water Framework Directive: Implications for Farmers in the Leet Water Catchment. In Proceedings of the SAC and SEPA Biennial Conference, Edinburgh, UK, 24 March 2004. [Google Scholar]
- Reimer, A.; Thompson, A.; Prokopy, L.S.; Arbuckle, J.G.; Genskow, K.; Jackson-Smith, D.; Lynne, G.; McCann, L.; Morton, L.W.; Nowak, P. People, Place, Behavior, and Context: A Research Agenda for Expanding Our Understanding of What Motivates Farmers’ Conservation Behaviors. J. Soil Water Conserv. 2014, 69, 57A–61A. [Google Scholar] [CrossRef]
- Haefele, S.M.; Wopereis, M.C.S. Combining Field and Simulation Studies to Improve Fertilizer Recommendations for Irrigated Rice in the Senegal River Valley. In Increasing Productivity of Intensive Rice Systems Through Site-Specific Nutrient Management; Science Publishers: Enfield, NH, USA, 2004; pp. 265–286. [Google Scholar]
Variables | Description | Expected Sign for Dependent Variable | ||
---|---|---|---|---|
(b) | (c) | (d) | ||
Dependent Variables | Statistical Analysis/Model Type | |||
Dose of urea fertilizer (a) Pro-environmental practices (b) | Chi-squared test of independence Logit regression (Model1) and tree regression | |||
Knowledge watershed network (c) | Logit regression (Model 2) | |||
Perceived water pollution (d) | Logit regression (Model 3) | |||
Explanatory Variables | Categories | |||
Socio-demographic factors | ||||
Gender | Farmer’s gender (0 = female, 1 = male) | +/- | + | +/- |
Age | Farmer’s age (0 = “18–35”, 1 = “36–45”, 2 = “>45”) in years | +/- | + | +/- |
Education | Education level of farmers (0 = unschooled, 1 = schooled) | + | +/- | + |
Farming experience | Experience in the use of lowland areas (0 = “<10», 1 = “10–19”, 2 = “>19”) in years | + | + | + |
Membership of farm organization | Member of rice-growers association (0 = no, 1 = yes) | +/- | na 1 | na |
Training on water pollution | Trained on water pollution (0 = no, 1 = yes) | + | +/- | + |
Training on rice cultivation | Trained on rice cultivation (0 = no, 1 = yes) | + | na | na |
Spatial factors | ||||
Farm location | Field location in the lowland (0 = upstream, 1 = middle, 2 = downstream) | + | +/- | + |
Farm size | Size of the field (0 = “<1”, 1 = “≥1”) in ha | +/- | na | na |
Developed lowlands | Developed field (0 = no, 1 = yes) | + | na | na |
Fertilization factors | ||||
Urea dose | Dose of urea (0 = “50–75”, 1 = “76–100”, 2 = “>101”) in kg/ha | + | na | + |
Split fertilizer application | Splitting urea application (0 = no split, 1 = split) | + | na | na |
Method of fertilizer application | Method of applying fertilizer (0 = broadcast, 1 = in-hole) | + | na | na |
Choice criteria | Choice criteria of fertilizer and dose (0 = recommended, 1 = fertilizer available on the market, 3 = field history, 4= arbitrary) | + | na | na |
Total fertilizer used by crop | Consideration of total use by the crop of total applied fertilizer (0 = no, 1 = yes) | +/- | na | na |
Crop rotation | Practice of crop rotation (0 = no, 1 = yes) | - | na | na |
Knowledge of fertilizer use policies | Knowledge of fertilizer use regulations (0 = no, 1 = yes) | - | na | na |
Pro-environmental fertilization practices | Adoption of pro-environmental practices (0 = no, 1 = yes) | + | ||
Knowledge factors of hydrographic network | ||||
Knowledge of water leaving the field | Knowledge about fate of water that leaves the farm (0 = no, 1 = yes) | na | +/- | na |
Knowledge of final outlet | Knowledge about the outlet of the watershed (0 = no, 1 = yes) | na | + | na |
Knowledge of the process of nutrient runoff from upstream to downstream | Knowledge about the fertilizer’s fate in terms of the position of the field in the toposequence (0 = no, 1 = yes) | +/- | + | na |
Knowledge of watershed network | Knowledge about the hydrographic network of the watershed (0 = no, 1 = yes) | na | +/- | |
Perception factors | ||||
Have perceived water organoleptic degradation | Observed degradation of the organoleptic quality of the water (smell, taste, color) (0 = no, 1 = yes) | na | na | + |
Knowledge of how poor fertilizer affects water | Awareness about the link between poor fertilization practices and water pollution by nitrate (0 = no, 1 = yes) | + | na | + |
Knowledge of water pollution factors | Awareness of other factors that contribute to water pollution (0 = no, 1 = yes) | na | na | +/- |
Water pollution observed | Observed eutrophication (0 = no, 1 = yes) | na | na |
Response Variables | Statistical Analysis/Model Type | Statistical Index |
---|---|---|
Soil fertilization practices | Descriptive analysis Chi-squared test of independence | Proportion p-value |
Farmers perception and attitude on water pollution by nitrogen | Descriptive analysis | Proportion |
Pro-environmental practices | Logistic regression (Model 1) | Goodness of fit; OR and p-value Tree decision |
Tree regression | Tree decision | |
Knowledge of watershed network | Logistic regression (Model 2) | Goodness of fit; OR and p-value |
Observed water pollution (as eutrophication). | Logistic regression (Model 3) | Goodness of fit; OR and p-value |
Variables | Characteristics | N (Proportion %) |
---|---|---|
Gender | Female | 83 (47.2) |
Male | 93 (52.8) | |
Age (in years) | 18–35 | 53 (30.1) |
36–45 | 62 (35.3) | |
>45 | 61 (34.6) | |
Farming experience (in years) | <10 | 67 (38.1) |
≥10 | 109 (61.9) | |
Education | Unschooled | 91 (51.7) |
Basic school | 55 (31.3) | |
Secondary school | 30 (17) | |
Training on technique of rice cultivation | No | 73 (41.5) |
Yes | 103 (58.5) | |
Training on water pollution issues | No | 131 (74.5) |
Yes | 45 (25.5) | |
Source of drinking water at field | River | 37 (21) |
Well | 11 (6.3) | |
Drilling | 128 (72.7) | |
Farm size (ha) | Continuous | (mean: 1.19 ± 0.7) |
Location | Upstream | 49 (27.8) |
Middle | 60 (34.1) | |
Downstream | 67 (38.1) | |
Crop rotation | No | 117 (67.5) |
Yes | 59 (33.5) | |
Main crops in rotation with rice | Cowpea | 25 (39.7) |
Soybean | 16 (25.4) | |
Maize | 13 (20.6) | |
Vegetables | 9 (14.3) |
Variables | Characteristics | N (Proportion%) |
---|---|---|
Application of fertilizer | No | 5 (2.8) |
Yes | 171 (97.2) | |
Fertilizer type | Organic | 6 (16.7) |
Mineral | 171 (100) | |
Types of fertilizers (organic and mineral) | Urea (46%N) | 171 (100) |
NPK | 171 (100) | |
Cattle manure | 4 (2.3) | |
Poultry manure | 2 (1.2) | |
Method of fertilizer application | Broadcast | 140 (81.9) |
Deep placement | 31 (18.1) | |
Soil water status at the time of fertilizer application | Unsaturated | 23 (10) |
Saturated | 163 (70) | |
Submerged | 45 (19) | |
Choice criteria of fertilizer type and dose | Recommended | 41 (24) |
Arbitrary | 91 (53.2) | |
Fertilizer available on market | 19 (11.1) | |
Field history | 20 (11.7) |
Urea Dose (kg ha−1) | 50–75, N = 21 1 | 76–100, N = 81 1 | >100, N = 64 1 | Overall, N = 171 1 | p-Value 2 |
---|---|---|---|---|---|
Age group | 0.642 | ||||
18–35 | 10 (38%) | 25 (31%) | 15 (23%) | 50 (29%) | |
36–45 | 7 (27%) | 29 (36%) | 24 (38%) | 60 (35%) | |
46+ | 9 (35%) | 27 (33%) | 25 (39%) | 61 (36%) | |
Education | 0.678 | ||||
Unschooled | 13 (50%) | 45 (56%) | 31 (48%) | 89 (52%) | |
Schooled | 13 (50%) | 36 (44%) | 33 (52%) | 82 (48%) | |
Farming experience class (year) | 0.544 | ||||
<10 | 8 (31%) | 29 (36%) | 27 (42%) | 64 (37%) | |
10–19 | 14 (54%) | 34 (42%) | 22 (34%) | 70 (41%) | |
20+ | 4 (15%) | 18 (22%) | 15 (23%) | 37 (22%) | |
Have received training on water pollution | 10 (38%) | 19 (23%) | 13 (20%) | 42 (25%) | 0.184 |
Have received training on rice cultivation | 15 (58%) | 49 (60%) | 37 (58%) | 101 (59%) | 0.937 |
Field location | 0.007 | ||||
Upstream | 3 (12%) | 19 (23%) | 27 (42%) | 49 (29%) | |
Middle | 7 (27%) | 31 (38%) | 19 (30%) | 57 (33%) | |
Downstream | 16 (62%) | 31 (38%) | 18 (28%) | 65 (38%) | |
Farm size | 0.353 | ||||
<1 ha | 9 (35%) | 25 (31%) | 14 (22%) | 48 (28%) | |
1 ha+ | 17 (65%) | 56 (69%) | 50 (78%) | 123 (72%) | |
Landscaped field | 1 (3.8%) | 9 (11%) | 9 (14%) | 19 (11%) | 0.430 |
Choice criteria of fertilizer | 0.094 | ||||
Recommended | 12 (46%) | 20 (25%) | 9 (14%) | 41 (24%) | |
Fertilizer available | 2 (7.7%) | 10 (12%) | 7 (11%) | 19 (11%) | |
Field history | 3 (12%) | 9 (11%) | 8 (12%) | 20 (12%) | |
Arbitrary | 9 (35%) | 42 (52%) | 40 (62%) | 91 (53%) | |
Crop rotation | 19 (73%) | 39 (48%) | 25 (39%) | 83 (49%) | 0.014 |
Knowledge of fertilizer use regulations | 10 (38%) | 20 (25%) | 16 (25%) | 46 (27%) | 0.352 |
Adoption of pro-environmental practices | 19 (73%) | 37 (46%) | 17 (27%) | 73 (43%) | <0.001 |
Logit Model | Chi-Squared | Df | P-Level | Log Likelihood | AIC | Nagelkerke R-Squared | Model Correctness (%) |
---|---|---|---|---|---|---|---|
Model 1 | 130.01 | 20 | <0.001 | −51.69 | 149.39 | 0.71 | 86.54 |
Model 2 | 90.88 | 12 | <0.001 | −72.84 | 169.69 | 0.55 | 83.52 |
Model 3 | 39.43 | 15 | <0.001 | −98.14 | 228.28 | 0.27 | 73.29 |
Term | Odds Ratio | 2.5% | 97.5% | Pr(>|z|) |
---|---|---|---|---|
(Intercept) | 0.131 | 0.011 | 1.306 | 0.087 |
Age_group: “36–45” | 0.398 | 0.086 | 1.692 | 0.219 |
Age_group: “46+” | 0.589 | 0.112 | 2.924 | 0.520 |
Education: “Schooled” | 3.790 | 1.252 | 12.487 | 0.021 * |
Farming.experience_class: “10–19” | 2.699 | 0.709 | 11.500 | 0.157 |
Farming. experience_class: “20+” | 4.834 | 0.749 | 34.609 | 0.103 |
Membership.of.farmers.organization: “yes” | 0.880 | 0.245 | 2.953 | 0.837 |
Training.on.water.pollution: “yes” | 5.195 | 1.159 | 27.243 | 0.037 * |
Training.on.rice.farming: “yes” | 2.189 | 0.654 | 7.569 | 0.204 |
Farm.location: “middle” | 0.919 | 0.208 | 3.974 | 0.910 |
Farm.location: “downstream” | 1.627 | 0.397 | 7.023 | 0.501 |
Farm.size_class: “1 ha+” | 0.121 | 0.031 | 0.041 | 0.001 ** |
Developed. Field: “yes” | 0.302 | 0.043 | 1.696 | 0.197 |
Urea.dose_class: “76–100” | 0.753 | 0.156 | 3.459 | 0.717 |
Urea.dose_class: “101+” | 0.201 | 0.032 | 1.089 | 0.072 |
Split.urea.application: “Split” | 1.521 | 0.341 | 6.585 | 0.570 |
Choice.criteria: “Fertilizer available on market” | 0.336 | 0.043 | 2.345 | 0.280 |
Choice.criteria: “Field history” | 1.632 | 0.229 | 12.229 | 0.625 |
Choice.criteria: “Arbitrary” | 0.986 | 0.252 | 3.936 | 0.984 |
Crop.rotation: “yes” | 13.145 | 4.250 | 48.498 | <0.001 *** |
Variables | Characteristics | N (Proportion %) |
---|---|---|
Do you assess water quality? | No | 169 (96.1) |
Yes | 7 (3.9) | |
If no, give the reasons | Lack of information | 140 (54.9) |
Lack of device/laboratory | 85 (33.4) | |
Not important | 30 (11.7) | |
Is all the fertilizer applied used by the crops? | No | 120 (68) |
Yes | 56 (32) | |
Do you know that the poor use of fertilizers affects water quality? | No | 116 (65.9) |
Yes | 60 (34.1) | |
Perceived eutrophication at the outlets | No | 69 (39) |
Yes | 107 (60.8) | |
Perceived the deterioration of sensory quality of water | No | 49 (27.8) |
Yes | 127 (72.2) |
Variables | p-Value |
---|---|
Gender | 0.127 |
Age | 0.121 |
Education level | <0.001 |
Have received training on water pollution | <0.001 |
Farm location | 0.988 |
Dose of urea applied | 0.081 |
Farming experience | 0.384 |
Adoption of pro-environmental practices | <0.001 |
Knowledge of hydrographic network of the watershed | 0.658 |
Have perceived eutrophication | 0.19 |
Have perceived water organoleptic degradation | 0.669 |
Knowledge of water pollution factors | 0.012 |
Term | Odds Ratio | 2.5% | 97.5% | Pr(>|z|) |
---|---|---|---|---|
(Intercept) | 0.086 | 0.018 | 0.355 | <0.001 |
Gender: “male” | 0.656 | 0.269 | 1.559 | 0.344 |
Age_group: “36–45” | 1.264 | 0.454 | 3.449 | 0.647 |
Age_group: “46+” | 3.611 | 1.085 | 12.424 | 0.037 * |
Education: “Schooled” | 1.801 | 0.681 | 5.010 | 0.243 |
Farming.experience_class: “>10” | 16.582 | 6.270 | 49.304 | <0.001 *** |
Training.on.water.pollution: “yes” | 1.716 | 0.635 | 4.895 | 0.296 |
Farm.location: “middle” | 0.331 | 0.101 | 0.995 | 0.056 |
Farm.location: “downstream” | 0.718 | 0.237 | 2.107 | 0.549 |
Knowledge.of.water.leaving.the.field: “yes” | 0.826 | 0.329 | 2.011 | 0.676 |
Knowledge.watershed.outlet: “yes” | 3.416 | 1.334 | 90.95 | 0.011 * |
Term | Odds Ratio | 2.5% | 97.5% | Pr(>|z|) |
---|---|---|---|---|
(Intercept) | 0.158 | 0.033 | 0.707 | 0.017 |
Gender: “male” | 0.874 | 0.404 | 1.860 | 0.728 |
Age_group: “36–45” | 1.571 | 0.631 | 3.996 | 0.334 |
Age_group: “46+” | 1.702 | 0.607 | 4.858 | 0.313 |
Education: “Schooled” | 1.288 | 0.551 | 2.995 | 0.567 |
Farming.experience_class: “>10” | 1.370 | 0.519 | 3.656 | 0.524 |
Training.on.water.pollution: “yes” | 1.053 | 0.404 | 2.786 | 0.915 |
Farm.location: “middle” | 2.265 | 0.944 | 5.590 | 0.070 |
Farm.location: “downstream” | 6.348 | 2.547 | 16.782 | <0.001 *** |
Urea.dose_class: “76–100” | 0.538 | 0.175 | 1.516 | 0.254 |
Urea.dose_class: “100+” | 0.988 | 0.294 | 3.176 | 0.985 |
Pro.environmental.practices: “yes” | 1.057 | 0.440 | 2.554 | 0.900 |
Knowledge.watershed.network: “yes” | 0.861 | 0.332 | 2.207 | 0.756 |
Have.perceived.water. organoleptic.degradation: “yes” | 3.296 | 1.514 | 7.380 | 0.003 ** |
Knowledge.factors.of.water.pollution: “yes” | 1.176 | 0.524 | 2.623 | 0.691 |
Knowledge.poor.use.of.fertilizers.cause.water.pollution: “yes” | 1.783 | 0.778 | 4.226 | 0.177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gbedourorou, S.K.; Tovihoudji, P.G.; Alonso, A.; Akponikpè, P.B.I.; Vanclooster, M. Understanding Lowland Rice Farmers’ Knowledge of Soil Fertilization Practices and Perceptions of Nitrogen-Induced Water Pollution Risks in the Ouémé Watershed, Central Benin. Water 2025, 17, 779. https://doi.org/10.3390/w17060779
Gbedourorou SK, Tovihoudji PG, Alonso A, Akponikpè PBI, Vanclooster M. Understanding Lowland Rice Farmers’ Knowledge of Soil Fertilization Practices and Perceptions of Nitrogen-Induced Water Pollution Risks in the Ouémé Watershed, Central Benin. Water. 2025; 17(6):779. https://doi.org/10.3390/w17060779
Chicago/Turabian StyleGbedourorou, Sabi Kidirou, Pierre G. Tovihoudji, Alice Alonso, P. B. Irenikatche Akponikpè, and Marnik Vanclooster. 2025. "Understanding Lowland Rice Farmers’ Knowledge of Soil Fertilization Practices and Perceptions of Nitrogen-Induced Water Pollution Risks in the Ouémé Watershed, Central Benin" Water 17, no. 6: 779. https://doi.org/10.3390/w17060779
APA StyleGbedourorou, S. K., Tovihoudji, P. G., Alonso, A., Akponikpè, P. B. I., & Vanclooster, M. (2025). Understanding Lowland Rice Farmers’ Knowledge of Soil Fertilization Practices and Perceptions of Nitrogen-Induced Water Pollution Risks in the Ouémé Watershed, Central Benin. Water, 17(6), 779. https://doi.org/10.3390/w17060779