The Influence of Wind on the Spatial Distribution of Pelagic Sargassum Aggregations in the Tropical Atlantic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- The coastal zone (Coastal) extends within 30 km from the coasts;
- The Atlantic Antilles Zone (AAZ) (Atlantic close-offshore area) is delimited by an outer arc 150 km east of the Antilles arc (encompassing but not including the coastal zone);
- The Atlantic Zone (AZ) (Atlantic far-offshore area) extends beyond the AAZ to the Atlantic Ocean;
- The Caribbean Antilles Zone (CAZ) (Caribbean close-offshore area) is delimited by an outer arc 150 km west of the Antilles arc (encompassing but not including the coastal zone);
- The Caribbean Zone (CZ) (Caribbean far-offshore area) extends beyond the CAZ to the Caribbean Sea.
2.2. Sargassum Dataset
2.3. Atmospheric Data
2.3.1. Wind
2.3.2. Cloud Fraction
2.4. Sargassum and Water Fraction
2.5. Sargassum Aggregation Parameters
- The length corresponds to the major axis of the reference ellipse;
- The width corresponds to the minor axis of the reference ellipse, perpendicular to the major axis;
- The location is defined by the center of the reference ellipse by longitude and latitude. The location is used to assign Sargassum aggregations to zones and wind components.
2.6. Representation of the Size of Sargassum Aggregations
2.7. Dataset Selection
2.7.1. Image Selection Using Sargassum Fraction
2.7.2. Image Selection Using Cloud Fraction
2.7.3. Selection of Wind Speed Range
3. Results
3.1. Temporal Variation in Wind, Cloud Fraction, and Sargassum Fraction
3.1.1. Wind Variability
3.1.2. Cloud Fraction Variability
3.1.3. Sargassum Fraction Variability
3.2. OLCI Sargassum Aggregations
3.2.1. Geometrical Characteristics of Sargassum Aggregations
- A total of 25% of the aggregation areas are smaller than 1.1 km2, 50% are smaller than 4.7 km2, 75% are smaller than 18 km2, 90% are smaller than 53 km2, and 99% are smaller than 500 km2;
- A total of 25% of the aggregation lengths are smaller than 1.5 km, 50% are smaller than 3.4 km, and 90% are smaller than 17 km;
- A total of 25% of the aggregation widths are smaller than 1.1 km, 50% are smaller than 1.7 km, and 90% are smaller than 4.9 km.
- The smallest 10% of aggregations (i.e., for A ≤ 0.27 km2) are mainly circular to slightly elongated: 0.50 ≤ W/L ≤ 1;
- The aggregations in the range 0.27 km2 ≤ A ≤ 4.7 km2 (i.e., 40%) are slightly elongated to elongated: 0.50 ≤ W/L ≤ 0.75);
- The aggregations in the range 4.7 km2 ≤ A ≤ 18 km2 (i.e., 25%) are elongated: 0.35 ≤ W/L ≤ 0.67; 25%;
- The largest 25% of aggregations (i.e., A ≥ 18 km2) are very elongated (0.20 ≤ W/L ≤ 0.45).
3.2.2. Area Distribution of Sargassum Aggregations
3.2.3. Spatial Variation in Sargassum Aggregation Area Distribution
- Three different mode values can be observed. The CAZ mode is the highest (6.82 km2); it is a little bit lower than the global mode. CZ and AAZ are around 5 km2 (5.35 and 5.19 km2). The Coastal area and the AZ are the smallest, with a value of about 3.5 km2 (3.65 and 3.56 km2).
- The left slope is almost constant around 0.3 (between 0.31 and 0.35), except in the CZ zone, where it reduces to 0.26.
- The highest negative right slope is observed in the coastal zone (−1.67), and the lowest is in the CAZ zone (−1.04), followed by the AAZ zone (−1.14). The CZ and AZ zones have medium and quite similar slopes (−1.28 and −1.26 resp.).
3.3. Distribution of Sargassum Fraction and Aggregation Area as a Function of Wind Speed
3.3.1. Influence of Wind on Sargassum Fraction
3.3.2. Influence of Wind on the Distribution of Sargassum Aggregations
4. Discussion
4.1. Does the Cloud Fraction Bias Our Observations?
4.2. Disaggregation and Agglomeration of Sargassum Aggregations by Wind
4.3. Effect of Wind on the Decrease in Sargassum Fraction
4.4. Spatial Variability of Disaggregation and Agglomeration of Sargassum Aggregations
5. Conclusions
- The Sargassum coverage decreases with wind speed and reaches zero when wind speed reaches 13 m·s−1. While agglomeration explains that tendency for lower wind speeds, the decrease in Sargassum fraction for higher wind speeds disaggregation indicates either a lesser detectability or a loss of Sargassum amount;
- The size distribution of Sargassum aggregations results from two opposite processes, mainly driven by wind: agglomeration and disaggregation;
- ○
- In low to moderate wind conditions (from 2 to 9 m·s−1), wind has a dual effect: it agglomerates smaller aggregations and disaggregates larger ones. In these wind regimes, the agglomeration process dominates, increasing the average size of aggregations;
- ○
- In higher wind conditions (above 9 m·s−1), disaggregation outweighs agglomeration, inducing a decrease in the average size of aggregations.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ardron, J.; Halpin, P.; Roberts, J.; Cleary, J.; Moffitt, R.; Donnelly, B. Where Is the Sargasso Sea? Sargasso Sea Alliance Science Report Series; Duke University Marine Geospatial Ecology Lab & Marine Conservation Institute: Beaufort, NC, USA, 2011; 24p. [Google Scholar]
- Wang, M.; Hu, C.; Barnes, B.B.; Mitchum, G.; Lapointe, B.; Montoya, J.P. The Great Atlantic Sargassum Belt. Science 2019, 365, 83–87. [Google Scholar] [CrossRef] [PubMed]
- de Széchy, M.T.M.; Guedes, P.M.; Baeta-Neves, M.H.; Oliveira, E.N. Verification of Sargassum natans (Linnaeus) Gaillon (Heterokontophyta: Phaeophyceae) from the Sargasso Sea off the Coast of Brazil, Western Atlantic Ocean. Check List 2012, 8, 638–641. [Google Scholar] [CrossRef]
- Gower, J.; Young, E.; King, S. Satellite Images Suggest a New Sargassum Source Region in 2011. Remote Sens. Lett. 2013, 4, 764–773. [Google Scholar] [CrossRef]
- Smetacek, V.; Zingone, A. Green and Golden Seaweed Tides on the Rise. Nature 2013, 504, 84–88. [Google Scholar] [CrossRef]
- Maréchal, J.-P.; Hellio, C.; Hu, C. A Simple, Fast, and Reliable Method to Predict Sargassum Washing Ashore in the Lesser Antilles. Remote Sens. Appl. Soc. Environ. 2017, 5, 54–63. [Google Scholar] [CrossRef]
- Trinanes, J.; Putman, N.F.; Goni, G.; Hu, C.; Wang, M. Monitoring Pelagic Sargassum Inundation Potential for Coastal Communities. J. Oper. Oceanogr. 2023, 16, 48–59. [Google Scholar] [CrossRef]
- Chávez, V.; Uribe-Martínez, A.; Cuevas, E.; Rodríguez-Martínez, R.E.; van Tussenbroek, B.I.; Francisco, V.; Estévez, M.; Celis, L.B.; Monroy-Velázquez, L.V.; Leal-Bautista, R.; et al. Massive Influx of Pelagic Sargassum spp. on the Coasts of the Mexican Caribbean 2014–2020: Challenges and Opportunities. Water 2020, 12, 2908. [Google Scholar] [CrossRef]
- Schling, M.; Guerrero Compeán, R.; Pazos, N.; Bailey, A.; Arkema, K.; Ruckelshaus, M. The Economic Impact of Sargassum: Evidence from the Mexican Coast; IDB Working Paper Series; Inter-American Development Bank (IDB): Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- van Tussenbroek, B.I.; Hernández Arana, H.A.; Rodríguez-Martínez, R.E.; Espinoza-Avalos, J.; Canizales-Flores, H.M.; González-Godoy, C.E.; Barba-Santos, M.G.; Vega-Zepeda, A.; Collado-Vides, L. Severe Impacts of Brown Tides Caused by Sargassum spp. on near-Shore Caribbean Seagrass Communities. Mar. Pollut. Bull. 2017, 122, 272–281. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, R.E.; Medina-Valmaseda, A.E.; Blanchon, P.; Monroy-Velázquez, L.V.; Almazán-Becerril, A.; Delgado-Pech, B.; Vásquez-Yeomans, L.; Francisco, V.; García-Rivas, M.C. Faunal Mortality Associated with Massive Beaching and Decomposition of Pelagic Sargassum. Mar. Pollut. Bull. 2019, 146, 201–205. [Google Scholar] [CrossRef]
- Maurer, A.S.; Stapleton, S.P.; Layman, C.A.; Burford Reiskind, M.O. The Atlantic Sargassum Invasion Impedes Beach Access for Nesting Sea Turtles. Clim. Chang. Ecol. 2021, 2, 100034. [Google Scholar] [CrossRef]
- Maurer, A.S.; Gross, K.; Stapleton, S.P. Beached Sargassum Alters Sand Thermal Environments: Implications for Incubating Sea Turtle Eggs. J. Exp. Mar. Biol. Ecol. 2022, 546, 151650. [Google Scholar] [CrossRef]
- Resiere, D.; Valentino, R.; Nevière, R.; Banydeen, R.; Gueye, P.; Florentin, J.; Cabié, A.; Lebrun, T.; Mégarbane, B.; Guerrier, G.; et al. Sargassum Seaweed on Caribbean Islands: An International Public Health Concern. Lancet 2018, 392, 2691. [Google Scholar] [CrossRef] [PubMed]
- Resiere, D.; Mehdaoui, H.; Florentin, J.; Gueye, P.; Lebrun, T.; Blateau, A.; Viguier, J.; Valentino, R.; Brouste, Y.; Kallel, H.; et al. Sargassum Seaweed Health Menace in the Caribbean: Clinical Characteristics of a Population Exposed to Hydrogen Sulfide during the 2018 Massive Stranding. Clin. Toxicol. 2021, 59, 215–223. [Google Scholar] [CrossRef] [PubMed]
- de Lanlay, D.B.; Monthieux, A.; Banydeen, R.; Jean-Laurent, M.; Resiere, D.; Drame, M.; Neviere, R. Risk of Preeclampsia among Women Living in Coastal Areas Impacted by Sargassum Strandings on the French Caribbean Island of Martinique. Environ. Toxicol. Pharmacol. 2022, 94, 103894. [Google Scholar] [CrossRef]
- Liranzo-Gómez, R.E.; Gómez, A.M.; Gómez, B.; González-Hernández, Y.; Jauregui-Haza, U.J. Characterization of Sargassum Accumulated on Dominican Beaches in 2021: Analysis of Heavy, Alkaline and Alkaline-Earth Metals, Proteins and Fats. Mar. Pollut. Bull. 2023, 193, 115120. [Google Scholar] [CrossRef]
- Silva, T.M.; Waked, D.; Bastos, A.C.; Gomes, G.L.; Veras Closs, J.G.; Tonin, F.G.; Rossignolo, J.A.; Do Valle Marques, K.; Veras, M.M. A Custom, Low-Cost, Continuous Flow Chamber Built for Experimental Sargassum Seaweed Decomposition and Exposure of Small Rodents to Generated Gaseous Products. Heliyon 2023, 9, e18787. [Google Scholar] [CrossRef]
- Schell, J.M.; Goodwin, D.S.; Siuda, A.N.S. Recent Sargassum Inundation Events in the Caribbean: Shipboard Observations Reveal Dominance of a Previously Rare Form. Oceanography 2015, 28, 8–11. [Google Scholar] [CrossRef]
- Amaral-Zettler, L.A.; Dragone, N.B.; Schell, J.; Slikas, B.; Murphy, L.G.; Morrall, C.E.; Zettler, E.R. Comparative Mitochondrial and Chloroplast Genomics of a Genetically Distinct Form of Sargassum Contributing to Recent “Golden Tides” in the Western Atlantic. Ecol. Evol. 2017, 7, 516–525. [Google Scholar] [CrossRef]
- Dibner, S.; Martin, L.; Thibaut, T.; Aurelle, D.; Blanfuné, A.; Whittaker, K.; Cooney, L.; Schell, J.M.; Goodwin, D.S.; Siuda, A.N.S. Consistent Genetic Divergence Observed among Pelagic Sargassum Morphotypes in the Western North Atlantic. Mar. Ecol. 2022, 43, e12691. [Google Scholar] [CrossRef]
- Parr, A. Quantitative Observations on the Pelagic Sargassum Vegetation of the Western North Atlantic. With Preliminary Discussion of Morphology and Relationships. Bull. Bingham Oceanogr. Collect. 1939, 6, 7. [Google Scholar]
- Butler, J.N.; Stoner, A.W. Pelagic Sargassum: Has Its Biomass Changed in the Last 50 Years? Deep Sea Res. Part A Oceanogr. Res. Pap. 1984, 31, 1259–1264. [Google Scholar] [CrossRef]
- Ody, A.; Thibaut, T.; Berline, L.; Changeux, T.; André, J.-M.; Chevalier, C.; Blanfuné, A.; Blanchot, J.; Ruitton, S.; Stiger-Pouvreau, V.; et al. From In Situ to Satellite Observations of Pelagic Sargassum Distribution and Aggregation in the Tropical North Atlantic Ocean. PLoS ONE 2019, 14, e0222584. [Google Scholar] [CrossRef]
- Woodcock, A. Subsurface Pelagic Sargassum. J. Mar. Res. 1950, 9. Available online: https://elischolar.library.yale.edu/journal_of_marine_research/722 (accessed on 25 October 2024).
- Woodcock, A.H. Winds Subsurface Pelagic Sargassum and Langmuir Circulations. J. Exp. Mar. Biol. Ecol. 1993, 170, 117–125. [Google Scholar] [CrossRef]
- Goodwin, D.S.; Siuda, A.N.S.; Schell, J.M. In Situ Observation of Holopelagic Sargassum Distribution and Aggregation State across the Entire North Atlantic from 2011 to 2020. PeerJ 2022, 10, e14079. [Google Scholar] [CrossRef] [PubMed]
- Marmorino, G.O.; Miller, W.D.; Smith, G.B.; Bowles, J.H. Airborne Imagery of a Disintegrating Sargassum Drift Line. Deep Sea Res. Part I Oceanogr. Res. Pap. 2011, 58, 316–321. [Google Scholar] [CrossRef]
- Langmuir, I. Surface Motion of Water Induced by Wind. Science 1938, 87, 119–123. [Google Scholar] [CrossRef]
- Sosa-Gutierrez, R.; Jouanno, J.; Berline, L.; Descloitres, J.; Chevalier, C. Impact of Tropical Cyclones on Pelagic Sargassum. Geophys. Res. Lett. 2022, 49, e2021GL097484. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, M.; Liu, M.; Li, Z.B.; Chen, Z.; Huang, B. Continuous Sargassum Monitoring across the Caribbean Sea and Central Atlantic Using Multi-Sensor Satellite Observations. Remote Sens. Environ. 2024, 309, 114223. [Google Scholar] [CrossRef]
- Berline, L.; Ody, A.; Jouanno, J.; Chevalier, C.; André, J.-M.; Thibaut, T.; Ménard, F. Hindcasting the 2017 Dispersal of Sargassum Algae in the Tropical North Atlantic. Mar. Pollut. Bull. 2020, 158, 111431. [Google Scholar] [CrossRef]
- Bernard, D.; Biabiany, E.; Cécé, R.; Chery, R.; Sekkat, N. Clustering Analysis of the Sargassum Transport Process: Application to Beaching Prediction in the Lesser Antilles. Ocean Sci. 2022, 18, 915–935. [Google Scholar] [CrossRef]
- Wang, M.; Hu, C. Mapping and Quantifying Sargassum Distribution and Coverage in the Central West Atlantic Using MODIS Observations. Remote Sens. Environ. 2016, 183, 350–367. [Google Scholar] [CrossRef]
- Putman, N.F.; Goni, G.J.; Gramer, L.J.; Hu, C.; Johns, E.M.; Trinanes, J.; Wang, M. Simulating Transport Pathways of Pelagic Sargassum from the Equatorial Atlantic into the Caribbean Sea. Prog. Oceanogr. 2018, 165, 205–214. [Google Scholar] [CrossRef]
- Franks, J.S.; Johnson, D.R.; Ko, D.S.; Sanchez-Rubio, G.; Hendon, J.R.; Lay, M. Unprecedented Influx of Pelagic Sargassum along Caribbean Island Coastlines during Summer 2011. In Proceedings of the 64th Gulf and Caribbean Fisheries Institute; Gulf and Caribbean Fisheries Institute: Puerto Morelos, Mexico, 2012; pp. 6–8. [Google Scholar]
- Franks, J.S.; Johnson, D.R.; Ko, D.S. Pelagic Sargassum in the Tropical North Atlantic. GCR 2016, 27, SC6–SC11. [Google Scholar] [CrossRef]
- Andrade-Canto, F.; Beron-Vera, F.J.; Goni, G.J.; Karrasch, D.; Olascoaga, M.J.; Triñanes, J. Carriers of Sargassum and Mechanism for Coastal Inundation in the Caribbean Sea. Phys. Fluids 2022, 34, 016602. [Google Scholar] [CrossRef]
- Laval, M.; Belmouhcine, A.; Courtrai, L.; Descloitres, J.; Salazar-Garibay, A.; Schamberger, L.; Minghelli, A.; Thibaut, T.; Dorville, R.; Mazoyer, C.; et al. Detection of Sargassum from Sentinel Satellite Sensors Using Deep Learning Approach. Remote Sens. 2023, 15, 1104. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1940 to Present. 2018. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview (accessed on 25 October 2024).
- Nordkvist, K.; Loisel, H.; Gaurier, L.D. Cloud Masking of SeaWiFS Images over Coastal Waters Using Spectral Variability. Opt. Express OE 2009, 17, 12246–12258. [Google Scholar] [CrossRef]
- Schamberger, L.; Minghelli, A.; Chami, M.; Steinmetz, F. Improvement of Atmospheric Correction of Satellite Sentinel-3/OLCI Data for Oceanic Waters in Presence of Sargassum. Remote Sens. 2022, 14, 386. [Google Scholar] [CrossRef]
- Brooks, M.; Coles, V.; Hood, R.; Gower, J. Factors Controlling the Seasonal Distribution of Pelagic Sargassum. Mar. Ecol. Prog. Ser. 2018, 599, 1–18. [Google Scholar] [CrossRef]
- Jouanno, J.; Morvan, G.; Berline, L.; Benshila, R.; Aumont, O.; Sheinbaum, J.; Ménard, F. Skillful Seasonal Forecast of Sargassum Proliferation in the Tropical Atlantic. Geophys. Res. Lett. 2023, 50, e2023GL105545. [Google Scholar] [CrossRef]
- Putman, N.F.; Hu, C. Sinking Sargassum. Geophys. Res. Lett. 2022, 49, e2022GL100189. [Google Scholar] [CrossRef]
- Schamberger, L.; Minghelli, A.; Chami, M. Quantification of Underwater Sargassum Aggregations Based on a Semi-Analytical Approach Applied to Sentinel-3/OLCI (Copernicus) Data in the Tropical Atlantic Ocean. Remote Sens. 2022, 14, 5230. [Google Scholar] [CrossRef]
- De Falco, C.; Desbiolles, F.; Bracco, A.; Pasquero, C. Island Mass Effect: A Review of Oceanic Physical Processes. Front. Mar. Sci. 2022, 9. [Google Scholar] [CrossRef]
- Boehlert, G.W.; Watson, W.; Sun, L.C. Horizontal and Vertical Distributions of Larval Fishes around an Isolated Oceanic Island in the Tropical Pacific. Deep Sea Res. Part A Oceanogr. Res. Pap. 1992, 39, 439–466. [Google Scholar] [CrossRef]
- Wilson, B.; Hayek, L.-A.C. Islands, Currents, Eddies, Fronts… and Benthic Foraminifera: Controls on Neritic Distributions off Trinidad. Micropaleontology 2017, 63, 15–26. [Google Scholar] [CrossRef]
Characteristics/ Statistics | D1 (10%) | Q1 (25%) | Q2 (Median) (50%) | Q3 (75%) | D9 (90%) | Min–Max |
---|---|---|---|---|---|---|
Area (km2) | 0.27 | 1.1 | 4.7 | 18 | 53 | 0.09–32,577 |
Length (km) (Major axis length) | 0.69 | 1.5 | 3.4 | 8.1 | 17 | 0.35–760 |
Width (km) (Minor axis length) | 0.35 | 1.0 | 1.8 | 3.1 | 5.3 | 0.35–242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laval, M.; Aimene, Y.; Descloitres, J.; Courtrai, L.; Duarte-Neto, P.; Salazar-Garibay, A.; Costa da Silva, A.; Zongo, P.; Dorville, R.; Chevalier, C. The Influence of Wind on the Spatial Distribution of Pelagic Sargassum Aggregations in the Tropical Atlantic. Water 2025, 17, 776. https://doi.org/10.3390/w17060776
Laval M, Aimene Y, Descloitres J, Courtrai L, Duarte-Neto P, Salazar-Garibay A, Costa da Silva A, Zongo P, Dorville R, Chevalier C. The Influence of Wind on the Spatial Distribution of Pelagic Sargassum Aggregations in the Tropical Atlantic. Water. 2025; 17(6):776. https://doi.org/10.3390/w17060776
Chicago/Turabian StyleLaval, Marine, Yamina Aimene, Jacques Descloitres, Luc Courtrai, Paulo Duarte-Neto, Adán Salazar-Garibay, Alex Costa da Silva, Pascal Zongo, René Dorville, and Cristèle Chevalier. 2025. "The Influence of Wind on the Spatial Distribution of Pelagic Sargassum Aggregations in the Tropical Atlantic" Water 17, no. 6: 776. https://doi.org/10.3390/w17060776
APA StyleLaval, M., Aimene, Y., Descloitres, J., Courtrai, L., Duarte-Neto, P., Salazar-Garibay, A., Costa da Silva, A., Zongo, P., Dorville, R., & Chevalier, C. (2025). The Influence of Wind on the Spatial Distribution of Pelagic Sargassum Aggregations in the Tropical Atlantic. Water, 17(6), 776. https://doi.org/10.3390/w17060776