Investigating Groundwater–Surface Water Interactions and Transformations in a Typical Dry–Hot Valley Through Environmental Isotopes Analysis
Abstract
:1. Introduction
2. Overview of the Study Area
3. Materials and Methods
3.1. Sample Collection and Testing
3.2. Analytical Methods
4. Results
4.1. Characteristics of Hydrogen and Oxygen Stable Isotopes in Atmospheric Precipitation
4.2. Characteristics of Hydrogen and Oxygen Stable Isotopes in Surface Water
4.3. Characteristics of Hydrogen and Oxygen Stable Isotopes in Groundwater
5. Discussion
5.1. Isotope Effect and Water Vapor Source in the Study Area
5.2. The Influencing Factors of Hydrogen and Oxygen Stable Isotopes in Water Bodies
5.3. Relationship Between δD and δ18O of Precipitation, Surface Water, and Groundwater and Its Significance
5.4. Characteristics of Deuterium Excess and Line-Conditioned Excess
5.5. Transformation Relationship Between Precipitation–Surface Water–Groundwater
6. Conclusions
- (1)
- The seasonal effects of precipitation, river water, and shallow groundwater are minimal, while those of reservoir water and mid-deep groundwater are more pronounced. River water and shallow groundwater mainly reflect the inverse seasonal effect of precipitation and are influenced by evaporation. In the dry season, precipitation moisture originates from the southwest and does not undergo significant kinetic fractionation. In the wet season, the moisture transport route is longer, resulting in more depleted isotopes. Mid-deep groundwater responds to precipitation with a delay, and its seasonal variation is linked to leakage recharge from deeper aquifers.
- (2)
- The groundwater lc-excess deviates from the LMWL, indicating that precipitation recharge occurs primarily through piston flow, with significant isotope fractionation. Groundwater isotope values show no clear distinction based on aquifer lithology, and the δD-δ18O relationship diagram lacks an oxygen shift, indicating a weak water–rock interaction.
- (3)
- The recharge sources of different water bodies in the region can be summarized as follows: river water is recharged by precipitation, deep groundwater, and spring water. Spring water is mainly recharged by deep groundwater. Well water is chiefly recharged by precipitation and lateral groundwater inflow. Reservoir water is recharged by precipitation, groundwater, and water transfer, with notable evaporation effects. Multiple lines of evidence indicate frequent exchanges between surface water and groundwater in the region.
- (4)
- Water level elevations of rivers and groundwater show that, during both wet and dry periods, groundwater recharges river water. Using a binary isotope mass balance model, the recharge ratios of precipitation and groundwater to surface water are 35% and 65%, respectively. Compared to the dry season, the proportion of groundwater recharge to river water increases in the wet season.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lerman, A. Geochemical Processes: Water and Sediment Environments; John Wiley: Hoboken, NJ, USA, 1979. [Google Scholar]
- Zhang, X.; Zhang, Y.; Qi, J.; Wang, Q. Evaluation of the Stability and Suitable Scale of an Oasis Irrigation District in Northwest China. Water 2020, 12, 2837. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, R.; Qi, Y.; Wen, F. A watershed water quality prediction model based on attention mechanism and BI-LSTM. Environ. Sci. Pollut. Res. 2022, 29, 75664–75680. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wen, J.; Tian, H. Representativeness of The Ground Observational Sites and Up-Scaling of The Point Soil Moisture Measurements. J. Hydrol. 2016, 533, 62–73. [Google Scholar] [CrossRef]
- Wan, W.; Xie, H.; Hasan, E.; Hong, Y. Editorial for Special Issue “Remote Sensing Water Cycle: Theory, Sensors, Data, and Applications”. Remote Sens. 2019, 11, 1210. [Google Scholar] [CrossRef]
- Sheng, Y.; Hu, J.; Kukkadapu, R.; Guo, D.; Zeng, Q.; Dong, H. Inhibition of Extracellular Enzyme Activity By Reactive Oxygen Species Upon Oxygenation of Reduced Iron-Bearing Minerals. Environ. Sci. Technol. 2023, 57, 3425–3433. [Google Scholar] [CrossRef]
- Yin, S.; Gao, G.; Li, Y.; Xu, Y.J.; Turner, R.E.; Ran, L.; Wang, X.; Fu, B. Long-Term Trends of Streamflow, Sediment Load and Nutrient Fluxes From the Mississippi River Basin: Impacts of Climate Change and Human Activities. J. Hydrol. 2023, 616, 128822. [Google Scholar] [CrossRef]
- Hao, S.; Li, F.; Li, Y.; Gu, C.; Zhang, Q.; Qiao, Y.; Jiao, L.; Zhu, N. Stable Isotope Evidence for Identifying the Recharge Mechanisms of Precipitation, Surface Water, and Groundwater in the Ebinur Lake Basin. Sci. Total Environ. 2019, 657, 1041–1050. [Google Scholar] [CrossRef]
- Sheng, Y.; Wang, G.; Zhao, D.; Hao, C.; Liu, C.; Cui, L.; Zhang, G. Groundwater microbial communities along a generalized flowpath in Nomhon Area, Qaidam Basin, China. Groundwater 2018, 56, 719–731. [Google Scholar] [CrossRef]
- Jiang, W.; Sheng, Y.; Wang, G.; Shi, Z.; Liu, F.; Zhang, J.; Chen, D. Cl, Br, B, Li, and Noble Gases Isotopes to Study the Origin and Evolution of Deep Groundwater in Sedimentary Basins: A Review. Environ. Chem. Lett. 2022, 20, 1497–1528. [Google Scholar] [CrossRef]
- Zhang, Z.; Bianchette, T.A.; Meng, C.; Xu, Q.; Jiang, M. Holocene Vegetation-Hydrology-Climate Interactions of Wetlands on the Heixiazi Island, China. Sci. Total Environ. 2020, 743, 140777. [Google Scholar] [CrossRef]
- Fossey, M.; Rousseau, A.N. Can Isolated and Riparian Wetlands Mitigate the Impact of Climate Change on Watershed Hydrology? A Case Study Approach. J. Environ. Manag. 2016, 184 Pt 2, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Jiang, X.; Shang, X.; Wei, C. Study on the Water Resource Carrying Capacity in the Middle Reaches of the Heihe River Based on Water Resource Allocation. Water 2018, 10, 1203. [Google Scholar] [CrossRef]
- Hürkamp, K.; Zentner, N.; Reckerth, A.; Weishaupt, S.; Wetzel, K.-F.; Tschiersch, J.; Stumpp, C. Spatial and temporal variability of snow isotopic composition on Mt. Zugspitze, Bavarian Alps, Germany. J. Hydrol. Hydromech. 2018, 67, 49–58. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Yang, L.; Duan, L.; Chu, S.; Zhang, G.; Zhang, B.; Liu, T. Relationship between precipitation, river water, and groundwater conversion in the upper reaches of xilin river during the rainy season. Environ. Sci. 2023, 44, 6754–6766. [Google Scholar]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Chen, F.; Zhang, M.; Wu, X.; Wang, S.; Chen, J. A stable isotope approach for estimating the contribution of recycled moisture to precipitation in lanzhou city, China. Water 2021, 13, 1783. [Google Scholar] [CrossRef]
- Gualli, A.; Galvão, P.; Buenaño, M.; Conicelli, B. Estimating groundwater recharge and precipitation sources of the zamora river basin, southeastern ecuador, using gis and stable isotopes. Environ. Earth Sci. 2023, 82, 400. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, Y.; Shi, P.; Jia, W.; Zhou, J.; Liu, Y.; Ma, X.; Pan, H.; Zhang, Y.; Zhang, Z.; et al. Stable water isotope monitoring network of different water bodies in shiyang river basin, a typical arid river in China. Earth Syst. Sci. Data 2022, 14, 3773–3789. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, G.; Sheng, Y.; Shi, Z.; Zhang, H. Isotopes in groundwater (2H, 18O, 14C) revealed the climate and groundwater recharge in the Northern China. Sci. Total Environ. 2019, 666, 298–307. [Google Scholar] [CrossRef]
- Guo, X.; Gong, X.; Shi, J.; Guo, J.; Domínguez-Villar, D.; Lin, Y.; Wang, H.; Yuan, D. Temporal Variations and Evaporation Control Effect of the Stable Isotope Composition of Precipitation in the Subtropical Monsoon Climate Region, Southwest China. J. Hydrol. 2021, 599, 126278. [Google Scholar] [CrossRef]
- Yang, J.; Yu, Z.; Yi, P.; Frape, S.K.; Zhang, Y. Evaluation of Surface Water and Groundwater Interactions in the Upstream of Kui River and Yunlong Lake, Xuzhou, China. J. Hydrol. 2020, 583, 124549. [Google Scholar] [CrossRef]
- Jiang, W.; Sheng, Y.; Shi, Z.; Guo, H.; Chen, X.; Mao, H.; Liu, F.; Ning, H.; Liu, N.; Wang, G. Hydrogeochemical Characteristics and Evolution of Formation Water in the Continental Sedimentary Basin: A Case Study in the Qaidam Basin, China. Sci. Total Environ. 2024, 957, 177672. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Liu, X.; Xia, J.; Yu, J.; Tang, C. A Study of interaction between surface water and groundwater using environmental isotope in huaisha river basin. Sci. China Ser. D Earth Sci. 2006, 49, 1299–1310. [Google Scholar] [CrossRef]
- Hamidi, M.D.; Gröcke, D.R.; Joshi, S.K.; Greenwell, H.C. Investigating groundwater recharge using hydrogen and oxygen stable isotopes in kabul city, a semi-arid region. J. Hydrol. 2023, 626, 130187. [Google Scholar] [CrossRef]
- Lu, X.; Wang, M.; Gong, X.; Wu, X.; Zhang, H.; Wei, Y. Hydrogen and Oxygen Isotope Based Transformation Studies of Surface Water and Groundwater in Plains Lakes and Swamps. J. Hydraul. Eng. 2024, 55, 416–427. [Google Scholar]
- Ren, X.; Li, P.; He, X.; Zhang, Q. Tracing the Sources and Evaporation Fate of Surface Water and Groundwater Using Stable Isotopes of Hydrogen and Oxygen. Sci. Total Environ. 2024, 931, 172708. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Q.; Fan, M. Exploring the Relationship Between the Arid Valley Boundary’s Displacement and Climate Change During 1999–2013 in the Upper Reaches of the Min River, China. ISPRS Int. J. Geo-Inf. 2017, 6, 146. [Google Scholar] [CrossRef]
- Rong, L.; Duan, X.; Feng, D.; Zhang, G. Soil Moisture Variation in A Farmed Dry-Hot Valley Catchment Evaluated by A Redundancy Analysis Approach. Water 2017, 9, 92. [Google Scholar] [CrossRef]
- Luo, Y.; Shi, C.; Yang, S.; Liu, Y.; Zhao, S.; Zhang, C. Characteristics of Soil Calcium Content Distribution in Karst Dry-Hot Valley and Its Influencing Factors. Water 2023, 15, 1119. [Google Scholar] [CrossRef]
- Ma, H.; Jack, A.M. The Dry-Hot Valleys and Forestation in Southwest China. J. For. Res. 2001, 12, 35–39. [Google Scholar]
- Liu, X.; Ma, Y.; Wan, Y.; Li, Z.; Ma, H. Genetic Diversity of Phyllanthus Emblica From Two Different Climate Type Areas. Front. Plant Sci. 2020, 11, 580812. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, B.; He, Y.; Luo, J.; Wang, L.; Deng, Q.; Liu, H.; Yang, D. Influence of geological conditions on gully distribution in the dry–hot valley, SW China. Catena 2022, 214, 106274. [Google Scholar] [CrossRef]
- Xiong, D.; Zhou, H.; Yang, Z.; Zhang, X. Slope Lithologic Property, Soil Moisture Condition and Revegetation in Dry-Hot Valley of Jinsha River. Chin. Geogr. Sci. 2005, 15, 186–192. [Google Scholar] [CrossRef]
- Lin, Y.; Cui, P.; Ge, Y.; Chen, C.; Wang, D.; Wu, C.; Li, J.; Yu, W.; Zhang, G.; Lin, H. The Succession Characteristics of Soil Erosion During Different Vegetation Succession Stages in Dry-Hot River Valley of Jinsha River, Upper Reaches of Yangtze River. Ecol. Eng. 2014, 62, 13–26. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, J.; Liu, Q.; Xiong, D. The Contribution of Gully Erosion to Total Sediment Production in A Small Watershed in Southwest China. Phys. Geogr. 2018, 39, 246–263. [Google Scholar] [CrossRef]
- Dong, Y.; Xiong, D.; Su, Z.a.; Li, J.; Yang, D.; Shi, L.; Liu, G. The distribution of and factors influencing the vegetation in a gully in the Dry-Hot Valley of Southwest China. Catena 2014, 116, 60–67. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Wen, Q.; Zuo, L.; Zhao, J. An Erosion-Based Approach Using Multi-Source Remote Sensing Imagery for Grassland Restoration Patterns in A Plateau Mountainous Region, SW China. Remote Sens. 2023, 15, 2047. [Google Scholar] [CrossRef]
- Yang, D.; Xiong, D.; Guo, M.; Su, Z.; Zhang, B. Impact of Grass Belt Position on the Hydraulic Properties of Runoff in Gully Beds in the Yuanmou Dry-Hot Valley Region of Southwest China. Phys. Geogr. 2015, 36, 408–425. [Google Scholar] [CrossRef]
- Peng, S.; Chen, A.; Fang, H.; Wu, J.; Liu, G.; Peng, S.; Chen, A.; Fang, H.; Wu, J.; Liu, G. Effects of Vegetation Restoration Types on Soil Quality in Yuanmou Dry-Hot Valley, China. Soil Sci. Plant Nutr. 2013, 59, 347–360. [Google Scholar] [CrossRef]
- Chen, A.; Zhang, D.; Yan, B.; Lei, B.; Liu, G. Main Types of Soil Mass Failure and Characteristics of Their Impact Factors in the Yuanmou Valley, China. Catena 2015, 125, 82–90. [Google Scholar] [CrossRef]
- Yang, D.; Xiong, D.; Zhang, B.; Guo, M.; Su, Z.; Dong, Y.; Zhang, S.; Xiao, L.; Lu, X. Effect of Grass Basal Diameter on Hydraulic Properties and Sediment Yield Processes in Gully Beds in the Dry-Hot Valley Region of Southwest China. Catena 2017, 152, 299–310. [Google Scholar] [CrossRef]
- Matiatos, I.; Wassenaar, L.I. Stable isotope patterns reveal widespread rainy-period-biased recharge in phreatic aquifers across Greece. J. Hydrol. 2019, 568, 1081–1092. [Google Scholar] [CrossRef]
- Luo, F. The Research About Water Environmental Isotope in Yuanmou Dry-Hot Valleys. Master’s Thesis, Yunnan University, Kunming, China, 2012. [Google Scholar]
- Jing, Z.; Yu, W.; Lewis, S.; Thompson, L.G.; Xu, J.; Zhang, J.; Xu, B.; Wu, G.; Ma, Y.; Wang, Y. Inverse Altitude Effect Disputes the Theoretical Foundation of Stable Isotope Paleoaltimetry. Nat. Commun. 2022, 13, 4371. [Google Scholar] [CrossRef] [PubMed]
- Dar, S.S.; Ghosh, P.; Swaraj, A.; Kumar, A. Craig–Gordon Model Validation Using Stable Isotope Ratios in Water Vapor over the Southern Ocean. Atmos. Chem. Phys. 2020, 20, 11435–11449. [Google Scholar] [CrossRef]
- Zhu, X.; Fan, T.; Guan, W. The Analysis of Stable Isotopes of Precipitation in Kunming. Yunnan Geogr. Environ. Res. 2013, 25, 90–95. [Google Scholar]
- Wei, K.; Lin, R. The Influence of the Monsoon Climate on the Isotopic Composition of Precipitation in China. Geochimica 1994, 23, 33–41. [Google Scholar]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Zheng, S.; Hou, F.; Ni, B. Study on Stable Isotopes of Atmospheric Precipitation in China. Chin. Sci. Bull. 1983, 28, 801–806. [Google Scholar]
- Zhang, J.; Liu, F.; Zou, J.; Lv, C. Application of Hydrogen and Oxygen Isotopes to Trace Groundwater Circulation in A Typical Groundwater Exploitation Reduction Area, North China Plain. South-to-North Water Transf. Water Sci. Technol. 2022, 20, 385–392. [Google Scholar]
- Xiao, X.; Zhang, X. Seasonal Variation and Influence Factors of River Water Isotopes in the East Asian Monsoon Region: A Case Study in the Xiangjiang River Basin Spanning 13 Hydrological Years. Hydrol. Earth Syst. Sci. 2023, 27, 3783–3802. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, W.; Xiao, Q.; Wang, W.; Wen, X.; Hu, C.; Liu, C.; Liu, S.; Li, X. Temporal Dynamics of Stable Isotopic Composition in Lake Taihu and Controlling Factors. Environ. Sci. 2016, 37, 2470–2477. [Google Scholar]
- Tao, S.; Zhang, X.; Xia, J.; Xiao, Y.; Xiong, X.; Xu, J. Variations of Stable Isotopic Characteristics of Shallow Lake-River Water System and Its Indicative Significance in Lake Poyang Wetland, China. J. Lake Sci. 2024, 36, 487–498. [Google Scholar]
- Yin, G.; Ni, S.; Fan, X.; Wu, H. Isotopic effect and the deuterium excess parameter evolution in ice and snow melting process: A case study of isotopes in the water body of daocheng, sichuan province. Acta Geosci. Sin. 2004, 25, 157–160. [Google Scholar]
- Liu, Y.; Wang, S.; Tu, X.; Yang, Q. Characteristic analysis of dry-wet condition and temperature trend in yuanmou dry-hot valley (dhv) in recent 60 years. J. Drain. Irrig. Mach. Eng. 2018, 36, 172–178. [Google Scholar]
- Luo, Z.; He, Z.; Ou, Z.; Qi, D.; Peng, L.; Sun, Y. The variation and influencing factors of potential evapotranspiration in the yuanmou dry-hot valley from 1956 to 2019. J. Northeast. For. Univ. 2024, 52, 89–93. [Google Scholar]
- Gao, Z.; Yu, C.; Tian, Y.; Zhang, H. Slope zoning of atmospheric precipitation line and its water vapor source in mainland China. Ground Water 2017, 39, 149–152. [Google Scholar]
- Shao, J.; Zhao, Z.; Cui, Y.; Wang, R.; Li, C.; Yang, Q. Application of groundwater modeling system to the evaluation of groundwater resources in north china plain. Resour. Sci. 2009, 31, 361–367. [Google Scholar]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Luo, Z.; Guan, H.; Zhang, X.; Xu, X.; Dai, J.; Hua, M. Examination of the ecohydrological separation hypothesis in a humid subtropical area: Comparison of three methods. J. Hydrol. 2019, 571, 642–650. [Google Scholar] [CrossRef]
- Xiang, W.; Si, B.C.; Biswas, A.; Li, Z. Quantifying dual recharge mechanisms in deep unsaturated zone of chinese loess plateau using stable isotopes. Geoderma 2019, 337, 773–781. [Google Scholar] [CrossRef]
- Gu, H.; Chi, B.; Wang, H.; Zhang, Y.; Wang, M. Relationship between surface water and groundwater in the liujiang basin-hydrochemical constrains. Adv. Earth Sci. 2017, 32, 789–799. [Google Scholar]
- Sun, C.; Chen, W. Relationship between groundwater and surface water based on environmental isotope and hydrochemistry in upperstream of the haihe river basin. J. Geogr. Sci. 2018, 3, 790–799. [Google Scholar]
- Yin, L.; Zhang, J.; Wang, Z.; Dong, J.; Chang, L.; Li, C.; Zhang, P.; Gu, X.; Nie, Z. Groundwater circulation patterns and its resources assessment of inland river catchments in Northwestern China. Geol. China 2021, 48, 1094–1111. [Google Scholar]
Type of Water Body | Statistical Value | Wet Season | Dry Season | ||||||
---|---|---|---|---|---|---|---|---|---|
δD/‰ | δ18O/‰ | d-Excess | lc-Excess | δD/‰ | δ18O/‰ | d-Excess | lc-Excess | ||
Well water | min | −97 | −12.4 | −3.6 | −6.5 | −98 | −12.6 | −5.8 | −8.5 |
max | −70 | −8.4 | 6.2 | 2.2 | −70 | −8.3 | 7 | 2.9 | |
mean | −82.0 | −10.4 | 1.1 | −2.4 | −83.2 | −10.6 | 1.2 | −2.5 | |
std | 7.3 | 1.1 | 2.3 | 1.9 | 8.5 | 1.4 | 3.1 | 2.6 | |
Spring water | min | −101 | −13.2 | −1.6 | −4.7 | −90.0 | −12.3 | 0.0 | −3.2 |
max | −75 | −9.3 | 9.8 | 5.5 | −76 | −9.5 | 8.4 | 4.0 | |
mean | −86.7 | −11.5 | 5.1 | 1.0 | −86.1 | −11.5 | 5.9 | 1.8 | |
std | 8.3 | 1.4 | 4.0 | 3.5 | 5.0 | 1.0 | 2.8 | 2.4 | |
Groundwater | min | −101 | −13.2 | −3.6 | −6.5 | −98 | −12.6 | −5.8 | −8.5 |
max | −70 | −8.4 | 9.8 | 5.5 | −70 | −8.3 | 8.4 | 4.0 | |
mean | −82.8 | −10.5 | 1.9 | −1.8 | −83.7 | −10.7 | 2.0 | −1.7 | |
std | 7.6 | 1.2 | 3.1 | 2.6 | 8.1 | 1.3 | 3.5 | 3.0 | |
River water | min | −103 | −13.9 | 0.2 | −3.2 | −107 | −14.7 | −2.8 | −5.7 |
max | −79 | −9.9 | 8.4 | 3.3 | −74 | −8.9 | 10.6 | 5.1 | |
mean | −89.4 | −11.6 | 3.6 | −0.5 | −87.7 | −11.5 | 4.2 | 0.1 | |
std | 8.4 | 1.3 | 2.6 | 2.1 | 11.5 | 1.9 | 3.9 | 3.1 | |
Reservoir water | min | −76 | −9.5 | −4.2 | −6.8 | −88 | −11.3 | −4.2 | −7.2 |
max | −69 | −8.1 | 0 | −3.2 | −71 | −8.4 | 2.4 | −1.6 | |
mean | −71.5 | −8.6 | −2.7 | −5.5 | −78.7 | −9.6 | −1.9 | −5.1 | |
std | 3 | 1 | 2 | 1.6 | 9 | 2 | 4 | 3.1 | |
Surface water | min | −103 | −13.9 | −4.2 | −6.8 | −107 | −14.7 | −4.2 | −7.2 |
max | −69 | −8.1 | 8.4 | 3.3 | −71 | −8.4 | 10.6 | 5.1 | |
mean | −85.2 | −10.9 | 2.1 | −1.7 | −85.9 | −11.1 | 3.0 | −0.9 | |
std | 10.7 | 1.8 | 3.6 | 2.9 | 11.3 | 1.9 | 4.5 | 3.7 |
Type of Water Body | Statistical Value | Wet Season | Dry Season | ||||||
---|---|---|---|---|---|---|---|---|---|
δD/‰ | δ18O/‰ | d-Excess | lc-Excess | δD/‰ | δ18O/‰ | d-Excess | lc-Excess | ||
Dug well | min | −95 | −12.2 | −2.8 | −5.51 | −94 | −12.2 | −5.8 | −8.5 |
max | −70 | −8.4 | 5.2 | 0.95 | −70 | −8.3 | 5.8 | 1.6 | |
mean | −78.6 | −9.9 | 0.9 | −2.5 | −78.6 | −9.9 | 0.4 | −2.9 | |
std | 6.2 | 1.0 | 2.1 | 1.7 | 6.6 | 1.2 | 3.2 | 2.7 | |
Borehole | min | −97 | −12.4 | −3.6 | −6.48 | −98 | −12.6 | −2.8 | −5.7 |
max | −74 | −8.8 | 6.2 | 2.17 | −74 | −8.9 | 7 | 2.9 | |
mean | −86.2 | −10.9 | 1.4 | −2.4 | −89.5 | −11.5 | 2.2 | −1.8 | |
std | 6.3 | 1.0 | 2.5 | 2.2 | 6.7 | 1.0 | 2.7 | 2.4 | |
Buried depth 0~10 m | min | −95 | −12.2 | −1 | −4.19 | −94 | −12.2 | −5.8 | −8.5 |
max | −71 | −8.9 | 5.2 | 0.95 | −70 | −8.4 | 5.8 | 1.6 | |
mean | −79.3 | −10.0 | 1.0 | −2.5 | −79.0 | −9.9 | 0.3 | −3.1 | |
std | 6.5 | 1.0 | 1.8 | 1.5 | 7.1 | 1.2 | 3.1 | 2.6 | |
Buried depth 10~30 m | min | −97 | −12.4 | −3.6 | −6.48 | −98 | −12.6 | −3.6 | −6.2 |
max | −70 | −8.4 | 4.6 | 0.66 | −70 | −8.3 | 5.2 | 1.1 | |
mean | −82.9 | −10.4 | 0.6 | −3.0 | −85.5 | −10.8 | 1.1 | −2.6 | |
std | 7.9 | 1.2 | 2.6 | 2.2 | 9.2 | 1.4 | 2.8 | 2.3 | |
Buried depth > 30 m | min | −93 | −12.2 | 1 | −3.07 | −96 | −12.6 | −1 | −4.6 |
max | −83 | −10.5 | 6.2 | 2.17 | −85 | −10.5 | 7 | 2.9 | |
mean | −87.8 | −11.4 | 3.0 | −1.0 | −89.7 | −11.6 | 3.4 | −0.7 | |
std | 3.8 | 0.6 | 2.1 | 2.0 | 5.3 | 0.8 | 2.6 | 2.4 |
Season | Calculated Item | Calculation Item Composition | δD/‰ | δ18O/‰ | Mix Ratio According to δD/% | Mix Ratio According to δ18O/% | Mix Ratio According to Mean/% |
---|---|---|---|---|---|---|---|
Wet season | end member | precipitation | −87.6 | −11.4 | 49.0 | 44.5 | 46.8 |
groundwater | −82.8 | −10.5 | 51.0 | 55.5 | 53.3 | ||
mixed water | surface water | −85.2 | −10.9 | 100.0 | 100.0 | 100.0 | |
Dry season | end member | precipitation | −91.1 | −11.8 | 29.7 | 36.4 | 33.1 |
groundwater | −83.7 | −10.7 | 70.3 | 63.6 | 67.0 | ||
mixed water | surface water | −85.9 | −11.1 | 100.0 | 100.0 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, H.; Sheng, Y.; Han, D.; Shan, K.; Zhu, Z.; Dai, X. Investigating Groundwater–Surface Water Interactions and Transformations in a Typical Dry–Hot Valley Through Environmental Isotopes Analysis. Water 2025, 17, 775. https://doi.org/10.3390/w17060775
Li J, Liu H, Sheng Y, Han D, Shan K, Zhu Z, Dai X. Investigating Groundwater–Surface Water Interactions and Transformations in a Typical Dry–Hot Valley Through Environmental Isotopes Analysis. Water. 2025; 17(6):775. https://doi.org/10.3390/w17060775
Chicago/Turabian StyleLi, Jun, Honghao Liu, Yizhi Sheng, Duo Han, Keqiang Shan, Zhiping Zhu, and Xuejian Dai. 2025. "Investigating Groundwater–Surface Water Interactions and Transformations in a Typical Dry–Hot Valley Through Environmental Isotopes Analysis" Water 17, no. 6: 775. https://doi.org/10.3390/w17060775
APA StyleLi, J., Liu, H., Sheng, Y., Han, D., Shan, K., Zhu, Z., & Dai, X. (2025). Investigating Groundwater–Surface Water Interactions and Transformations in a Typical Dry–Hot Valley Through Environmental Isotopes Analysis. Water, 17(6), 775. https://doi.org/10.3390/w17060775