How Can We Improve the Consumer Acceptance Level for Disposers Considering Regional Characteristics?
Abstract
:1. Introduction
2. Literature Review
2.1. Food Waste Management Methods
2.2. Current Status of Food Waste Disposers
2.3. Previous Research on Food Waste Disposers
3. Materials and Methods
3.1. Contingent Valuation Method
3.2. Data
4. Results and Discussion
4.1. Results of the CVM Analysis
4.2. Economic Evaluation and Implementation Strategies for Disposers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
WTP | Willingness to pay |
GHG | Greenhouse gas |
EPA | Environmental Protection Agency |
FWD | Food waste disposer |
CVM | Contingent valuation method |
CSO | Combined sewer overflow |
KRW | Korean won |
USD | US dollar |
LCA | Life cycle assessment |
SBDC | Single-bound dichotomous choice |
DBDC | Double-bounded dichotomous choice |
OOHBDC | One-and-one-half-bounded dichotomous choice |
References
- UN Environment Programme. Think Eat Save: Tracking Progress to Halve Global Food Waste. 2024. Available online: https://wedocs.unep.org/20.500.11822/45230 (accessed on 10 January 2025).
- Iqbal, A.; Zan, F.; Liu, X.; Chen, G. Net zero greenhouse emissions and energy recovery from food waste: Manifestation from modeling a city-wide food waste management plan. Water Res. 2023, 244, 120481. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency (EPA). From Farm to Kitchen: The Environmental Impacts of U.S. Food Waste Environmental Management Activities Decree; 2021. Article 3.131, Paragraph 3. Available online: https://www.epa.gov/land-research/farm-kitchen-environmental-impacts-us-food-waste (accessed on 10 January 2025).
- Garcia-Garcia, G.; Woolley, E.; Rahimifard, S.; Colwill, J.; White, R.; Needham, L. A methodology for sustainable management of food waste. Waste Biomass Valorization 2017, 8, 2209–2227. [Google Scholar] [CrossRef] [PubMed]
- Zan, F.; Iqbal, A.; Lu, X.; Wu, X.; Chen, G. ‘Food waste-wastewater-energy/resource’ nexus: Integrating food waste management with wastewater treatment towards urban sustainability. Water Res. 2022, 211, 118089. [Google Scholar] [CrossRef] [PubMed]
- Ministry of the Environment. Study on Improvement Measures for Disposer Regulations. 2020. Available online: http://seinfo.kr/?page_id=938&mod=document&uid=1627 (accessed on 10 December 2024).
- Korea Environment Institute (KEI). Food Waste Recycling Issues and Policy Tasks: Focusing on the Issue of Food Waste Disposer. 2022. Available online: https://www.nkis.re.kr/subject_view1.do?otpId=OTP_0000000000010273&otpSeq=0&eoSeq=0 (accessed on 10 December 2024).
- Benyam, A.; Rolfe, J.; Kinnear, S. Willingness to pay for a domestic food waste diversion policy option in regional Queensland, Australia. J. Clean. Prod. 2020, 270, 122485. [Google Scholar] [CrossRef]
- Kim, D.; Phae, C. Analysis of the effect of the use of food waste disposers on wastewater treatment plant and greenhouse gas emission characteristics. Water 2023, 15, 940. [Google Scholar] [CrossRef]
- Thomsen, M.; Romeo, D.; Caro, D.; Seghetta, M.; Cong, R.G. Environmental-economic analysis of integrated organic waste and wastewater management systems: A case study from Aarhus city (Denmark). Sustainability 2018, 10, 3742. [Google Scholar] [CrossRef]
- Zan, F.; Dai, J.; Jiang, F.; Ekama, G.A.; Chen, G. Ground food waste discharge to sewer enhances methane gas emission: A lab-scale investigation. Water Res. 2020, 174, 115616. [Google Scholar] [CrossRef]
- Tang, Y.; Dong, J.; Chi, Y.; Zhou, Z.; Ni, M. Energy and exergy optimization of food waste pretreatment and incineration. Environ. Sci. Pollut. Res. 2017, 24, 18434–18443. [Google Scholar] [CrossRef]
- Sridhar, A.; Kapoor, A.; Kumar, P.; Ponnuchamy, M.; Balasubramanian, S.; Prabhakar, S. Conversion of food waste to energy: A focus on sustainability and life cycle assessment. Fuel 2021, 302, 121069. [Google Scholar] [CrossRef]
- Igwegbe, C.A.; López-Maldonado, E.A.; Landázuri, A.C.; Ovuoraye, P.E.; Ogbu, A.I.; Vela-García, N.; Bialwiec, A. Sustainable municipal landfill leachate management: Current practices, challenges, and future directions. Desalination Water Treat. 2024, 320, 100709. [Google Scholar] [CrossRef]
- Mak, T.M.W.; Xiong, X.; Tasng, D.C.W.; Yum, I.K.M.; Poon, C.S. Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. Bioresour. Technol. 2020, 297, 122497. [Google Scholar] [CrossRef] [PubMed]
- Dou, Z.; Toth, J.D.; Westendorf, M.L. Food waste for livestock feeding: Feasibility, safety, and sustainability implications. Glob. Food Secur. 2018, 17, 154–161. [Google Scholar] [CrossRef]
- Lee, S.; Shurson, G.; Oh, S.; Jang, J. The management of food waste recycling for a sustainable future: A case study on South Korea. Sustainability 2024, 16, 854. [Google Scholar] [CrossRef]
- Ministry of Environment. Food Waste Reduction and Recycling, Achievements and Future. 2017. Available online: https://school.jbedu.kr/_cmm/fileDownload/puan-m/M01030402/bb4f827b39ae849d7d7747a8ba0b31fe (accessed on 3 October 2023).
- Seoul Metropolitan Government. 「Seoul Food Waste Generation and Treatment Status Statistics」. 2022. Available online: https://data.seoul.go.kr/dataList/371/S/2/datasetView.do (accessed on 10 December 2024).
- Güven, H.; Ozturk, I. Impact of food waste addition to municipal wastewater on environmental infrastructure. In Proceedings of the 6th European Conference on Renewable Energy System, Istanbul, Turkey, 25–27 June 2018; p. 1157. Available online: https://www.researchgate.net/publication/326571680_Impact_of_food_waste_addition_to_municipal_wastewater_on_environmental_infrastructure (accessed on 10 December 2024).
- McKenzie, A. Centralised Composting and Food Waste Disposer (FWD) Use as Competing Organic Waste Management Strategies in Vancouver Multifamily Homes; The University of British Columbia, City of Vancouver. 2012. Available online: https://sustain.ubc.ca/about/resources/centralized-composting-and-food-waste-disposer-fwd-use-competing-organic-waste (accessed on 10 December 2024).
- Iacovidou, E.; Ohandja, D.G.; Voulvoulis, N. Food waste disposal units in UK households: The need for policy intervention. Sci. Total Environ. 2012, 423, 1–7. [Google Scholar] [CrossRef]
- Canadian Water and Wastewater Association (CWWA). Residential Food Waste Grinders; Canadian Water and Wastewater Association (CWWA): Gloucester, ON, Canada, 2019. [Google Scholar]
- Nilsson, P. Waste Management at the Cource Utilizing Food Waste Disposers in the Home: A Case Study in the Town of Stanffanstorp; University of Lund: Lund, Sweden, 1990. [Google Scholar]
- Ju, M.; Phae, S.J.; Lee, D.H.; You, K.Y. Feasibility study on the introduction of food waste disposer system in Korea by assessment of cost and environmental impact. Seoul Inst. 2012, 13, 263–274. [Google Scholar] [CrossRef]
- Zan, F.; Iqbal, A.; Guo, G.; Liu, X.; Dai, J.; Ekama, G.A.; Chen, G. Integrated food waste management with wastewater treatment in Hong Kong: Transformation, energy balance and economic analysis. Water Res. 2020, 184, 116155. [Google Scholar] [CrossRef]
- Yuan, Y.; Yabe, M. Residents’ willingness to pay for household kitchen waste seperation services in Haidian and Dongsheng districts, Beijing city. Environments 2014, 1, 190–207. [Google Scholar] [CrossRef]
- Liang, Y.; Song, Q.; Liu, G.; Li, J. Uncovering residents and restaurants’ attitude and willingness toward effective food waste management: A case study of macau. Waste Manag. 2021, 130, 107–116. [Google Scholar] [CrossRef]
- Koumoutsea, A.; Boufounou, P.; Mergos, G. Evaluating the creative economy applying the contingent valuation method: A case study on the Greek cultural heritage festival. Sustainability 2023, 15, 16441. [Google Scholar] [CrossRef]
- Lee, F.Y.S.; Ma, A.T.H.; Cheung, L.T.O. Resident perception and willingness to pay for the restoration and revitalization of urban rivers. Water 2021, 13, 2649. [Google Scholar] [CrossRef]
- Hao, Q.; Xu, S.; Liao, Y.; Qiao, D.; Shi, H.; Xu, T. Determinants of residents’ willingness to pay for water quality improvements in Haikou, China: Application of CVM and ISM approaches. Water 2023, 15, 1305. [Google Scholar] [CrossRef]
- Ouyang, Z.; Sun, D.; Liu, G. Residents’ willingness to pay for water pollution treatment and its influencing factors: A case study of Taihu Lake Basin. Environ. Manag. 2024, 74, 490–504. [Google Scholar] [CrossRef]
- Gaglias, A.; Mirasgedis, S.; Tourkolias, C.; Georgopoulou, E. Implementing the contingent valuation method for supporting decision making in the waste management sector. Waste Manag. 2016, 53, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Huh, S.Y.; Shin, J.; Ryu, J. Expand, relocate, or underground? Social acceptance of upgrading wastewater treatment plants. Environ. Sci. Pollut. Res. Int. 2020, 27, 45618–45628. [Google Scholar] [CrossRef]
- Jo, H.; Ryu, J.; Shin, J. Sewerage infrastructure asset management based on a consumer-centric approach. Environ. Sci. Pollut. Res. Int. 2022, 29, 53009–53021. [Google Scholar] [CrossRef]
- Calia, P.; Strazzera, E. Bias and efficiency of single versus double bound models for contingent valuation studies: A Monte Carlo analysis. Appl. Econ. 2000, 32, 1329–1336. [Google Scholar] [CrossRef]
- Cooper, J.C.; Hanemann, M.; Signorello, G. One-and-one-half-Bound dichotomous choice contingent valuation. Rev. Econ. Stat. 2002, 84, 742–750. [Google Scholar] [CrossRef]
- Arrow, K.; Solow, R.; Portney, P.R.; Leamer, E.E.; Radner, R.; Schumar, H. Report of the NOAA Panel on Contingent Valuation. National Oceanic and Atmospheric Administration, US Department of Commerce. Available online: https://repository.library.noaa.gov/view/noaa/60900/noaa_60900_DS1.pdf (accessed on 30 January 2025).
- Ministry of the Environment. 「Sewerage Statistics」. 2022. Available online: https://www.hasudoinfo.or.kr/bbs/lay1/WS10000015/38770/view.do# (accessed on 10 December 2024).
- Del Saz-Salazar, S.; González-Gómez, F.; Guardiola, J. Valuing water supply infrastructure improvements using life satisfaction data as a complement to contingent valuation. Water Environ. J. 2020, 34, 401–413. [Google Scholar] [CrossRef]
Category | Respondents | Percentage (%) | |
---|---|---|---|
Total | 1155 | 100 | |
Gender | Male(0) | 609 | 52.7 |
Female(1) | 546 | 47.3 | |
Age | 20–29 | 218 | 18.9 |
30–39 | 259 | 22.4 | |
40–49 | 268 | 23.2 | |
50–59 | 253 | 21.9 | |
60–69 | 157 | 13.6 | |
Average monthly income per household (KRW 10,000) | <199 | 98 | 8.5 |
200–299 | 177 | 15.3 | |
300–399 | 175 | 15.2 | |
400–499 | 196 | 17.0 | |
500–699 | 273 | 23.6 | |
>700 | 236 | 20.4 |
Bid Amount | Lower Bid Suggested First | Higher Bid Suggested First | |||||||
---|---|---|---|---|---|---|---|---|---|
Yes–Yes | Yes–No | No–Yes | No–No | Yes | No–Yes | No–No–Yes | No–No–No | ||
1000 | 2000 | 52 | 12 | 3 | 17 | 50 | 2 | 1 | 28 |
1500 | 2500 | 41 | 6 | 2 | 31 | 51 | 5 | 2 | 24 |
2000 | 4000 | 33 | 19 | 3 | 30 | 39 | 5 | 3 | 33 |
3000 | 5000 | 36 | 13 | 6 | 37 | 46 | 5 | 5 | 18 |
4000 | 6000 | 39 | 16 | 6 | 24 | 40 | 6 | 8 | 26 |
5000 | 8000 | 33 | 8 | 10 | 43 | 34 | 6 | 2 | 30 |
6500 | 10,000 | 25 | 23 | 14 | 30 | 37 | 7 | 5 | 25 |
Totals | 259 | 97 | 44 | 212 | 297 | 36 | 26 | 184 | |
(22.4%) | (8.4%) | (3.8%) | (18.4%) | (25.7%) | (3.1%) | (2.3%) | (15.9%) |
Variables | Model 1 | Model 2 | Model 3 |
---|---|---|---|
Coefficient | Coefficient | Coefficient | |
Constant | 0.0971 *** | 0.5501 | 0.8410 *** |
bid | −0.00019 *** | −0.00019 *** | −0.00019 *** |
Gender | −0.1673 | −0.2130 * | |
Age_50s | −0.2887 ** | −0.2911 ** | |
Income | 0.0625 ** | 0.0468 * | |
Know_water_quality | 0.1378 * | ||
Know_hasudo_old_improve | −0.0379 | ||
Know_hasudo_unnecessary | −0.0087 | ||
Know_hasudo_untreatment | 0.5844 * | ||
Know_water_safety | −0.1414 | ||
Know_water_service | −0.0997 | ||
Know_hasudo_cost | 0.0912 | ||
Know_sudo_cost | −0.0144 | ||
Satisfy_hasudo_disposer | 0.0739 | ||
Satisfy_hasudo_odor | −0.4513 ** | ||
Expect_hasudo_cost | −0.5091 *** | ||
Expect_hasudo_flood | 0.1308 ** | ||
Expect_hasudo_old_improvement | 0.0340 | ||
Region_cost | 0.0605 | ||
Region_complain_avg | 0.3427 ** | ||
Region_complain_odor | −0.1067 | ||
Region_complain_cost | 0.1737 | ||
Number of samples | 1155 | 1155 | 1155 |
Mean WTP (95% confidence level) | 6860.186 (6879.629–6840.743) | ||
Log-likelihood | −1115.89 | −1105.27 | −1097.02 |
Region | Sewer Budget (KRW 100 Million) | Number of Households | Additional Budget Secured from WTP (KRW 100 Million) | Ratio (Additional/Sewer Budget) |
---|---|---|---|---|
Seoul | 12,042.8 | 4,417,954 | 303.07 | 2.52 |
Busan | 5913.3 | 1,530,431 | 104.99 | 1.78 |
Daegu | 6501.8 | 1,056,627 | 72.48 | 1.11 |
Incheon | 2359.6 | 1,267,956 | 86.98 | 3.69 |
Gwangju | 2047.2 | 633,582 | 43.46 | 2.12 |
Daejeon | 2032.4 | 652,783 | 44.78 | 2.20 |
Ulsan | 2368.2 | 476,893 | 32.71 | 1.38 |
Sejong | 558.7 | 144,275 | 9.90 | 1.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Ryu, J.; Lee, D.; Shin, J. How Can We Improve the Consumer Acceptance Level for Disposers Considering Regional Characteristics? Water 2025, 17, 493. https://doi.org/10.3390/w17040493
Park S, Ryu J, Lee D, Shin J. How Can We Improve the Consumer Acceptance Level for Disposers Considering Regional Characteristics? Water. 2025; 17(4):493. https://doi.org/10.3390/w17040493
Chicago/Turabian StylePark, Seoyeong, Jaena Ryu, Donghyun Lee, and Jungwoo Shin. 2025. "How Can We Improve the Consumer Acceptance Level for Disposers Considering Regional Characteristics?" Water 17, no. 4: 493. https://doi.org/10.3390/w17040493
APA StylePark, S., Ryu, J., Lee, D., & Shin, J. (2025). How Can We Improve the Consumer Acceptance Level for Disposers Considering Regional Characteristics? Water, 17(4), 493. https://doi.org/10.3390/w17040493