Reuse of Pretreated Household Wastewater for Decentralized Food Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Hydroponic Farm with NFT System
2.2. Plant Material
2.3. Methods Used for Elemental and Phthalate Analysis
3. Results
3.1. Lettuce Growth, Harvestation, and Biomass Processing
3.2. Effects of Mineral and Organic Fertilizers on Nitrate Uptake
3.3. Heavy Metals
3.4. Phthalate
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turcios, A.; Papenbrock, J. Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future? Sustainability 2014, 6, 836–856. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; van Os, E.; Anseeuw, D.; Van Havermaet, R.; Ranka, J. Hydroponic Technologies. In Aquaponics Food Production Systems; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Lisy, M.; Balas, M.; Spilacek, M.; Skala, Z. Technical and economic optimization of cogeneration technology using com-bustion and gasification. Acta Polytech. Hung. 2014, 54, 42–51. [Google Scholar] [CrossRef]
- Bartela, Ł.; Waniczek, S.; Lutyński, M. Concept of the thermal integration of the compressed air energy storage system with the power plant. In Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2019, Wroclaw, Poland, 23–28 June 2019; pp. 4753–4766. [Google Scholar]
- Jaramillo, M.; Restrepo, I. Wastewater Reuse in Agriculture: A Review about Its Limitations and Benefits. Sustainability 2017, 9, 1734. [Google Scholar] [CrossRef]
- Kumar, R.R.; Cho, J.Y. Reuse of hydroponic waste solution. Environ. Sci. Pollut. Res. 2014, 21, 9569–9577. [Google Scholar] [CrossRef]
- U.S. EPA. National Section 303(d) List Fact Sheet. 2007. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/2007_03_08_tmdl_mercury5m_mercury5m.pdf (accessed on 20 June 2024).
- Boguniewicz-Zablocka, J.; Klosok-Bazan, I.; Capodaglio, A.G.; Ploskonka, J. Planning the optimal solution for wastewater management in rural areas—Case study. In Proceedings of the 3rd Scientific Conference Environmental Challenges in Civil Engineering, ECCE 2018, Opole, Poland, 23–25 April 2018. [Google Scholar] [CrossRef]
- Nikitin, D.; Kaur, B.; Preis, S.; Dulova, N. Degradation of Antibiotic Vancomycin by UV Photolysis and Pulsed Corona Discharge Combined with Extrinsic Oxidants. Catalysts 2023, 13, 466. [Google Scholar] [CrossRef]
- Misra, N.N.; Tiwari, B.K.; Raghavarao, K.S.M.S.; Cullen, P.J. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Eng. Rev. 2011, 3, 159–170. [Google Scholar] [CrossRef]
- Li, Q.; Kubota, C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Botany. 2009, 67, 59–64. [Google Scholar] [CrossRef]
- Touliatos, D.; Dodd, I.C.; Mcainsh, M. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics. Food Energy Secur. 2016, 5, 184–191. [Google Scholar] [CrossRef]
- Cometti, N.N.; Martins, M.Q.; Bremenkamp, C.A.; Nunes, J.A. Nitrate concentration in lettuce leaves depending on photosynthetic photon flux and nitrate concentration in the nutrient solution. Hortic. Bras. 2011, 29, 548–553. [Google Scholar] [CrossRef]
- Chen, Z.; Shah Jahan, M.; Mao, P.; Wang, M.; Liu, X.; Guo, S. Functional growth, photosynthesis, and nutritional property analyses of lettuce grown under different temperature and light intensity. J. Hortic. Sci. Biotechnol. 2020, 96, 53–61. [Google Scholar] [CrossRef]
- Ferrón-Carrillo, F.; Guil-Guerrero, J.L.; González-Fernández, M.J.; Lyashenko, S.; Battafarano, F.; da Cunha-Chiamolera, T.P.L.; Urrestarazu, M. LED Enhances Plant Performance and Both Carotenoids and Nitrates Profiles in Lettuce. Plant Foods Hum. Nutr. 2021, 76, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Nicole, C.C.S.; Charalambous, F.; Martinakos, S.; Van De Voort, S.; Li, Z.; Verhoog, M.; Krijn, M. Lettuce growth and quality optimization in a plant factory. Acta Hortic. 2016, 1134, 231–238. [Google Scholar] [CrossRef]
- Bantis, F.; Ouzounis, T.; Radoglou, K. Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Sci. Hortiulturae 2016, 198, 277–283. [Google Scholar] [CrossRef]
- Jesse, S.D.; Zhang, Y.; Margenot, A.J.; Davidson, P.C. Hydroponic Lettuce Production Using Treated Post-Hydrothermal Liquefaction Wastewater. Sustainability 2019, 11, 3605. [Google Scholar] [CrossRef]
- Ezziddine, M.; Liltved, H.; Seljåsen, R. Hydroponic Lettuce Cultivation Using Organic Nutrient Solution from Aerobic Digested Aquacultural Sludge. Agronomy 2021, 11, 1484. [Google Scholar] [CrossRef]
- Yan, Z.; He, D.; Niu, G.; Zhai, H. Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod, and light quality at seedling stage. Sci. Hortic. 2019, 248, 138–144. [Google Scholar] [CrossRef]
- Sigurnjak, I.; Michels, E.; Crappé, S.; Buysens, S.; Tack, F.M.G.; Meers, E. Utilization of derivatives from nutrient recovery processes as alternatives for fossil-based mineral fertilizers in commercial greenhouse production of Lactuca sativa L. Sci. Hortic. 2016, 198, 267–276. [Google Scholar] [CrossRef]
- Amr, A.; Hadidi, N. Effect of cultivar and harvest date on nitrate (NO3) and nitrite (NO2) content of selected vegetables grown under open field and greenhouse conditions in Jordan. J. Food Compos. Anal. 2001, 14, 59–67. [Google Scholar] [CrossRef]
- Kechasov, D.; Verheul, M.J.; Paponov, M.; Panosyan, A.; Paponov, I.A. Organic Waste-Based Fertilizer in Hydroponics Increases Tomato Fruit Size but Reduces Fruit Quality. Front. Plant Sci. 2021, 12, 680030. [Google Scholar] [CrossRef]
- Atkin, K.; Nichols, M.A. Organic hydroponics. Acta Hortic. 2004, 121–127. [Google Scholar] [CrossRef]
- Kano, K.; Kitazawa, H.; Suzuki, K.; Widiastuti, A.; Odani, H.; Zhou, S.; Chinta, Y.D.; Eguchi, Y.; Shinohara, M.; Sato, T. Effects of Organic Fertilizer on Bok Choy Growth and Quality in Hydroponic Cultures. Agronomy 2021, 11, 491. [Google Scholar] [CrossRef]
- Gell, K.; van Groenigen, J.W.; Cayuela, M.L. Residues of bioenergy production chains as soil amendments: Immediate and temporal phytotoxicity. J. Hazard. Mater. 2011, 186, 2017–2025. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, Q.; Tang, Z.; Zhang, W.; Yu, G.; Shen, Q.; Zhao, F.J. Heavy metal concentrations and arsenic speciation in animal manure composts in China. Waste Manag. 2017, 64, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, S.; Wang, X.; Wang, M. Contents of heavy metal in commercial organic fertilizers and organic wastes. J. Agro-Environ. Sci. 2005, 24, 392–397. [Google Scholar]
- Lopes, C.; Herva, M.; Franco-Uría, A.; Roca, E. Inventory of heavy metal content in organic waste applied as fertilizer in agriculture: Evaluating the risk of transfer into the food chain. Environ. Sci. Pollut. Res. 2011, 18, 918–939. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E.A.; Kosegarten, H.; Appel, T. Principles of Plant Nutrition; Kluwer Academic: Dordrecht, The Netherlands, 1987. [Google Scholar]
- Baker, A.J.M.; Reeves, R.D.; McGrath, S.P. In Situ Decontamination of Heavy Metal Polluted Soils Using Crops of Metal-accumulating Plants: A Feasibility Study. In Proceedings of the Abstracts International Symposium on In Situ and On Site Bioreclamation, San Diego, CA, USA, 19–21 March 1991. [Google Scholar]
- Yong, L.; Huangqian, Y.; Liu, Q.; Li, X.; Ge, J.; Yu, X. Accumulation and transport patterns of six phthalic acid esters (PAEs) in two leafy vegetables under hydroponic conditions. Chemosphere 2020, 249, 126457. [Google Scholar] [CrossRef]
- Gallart-Ayala, H.; Núñez, O.; Lucci, P. Recent advances in LC-MS analysis of food-packaging contaminants. TrAC Trends Anal. Chem. 2013, 42, 99–124. [Google Scholar] [CrossRef]
- Hochman, G.; Hochman, E.; Naveh, N.; Zilberman, D. The Synergy between Aquaculture and Hydroponics Technologies: The Case of Lettuce and Tilapia. Sustainability 2018, 10, 3479. [Google Scholar] [CrossRef]
- Alexander, P.D.; Alloway, B.J.; Dourado, A.M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environ. Pollut. 2006, 144, 736–745. [Google Scholar] [CrossRef]
- Ma, T.T.; Teng, Y.; Christie, P.; Luo, Y.M. Phytotoxicity in seven higher plant species exposed to di-n-butyl phthalate or bis (2-ethylhexyl) phthalate. Front. Environ. Sci. Eng. 2014, 9, 259–268. [Google Scholar] [CrossRef]
- Poursafa, P.; Ataei, E.; Kelishadi, R. A systematic review on the effects of environmental exposure to some organohalogens and phthalates on early puberty. J. Res. Med. Sci. 2015, 20, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yan, H.; Yu, X. Uptake and accumulation of di-n-butyl phthalate in six leafy vegetables under hydroponic conditions. Food Prod. Process. Nutr. 2019, 1, 9. [Google Scholar] [CrossRef]
- Manos, D.P.; Xydis, G. Hydroponics: Are we moving towards that direction only because of the environment? A discussion on forecasting and a systems review. Environ. Sci. Pollut. Res. 2019, 26, 12662–12672. [Google Scholar] [CrossRef]
- da Silva, J.S.; Dias, N.d.S.; Jales, G.D.; Rges, L.B.L.; de Freitas, J.M.C.; Umbelino, B.F.; Alves, T.R.C.; da Silva, A.A.; dos Santos Fernandes, C.; de Paiva, E.P.; et al. Physiological responses and production of mini-watermelon irrigated with reject brine in hydroponic cultivation with substrates. Environ. Sci. Pollut. Res. 2021, 29, 11116–11129. [Google Scholar] [CrossRef]
- Magwaza, S.T.; Magwaza, L.S.; Odindo, A.O.; Mditshwav, A.; Buckley, C. Partially treated domestic wastewater as a nutrient source for tomatoes (Lycopersicum solanum) grown in a hydroponic system: Effect on nutrient absorption and yield. Heliyon 2020, 6, e05745. [Google Scholar] [CrossRef]
- Chaudhery, M.H.; Rüstem, K. Modern Environmental Analysis Techniques for Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–36. [Google Scholar]
- Jordan, R.A.; Ribeiro, E.F.; de Oliveira, F.C.; Geisenhoff, L.O.; Martins, E.A.S. Yield of lettuce grown in hydroponic and aquaponic systems using different substrates. Rev. Bras. Eng. Agric. Ambient. 2018, 22, 525–529. [Google Scholar] [CrossRef]
- Panda, S.K.; Upadhyay, R.K.; Nath, S. Arsenic stress in plants. J. Agron. Crop Sci. 2010, 196, 161–174. [Google Scholar] [CrossRef]
- Bernard, A. Cadmium & its adverse effects on human health. Indian J. Med. Res. 2008, 128, 557–564. [Google Scholar]
- Díez, S. Human health effects of methylmercury exposure. In Reviews of Environmental Contamination and Toxicology; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Giuliani, A.; Zuccarini, M.; Cichelli, A.; Khan, H.; Reale, M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. Int. J. Environ. Res. Public Health 2020, 17, 5655. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, H. Phthalates and Their Impacts on Human Health. Healthcare 2021, 9, 603. [Google Scholar] [CrossRef]
- FAO. General Standard for Contaminants and Toxins in Food and Feed; FAO: Rome, Italy, 2019. [Google Scholar]
- Commission Regulation (EU) 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF (accessed on 20 June 2024).
- Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC (OJ L 70,16.3.2005, p. 1) as Last Amended by Regulation (EC) No 178/2006 (OJ L 29, 2.2.2006, p. 3). Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:070:0001:0016:en:PDF (accessed on 20 June 2024).
- Commission Regulation (EU) 2018/73 of 16 January 2018 Amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as Regards Maximum Residue Levels for Mercury Compounds in or on Certain Products. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R0073 (accessed on 20 June 2024).
- Commission Regulation (EU) 2021/1317 of 9 August 2021 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Lead in Certain Foodstuffs. Available online: https://eur-lex.europa.eu/eli/reg/2021/1317/oj/eng (accessed on 20 June 2024).
- Commission Regulation (EU) 2021/1323 of 10 August 2021 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Cadmium in Certain Foodstuffs. Available online: https://eur-lex.europa.eu/eli/reg/2021/1323/oj/eng (accessed on 20 June 2024).
Type of Used Water | Fresh Biomass of Lettuce (g) | Number of Leaves (n) |
---|---|---|
PDW + Mineral F. | 116 ± 3 | 39 ± 2 |
PDW + Organic F. | 127 ± 3 | 44 ± 2 |
Raw Water (No Fertilizer) | 54 ± 8 | 40 ± 3 |
Type of Used Water | Sample | NO3 (mg/kg) |
---|---|---|
PDW with Mineral Fertilizer | Plant Sample 1 Plant Sample 3 | 623.33 ± 85.62 589.67 ± 80.95 |
PDW with Organic Fertilizer | Plant Sample 2 Plant Sample 4 | 1044.33 ± 144.04 690.00 ± 94.87 |
Raw Water (No Fertilizer) | Plant Sample 5 | 148.67 ±14.83 |
Heavy Metal | Unit | Type of Used Water | FAO 1 | EU 2 | |
---|---|---|---|---|---|
- | - | PDW + Mineral F. | PDW + Organic F. | - | - |
As | mg/kg | 0.100 ± 0.02 | 0.100 ± 0.02 | - | - |
Cd | mg/kg | 0.085 ± 0.002 | 0.077 ± 0.002 | 0.2 | 0.1 |
Hg | mg/kg | 0.005 ± 0.001 | 0.004 ± 0.001 | - | 0.01 |
Pb | mg/kg | 0.010 ± 0.002 | 0.010 ± 0.002 | 0.3 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vavra, L.; Gono, M.; Klosok-Bazan, I.; Svehlakova, H. Reuse of Pretreated Household Wastewater for Decentralized Food Production. Water 2025, 17, 372. https://doi.org/10.3390/w17030372
Vavra L, Gono M, Klosok-Bazan I, Svehlakova H. Reuse of Pretreated Household Wastewater for Decentralized Food Production. Water. 2025; 17(3):372. https://doi.org/10.3390/w17030372
Chicago/Turabian StyleVavra, Lukas, Miroslava Gono, Iwona Klosok-Bazan, and Hana Svehlakova. 2025. "Reuse of Pretreated Household Wastewater for Decentralized Food Production" Water 17, no. 3: 372. https://doi.org/10.3390/w17030372
APA StyleVavra, L., Gono, M., Klosok-Bazan, I., & Svehlakova, H. (2025). Reuse of Pretreated Household Wastewater for Decentralized Food Production. Water, 17(3), 372. https://doi.org/10.3390/w17030372