Effects of Sound Intensity and Frequency on Negative Phonotaxis in Adult Bighead Carp
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish
2.2. Apparatus
2.3. Experimental Procedure
2.4. Data Analysis
3. Results
4. Discussion
4.1. Effect of Sound Intensity on Fish Behavior
4.2. Effect of Sound Frequency on Fish Behavior
4.3. Suggestions for Future Studies on Fish Negative Phonotaxis and Sound Barrier Technology
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Kang, M.; Shen, L.; Wu, J.; Li, J.; Du, H.; Wang, C.; Yang, H.; Zhou, Q.; Liu, Z.; et al. Rapid change of Yangtze fisheries and its implications for global freshwater ecosystem management. Fish Fish. 2020, 710, 136242. [Google Scholar] [CrossRef]
- Bullen, C.R.; Carlson, T.J. Non-physical fish barrier systems: Their development and potential applications to marine ranching. Rev. Fish Biol. Fish. 2003, 13, 201–212. [Google Scholar] [CrossRef]
- Noatch, M.R.; Suski, C.D. Non-physical barriers to deter fish movements. Environ. Rev. 2012, 20, 71–82. [Google Scholar] [CrossRef]
- Stolbunov, I.; Salienko, S.N.; Barkhalov, R.M.; Rabazanov, N.I. Influence of electric fields of a fish protection device on fish of the Dagestan coast of the Caspian sea. Arid Ecosyst. 2024, 14, 540–546. [Google Scholar] [CrossRef]
- Kim, J.; Mandrak, N.E. Effects of a vertical electric barrier on the behaviour of rainbow trout. Aquat. Ecosyst. Health Manag. 2019, 22, 183–192. [Google Scholar] [CrossRef]
- Rogers, L.; Lozier, N.R.; Sapozhnikova, Y.P.; Diamond, K. Functional plasticity of the swim bladder as an acoustic organ for communication in a vocal fish. R. Soc. Proc. R. Soc. B 2023, 290, 20231839. [Google Scholar] [CrossRef] [PubMed]
- Veith, J.; Chaigne, T.; Svanidze, A.; Dressler, L.E.; Hoffmann, M.; Gerhardt, B.; Judkewitz, B. The mechanism for directional hearing in fish. Nature 2024, 631, 118–124. [Google Scholar] [CrossRef]
- Vetter, B.J.; Brey, M.K.; Mensinger, A.F. Reexamining the frequency range of hearing in silver (Hypophthalmichthys molitrix) and bighead (H. nobilis) carp. PLoS ONE 2018, 13, e0192561. [Google Scholar] [CrossRef]
- Smejkal, M.; Barton, D.; Duras, J.; Horky, P.; Muska, M.; Kubecka, J.; Pfauserova, N.; Tesfaye, M.; Slavik, O. Living on the edge: Reservoirs facilitate enhanced interactions among generalist and rheophilic fish species in tributaries. Front. Environ. Sci. 2023, 11, 1099030. [Google Scholar] [CrossRef]
- Neo, Y.Y.; Seitz, J.; Kastelein, R.A.; Winter, H.V.; TenCate, C.; Slabbekoorn, H. Temporal structure of sound affects behavioural recovery from noise impact in European seabass. Biol. Conserv. 2014, 178, 65–73. [Google Scholar] [CrossRef]
- Murchy, K.A.; Cupp, A.R.; Amberg, J.J.; Vetter, B.J.; Fredricks, K.T.; Gaikowski, M.P.; Mensinger, A.F. Potential implications of acoustic stimuli as a non-physical barrier to silver carp and bighead carp. Fish. Manag. Ecol. 2017, 24, 208–216. [Google Scholar] [CrossRef]
- Nissen, A.C.; Vetter, B.J.; Rogers, L.S.; Mensinger, A.F. Impacts of broadband sound on silver (Hypophthalmichthys molitrix) and bighead (H. nobilis) carp hearing thresholds determined using auditory evoked potential audiometry. Fish Physiol. Biochem. 2019, 45, 1683–1695. [Google Scholar] [CrossRef]
- Jesus, J.; Cortes, R.; Teixeira, A. Acoustic and light selective behavioral guidance systems for freshwater fish. Water 2021, 13, 745. [Google Scholar] [CrossRef]
- Zhang, Q.; Bloecher, N.; Evjemo, L.D.; Fore, M.; Kelasidi, E. Avoidance behaviours of farmed Atlantic salmon (Salmo salar L.) to artificial sound and light: A case study of net-pen mariculture in Norway. Front. Robot. AI 2025, 12, 1657567. [Google Scholar] [CrossRef]
- Vetter, B.J.; Murchy, K.A.; Cupp, A.R.; Amberg, J.J.; Gaikowski, M.P.; Mensinger, A.F. Acoustic deterrence of bighead carp (Hypophthalmichthys nobilis) to a broadband sound stimulus. J. Great Lakes Res. 2017, 43, 163–171. [Google Scholar] [CrossRef]
- Liu, G.; Wu, Y.; Shen, X.; Hu, Y.; Qin, X.; Tian, W.; Liu, L.; Wang, X.; Shi, X. Laboratory experiments demonstrate that the hissing of the Chinese alligator can effectively inhibit movement of flower fish Ptychobarbus kaznakovi. Hydrobiologia 2019, 836, 97–108. [Google Scholar] [CrossRef]
- Qin, X.; Liu, Y.; Shen, X.; Wu, Y.; Tian, W.; Liu, Y.; Wang, X.; Shi, X.; Liu, G. Spatial avoidance of tu-fish Schizopygopsis younghusbandi for different sounds may inform behavioural deterrence strategies. Fish. Manag. Ecol. 2020, 27, 10–19. [Google Scholar] [CrossRef]
- Neo, Y.Y.; Ufkes, E.; Kastelein, R.A.; Winter, H.V.; TenCate, C.; Slabbekoorn, H. Impulsive sounds change European seabass swimming patterns: Influence of pulse repetition interval. Mar. Pollut. Bull. 2015, 97, 111–117. [Google Scholar] [CrossRef]
- Lovell, J.M.; Findlay, M.M.; Nedwell, J.R.; Pegg, M.A. The hearing abilities of the silver carp (Hypopthalmichthys molitrix) and bighead carp (Aristichthys nobilis). Comp. Biochem. Physiol. Part A 2006, 143, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Culotta, J.; Vetter, B.J.; Mensinger, A.F. Acoustic and Carbon Dioxide Deterrents for Invasive Bigheaded Carps (Hypophthalmichthys molitrix and H. nobilis). In The Effects of Noise on Aquatic Life: Principles and Practical Considerations; Popper, A.N., Sisneros, J.A., Hawkins, A.D., Thomsen, F., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 1505–1521. [Google Scholar]
- Kramer, C.A.; Culotta, J.; Ervin, M.L.; Mensinger, A.F.; Vetter, B.J. Effect of broadband boat motor sound on the schooling behavior of invasive bigheaded carp. In The Effects of Noise on Aquatic Life: Principles and Practical Considerations; Popper, A.N., Sisneros, J.A., Hawkins, A.D., Thomsen, F., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 831–839. [Google Scholar]
- Frett, M.W.; Kozarek, J.L.; Berry, A.L.; Mensinger, A.F. Evaluating CO2 and sound as an invasive bigheaded carp deterrent in a model lock and dam. Environ. Pollut. 2025, 372, 126056. [Google Scholar] [CrossRef]
- Dennis, C.E.; Zielinski, D.; Sorensen, P.W. A complex sound coupled with an air curtain blocks invasive carp passage without habituation in a laboratory flume. Biol. Invasions 2019, 21, 2837–2855. [Google Scholar] [CrossRef]
- Lin, T.; Liu, X.; Wang, C.; Zhang, D. Effects of ship noise pressure level on swimming, feeding behaviors and immuno-physiological indicators of Larimichthys crocea juveniles. Mar. Fish. 2020, 42, 61–72. [Google Scholar]
- Zhan, H.; Li, X.; Ni, M.; Zhang, Z.; Da, W.; Wang, Y.; Liu, Z.; Liu, Y.; He, C.; Shi, X.; et al. Research status and prospect of noise effect on fish. J. Hydroecol. 2023, 44, 142–147. [Google Scholar]
- Cox, K.; Brennan, L.P.; Gerwing, T.G.; Dudas, S.E.; Juanes, F. Sound the alarm: A meta-analysis on the effect of aquatic noise on fish behavior and physiology. Glob. Change Biol. 2018, 24, 3105–3116. [Google Scholar] [CrossRef] [PubMed]
- Putland, R.L.; Montgomery, J.C.; Radford, C.A. Ecology of fish hearing. J. Fish Biol. 2019, 95, 39–52. [Google Scholar] [CrossRef]
- Barbeau, J.; Mazzei, R.; Rodriguez, M.A.; Proulx, R. Fish responses to underwater sounds depend on auditory adaptations: An experimental test of the effect of motorboat sounds on the fish community of a large fluvial lake. Ecol. Evol. 2024, 14, e10946. [Google Scholar] [CrossRef] [PubMed]
- Debusschere, E.; Hostens, K.; Adriaens, D.; Ampe, B.; Botteldooren, D.; DeBoeck, G.; DeMuynck, A.; Sinha, A.K.; Vandendriessche, S.; VanHoorebeke, L.; et al. Acoustic stress responses in juvenile sea bass Dicentrarchus labrax induced by offshore pile driving. Environ. Pollut. 2016, 208, 747–757. [Google Scholar] [CrossRef]
- Li, W.; Bai, Y.; Li, Y.; Wu, Y.; Zhang, J.; Huang, X.; Zhang, Z.; Shi, X. Avoidance behavior of juvenile silver carp Hypophthalmichthys molitrix to four different sounds. J. Hydroecol. 2025, 46, 173–181. [Google Scholar]
- Yi, W.; Cai, L.; Tan, Y.; Xu, B.; Li, J.; Liu, L.; Xu, L.; Johnson, D.; Zhu, S.; Yang, G. Pulse frequency and water velocity determine crossing probability in pulsed direct-current fish barriers. Fishes 2025, 10, 510. [Google Scholar] [CrossRef]
- Kowalski, D.A.; Gardunio, E.I.; Garvey, C.A. Evaluating the effects of an electric barrier on fish entrainment in an irrigation canal in Colorado. River Res. Appl. 2022, 38, 539–547. [Google Scholar] [CrossRef]





| Frequency | 300 mV | 400 mV | 500 mV | 600 mV | 700 mV | 800 mV | 900 mV | 1000 mV | |
|---|---|---|---|---|---|---|---|---|---|
| Intensity | |||||||||
| 50 Hz | 19% | 20% | 27% | 16% | 22% | 28% | 22% | 25% | |
| 71% | 74% | 68% | 74% | 75% | 68% | 73% | 74% | ||
| 10% | 6% | 5% | 10% | 3% | 4% | 5% | 1% | ||
| 100 Hz | 27% | 35% | 1% | 5% | 9% | 11% | 12% | 9% | |
| 72% | 61% | 1% | 88% | 73% | 76% | 80% | 85% | ||
| 1% | 4% | 18% | 7% | 18% | 13% | 8% | 6% | ||
| 200 Hz | 29% | 40% | 42% | 38% | 44% | 25% | 24% | 28% | |
| 66% | 51% | 50% | 56% | 55% | 57% | 58% | 60% | ||
| 5% | 9% | 8% | 6% | 1% | 18% | 18% | 12% | ||
| 300 Hz | 43% | 88% | 2% | 83% | 69% | 82% | 81% | 84% | |
| 45% | 10% | 73% | 17% | 30% | 17% | 18% | 15% | ||
| 12% | 2% | 25% | 0% | 1% | 1% | 1% | 1% | ||
| 400 Hz | 93% | 91% | 79% | 0% | 85% | 89% | 90% | 86% | |
| 6% | 9% | 20% | 71% | 15% | 10% | 10% | 14% | ||
| 1% | 0% | 1% | 29% | 0% | 1% | 0% | 0% | ||
| 500 Hz | 86% | 69% | 96% | 81% | 70% | 66% | 86% | 85% | |
| 14% | 29% | 4% | 18% | 30% | 29% | 14% | 11% | ||
| 0% | 2% | 0% | 1% | 0% | 5% | 0% | 4% | ||
| 800 Hz | 73% | 56% | 86% | 89% | 51% | 51% | 39% | 39% | |
| 22% | 44% | 14% | 11% | 49% | 49% | 60% | 60% | ||
| 5% | 0% | 0% | 0% | 0% | 0% | 1% | 1% | ||
| 1000 Hz | 60% | 48% | 55% | 45% | 49% | 71% | 56% | 57% | |
| 40% | 47% | 42% | 50% | 44% | 27% | 42% | 41% | ||
| 0% | 5% | 3% | 5% | 7% | 2% | 2% | 2% | ||
| Control (Intensity = 0 mV, 6 repeated tests) | 24% | 31% | 14% | 18% | 35% | 29% | 25.2 ± 8.2% | ||
| 45% | 49% | 65% | 41% | 50% | 62% | 52.2 ± 9.7% | |||
| 31% | 20% | 21% | 41% | 15% | 9% | 22.6 ± 11.5% | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Y.; Hu, W.; Yi, W.; Tang, Z.; Zhang, C.; Zhu, S.; Yang, G.; Cai, L. Effects of Sound Intensity and Frequency on Negative Phonotaxis in Adult Bighead Carp. Water 2025, 17, 3555. https://doi.org/10.3390/w17243555
Tan Y, Hu W, Yi W, Tang Z, Zhang C, Zhu S, Yang G, Cai L. Effects of Sound Intensity and Frequency on Negative Phonotaxis in Adult Bighead Carp. Water. 2025; 17(24):3555. https://doi.org/10.3390/w17243555
Chicago/Turabian StyleTan, Yun, Wangbin Hu, Wanshuang Yi, Zhengyang Tang, Chunhui Zhang, Shihong Zhu, Guosheng Yang, and Lu Cai. 2025. "Effects of Sound Intensity and Frequency on Negative Phonotaxis in Adult Bighead Carp" Water 17, no. 24: 3555. https://doi.org/10.3390/w17243555
APA StyleTan, Y., Hu, W., Yi, W., Tang, Z., Zhang, C., Zhu, S., Yang, G., & Cai, L. (2025). Effects of Sound Intensity and Frequency on Negative Phonotaxis in Adult Bighead Carp. Water, 17(24), 3555. https://doi.org/10.3390/w17243555

