Spatial and Temporal Trend Analysis of Flood Events Across Africa During the Historical Period
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Domain
2.2. Dataset Description
2.3. Methods
2.3.1. Spatial Analysis of Flood Events and Fatalities
2.3.2. Temporal Trend Analysis and Sen’s Slope Estimation
2.3.3. Extreme Precipitation Indices Computation and Relationship with Flood Events
2.3.4. Non-Stationary Extreme Values Distribution and Return Period
3. Results
3.1. Statistics and Spatial Distribution of Total Flood Events
3.2. Temporal Analysis of Total Flood Events and Fatalities
3.3. Trends in Extreme Precipitation Indices and Their Relationship with Total Flood Events
3.4. Non-Stationary Extreme Values Distribution and Return Period Analysis
3.5. Uncertainty Analysis
4. Discussion
5. Conclusions
- Flood-Prone Countries: Nigeria, Ghana, and Niger in West Africa; Algeria and Morocco in North Africa; Ethiopia, Kenya, Sudan, and Tanzania in East Africa; Angola and the Democratic Republic of Congo (DRC) in Central Africa; and Mozambique, Malawi, and South Africa in Southern Africa are identified as the most flood-prone countries, with the highest numbers of total flood events and fatalities.
- Impacts and Damages: Significant impacts and damages per capita were observed in Nigeria and Niger (West Africa), Sudan and Ethiopia (East Africa), Gabon (Central Africa), and Mozambique and Zimbabwe (Southern Africa), with these regions experiencing the highest levels of affected populations and economic losses.
- Flood Event Distribution: Most of the flood events from 1975 to 2020 occurred in East Africa, West Africa, and North Africa. East Africa, Southern Africa, and North Africa also recorded the highest frequency of deaths and damage per capita.
- Trends in Floods and Fatalities: A highly significant positive trend in flood events and fatalities was observed across all RECs, although the magnitude of these trends varies by country and capital city. Significant trends were also noted in extreme precipitation indices in some regions.
- Main Triggers: The CWD index, particularly when computed using CHIRPS observation datasets, emerged as a major trigger for flood events in the capital cities.
- Non-stationary Flood Return Period: Non-stationary flood returns periods, calculated for up to 100 years, exhibited low uncertainties for return periods of less than 20 years, highlighting the reliability of these estimates for short-term infrastructure planning.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EM-DAT | Emergency Events Database |
| ERA5 | European Centre for Medium-Range Weather Forecasts Reanalysis |
| CHIRPS | Climate Hazards Group InfraRed Precipitation with Stations |
| CWD | Consecutive Wet Days |
| R95PTOT | annual precipitation on very wet days |
| AMP | Annual Maximum Precipitation |
| MK | Mann–Kendall |
| RECs | Regional Economic Communities |
| EFAS | European Flood Alert System |
| IPCC | Intergovernmental Panel on Climate Change |
| ENSO | El Niño-Southern Oscillation |
| ECOWAS | Economic Community for the West African States |
| WA | Western Africa |
| AMU | Arab Maghreb Union |
| NA | Northern Africa |
| ECCCAS | Economic Community of Central African States |
| CA | Central Africa |
| EAC | East African Community |
| IGAG | Intergovernmental Authority on Development |
| EA | Eastern Africa |
| SADC | Southern African Development Community |
| SA | Southern Africa |
| NFFA | Non-stationary Flood Frequency Analysis |
| ACF | auto-correlation functions |
| pACF | partial auto-correlation functions |
| GoF | Goodness-of-Fit |
| K-S | Kolmogorov–Smirnov |
| A-D | Anderson-Darling |
| AIC | Akaike Information Criterion |
| BIC | Bayesian Information Criterion |
| DRC | Democratic Republic of Congo |
| USD | United States Dollar |
References
- Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; et al. Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2020; p. 233. [Google Scholar]
- AghaKouchak, A.; Chiang, F.; Huning, L.S.; Love, C.A.; Mallakpour, I.; Mazdiyasni, O.; Moftakhari, H.; Papalexiou, S.M.; Ragno, E.; Sadegh, M. Climate Extremes and Compound Hazards in a Warming World. Annu. Rev. Earth Planet. Sci. 2020, 48, 519–548. [Google Scholar] [CrossRef]
- Ajayi, V.O.; Ilori, O.W. Projected Drought Events over West Africa Using RCA4 Regional Climate Model. Earth Syst. Environ. 2020, 4, 329–348. [Google Scholar] [CrossRef]
- Dottori, F.; Szewczyk, W.; Ciscar, J.-C.; Zhao, F.; Alfieri, L.; Hirabayashi, Y.; Bianchi, A.; Mongelli, I.; Frieler, K.; Betts, R.A. Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Chang. 2018, 8, 781–786. [Google Scholar] [CrossRef]
- Panwar, V.; Sen, S. Disaster damage records of EM-DAT and DesInventar: A systematic comparison. Econ. Disasters Clim. Chang. 2020, 4, 295–317. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Montanari, A.; Lins, H.; Koutsoyiannis, D. Flood fatalities in Africa: From diagnosis to mitigation. Geophys. Res. Lett. 2010, 37, 5. [Google Scholar] [CrossRef]
- Li, C.J.; Chai, Y.Q.; Yang, L.S.; Li, H.R. Spatio-temporal distribution of flood disasters and analysis of influencing factors in Africa. Nat. Hazards 2016, 82, 721–731. [Google Scholar] [CrossRef]
- Tramblay, Y.; Villarini, G.; Zhang, W. Observed changes in flood hazard in Africa. Environ. Res. Lett. 2020, 15, 1040b5. [Google Scholar] [CrossRef]
- Tramblay, Y.; Amoussou, E.; Dorigo, W.; Mahé, G. Flood risk under future climate in data sparse regions: Linking extreme value models and flood generating processes. J. Hydrol. 2014, 519, 549–558. [Google Scholar] [CrossRef]
- Aich, V.; Koné, B.; Hattermann, F.F.; Paton, E.N. Time Series Analysis of Floods across the Niger River Basin. Water 2016, 8, 165. [Google Scholar] [CrossRef]
- Rapolaki, R.S.; Reason, C.J.C. Tropical storm Chedza and associated floods over south-eastern Africa. Nat. Hazards 2018, 93, 189–217. [Google Scholar] [CrossRef]
- Badou, F.D.; Hounkpe, J.; Yacouba, Y.; Ibrahim, M.; Bossa, A.Y. Increasing Devastating Flood Events in West Africa: Who is to Blame? In Regional Climate Change Series; WASCAL Publishing: Ouagadougou, Burkina Faso, 2019; pp. 85–91. [Google Scholar] [CrossRef]
- Dube, K. Flooding trends and their impacts on coastal communities of Western Cape Province, South Africa. Geo. J. 2021, 87, 453–468. [Google Scholar] [CrossRef]
- Tramblay, Y.; Villarini, G.; El Khalki, E.M.; Gründemann, G.; Hughes, D. Evaluation of the Drivers Responsible for Flooding in Africa. Water Resour. Res. 2021, 57, e2021WR029595. [Google Scholar] [CrossRef]
- Aich, V.; Liersch, S.; Vetter, T.; Fournet, S.; Andersson, J.; Calmanti, S.; van Weert, F.; Hattermann, F.F.; Müller, E.N. Flood projections for the Niger River Basin under future land use and climate change. Sci. Total. Environ. 2015, 562, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Nka, B.N.; Oudin, L.; Karambiri, H.; Paturel, J.E.; Ribstein, P. Trends in floods in West Africa: Analysis based on 11 catchments. Hydrol. Earth Syst. Sci. 2015, 19, 4707–4719. [Google Scholar] [CrossRef]
- Houteta, D.K.; Tall, M.; Nonki, R.M.; Patel, N.; Sylla, M.B.; Djaman, K.; Atchonouglo, K.; Hewitson, B. Flood frequency and amplitude analysis under changing climate scenarios in the Mono River Basin, West Africa. Sustain. Water Resour. Manag. 2025, 11, 12. [Google Scholar] [CrossRef]
- Tramblay, Y.; El Khalki, E.M.; Khedimallah, A.; Sadaoui, M.; Benaabidate, L.; Boulmaiz, T.; Boutaghane, H.; Dakhlaoui, H.; Hanich, L.; Ludwig, W.; et al. Regional flood frequency analysis in North Africa. J. Hydrol. 2024, 630, 130678. [Google Scholar] [CrossRef]
- Thiemig, V.; Pappenberger, F.; Thielen, J.; Gadain, H.; De Roo, A.; Bodis, K.; De Roo, A.P.J.; Bodis, K.; Del Medico, M.; Muthusi, F. Ensemble flood forecasting in Africa: A feasibility study in the Juba—Shabelle river basin. Atmos. Sci. Lett. 2010, 11, 123–131. [Google Scholar] [CrossRef]
- Denise, T.; Fozong, N.; Tiafack, O.; Tchakonte, S.; Guillaine, C.; Ngeumo, N.; Badariotti, D. Analysis of Weather Anomalies to Assess the 2021 Flood Events in Yaounde, Cameroon (Central Africa). Am. J. Clim. Change 2023, 12, 292–320. [Google Scholar] [CrossRef]
- Mashao, F.M.; Mothapo, M.C.; Munyai, R.B.; Letsoalo, J.M.; Mbokodo, I.L.; Muofhe, T.P.; Matsane, W.; Chikoore, H. Extreme Rainfall and Flood Risk Prediction over the East Coast of South Africa. Water 2023, 14, 50. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Ruane, A.C.; Vautard, R.; Arnell, N.; Coppola, E.; Cruz, F.A.; Dessai, S.; Islam, A.S.; Rahimi, M.; Carrascal, D.R.; et al. Climate Change Information for Regional Impact and for Risk Assessment. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 351–364. [Google Scholar] [CrossRef]
- Sylla, M.B.; Giorgi, F.; Coppola, E.; Mariotti, L. Uncertainties in daily rainfall over Africa: Assessment of gridded observation products and evaluation of a regional climate model simulation. Int. J. Clim. 2013, 33, 1805–1817. [Google Scholar] [CrossRef]
- Dembélé, M.; Zwart, S.J. Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. Int. J. Remote. Sens. 2016, 37, 3995–4014. [Google Scholar] [CrossRef]
- Yang, D.; Bright, J.M. Worldwide validation of 8 satellite-derived and reanalysis solar radiation products: A preliminary evaluation and overall metrics for hourly data over 27 years. Sol. Energy 2020, 210, 3–19. [Google Scholar] [CrossRef]
- Mawere, M. Theorising Development in Africa: Towards Building an African Framework of Development; Langaa RPCIG; African Books Collective: Oxford, UK, 2017. [Google Scholar]
- Weber, T.; Bowyer, P.; Rechid, D.; Pfeifer, S.; Raffaele, F.; Remedio, A.R.; Teichmann, C.; Jacob, D. Analysis of Compound Climate Extremes and Exposed Population in Africa Under Two Different Emission Scenarios. Earths Futur. 2020, 8, e2019EF001473. [Google Scholar] [CrossRef]
- Thiemig, V.; Bisselink, B.; Pappenberger, F.; Thielen, J. A pan-African medium-range ensemble flood forecast system. Hydrol. Earth Syst. Sci. 2015, 19, 3365–3385. [Google Scholar] [CrossRef]
- Jones, R.L.; Kharb, A.; Tubeuf, S. The untold story of missing data in disaster research: A systematic review of the empirical literature utilising the Emergency Events Database (EM-DAT). Environ. Res. Lett. 2023, 18, 103006. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Cucchi, M.; Weedon, G.P.; Amici, A.; Bellouin, N.; Lange, S.; Schmied, H.M.; Hersbach, H.; Buontempo, C. WFDE5: Bias-adjusted ERA5 reanalysis data for impact studies. Earth Syst. Sci. Data 2020, 12, 2097–2120. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. R. Meteorol. Soc. 2018, 144, 292–312. [Google Scholar] [CrossRef]
- Tall, M.; Bonan, B.; Zheng, Y.; Guichard, F.; Simina, M.; Gaye, A.T.; Sintondji, L.O.; Hountondji, F.C.C.; Nikiema, P.M. Towards a Long-Term Reanalysis of Land Surface Variables over Western Africa: LDAS-Monde Applied over Burkina Faso from 2001 to 2018. Remote. Sens. 2019, 11, 735. [Google Scholar] [CrossRef]
- McLeod, A.I. Kendall Rank Correlation and Mann-Kendall Trend Test. R Package Kendall. pp. 1–10. 2005. Available online: https://www.scirp.org/reference/referencespapers?referenceid=2216873 (accessed on 11 November 2025).
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Golshan, M.; Sciences, S.A.; Darabi, H.; Adamowski, J.F. Using the Mann—Kendall test and double mass curve method to explore stream flow changes in response to climate and human activities Uncorrected Proof. J. Water Clim. Chang. 2019, 10, 725–742. [Google Scholar] [CrossRef]
- Sen, A.K.; Niedzielski, T. Statistical Characteristics of Riverflow Variability in the Odra River Basin, Southwestern Poland. Pol. J. Environ. Stud. 2010, 19, 387–397. [Google Scholar]
- van der Spuy, D.; Plessis, J.A.D. Flood frequency analysis—Part 1: Review of the statistical approach in South Africa. Water SA 2022, 48, 110–119. [Google Scholar] [CrossRef]
- Xiong, L.; Du, T.; Xu, C.Y.; Guo, S.; Jiang, C.; Gippel, C.J. Non-stationary annual maximum flood frequency analysis using the norming constants method to consider non-stationarity in the annual daily flow series. Water Resour. Manag. 2015, 29, 3615–3633. [Google Scholar] [CrossRef]
- Ologhadien, I. Comparative Evaluation of Probability Distribution Models of Flood flow in Lower Niger Basin. Eur. J. Eng. Technol. Res. 2021, 6, 107–117. [Google Scholar] [CrossRef]
- De Paola, F.; Giugni, M.; Pugliese, F.; Annis, A.; Nardi, F. GEV parameter estimation and stationary vs. non-stationary analysis of extreme rainfall in African test cities. Hydrology 2018, 5, 28. [Google Scholar] [CrossRef]
- Smith, R.L. Maximum likelihood estimation in a class of nonregular cases. Biometrika 1985, 72, 67–90. [Google Scholar] [CrossRef]
- Arshad, M.; Rasool, M.T.; Ahmad, M.I. Anderson Darling and Modified Anderson Darling Tests for. Pak. J. Appl. Sci. 2003, 3, 85–88. [Google Scholar]
- Shen, G.; Hwang, S.N. Spatial–Temporal snapshots of global natural disaster impacts Revealed from EM-DAT for 1900–2015. Geomat. Nat. Hazards Risk 2019, 10, 912–934. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Koutsoyiannis, D. A global survey on the seasonal variation of the marginal distribution of daily precipitation. Adv. Water Resour. 2016, 94, 131–145. [Google Scholar] [CrossRef]
- Anghel, C.G.; Ianculescu, D. Application of the GEV Distribution in Flood Frequency Analysis in Romania: An In-Depth Analysis. Climate 2025, 13, 152. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; Albaladejo, J.; Castillo, V.M. Factors influencing surface runoff generation in a Mediterranean semi-arid environment: Chicamo watershed, SE Spain. Hydrol. Process. 1998, 12, 741–754. [Google Scholar] [CrossRef]
- Aich, V.; Koné, B.; Hattermann, F.F.; Müller, E.N. Floods in the Niger basin—Analysis and attribution. Nat. Hazards Eart Syst. Sci. 2014, 2, 5171–5212. [Google Scholar] [CrossRef]
- McGlade, J.; Bankoff, G.; Abrahams, J.; Cooper-Knock, S.J.; Cotecchia, F.; Desanker, P.; Erian, W.; Gencer, E.; Gibson, L.; Girgin, S. Global Assessment Report on Disaster Risk Reduction 2019; UN Office for Disaster Risk Reduction: Geneva, Switzerland, 2019. [Google Scholar]
- Cheng, L.; AghaKouchak, A.; Gilleland, E.; Katz, R.W. Non-stationary extreme value analysis in a changing climate. Clim. Chang. 2014, 127, 353–369. [Google Scholar] [CrossRef]
- Delforge, D.; Wathelet, V.; Below, R.; Sofia, C.L.; Tonnelier, M.; van Loenhout, J.A.F.; Speybroeck, N. EM-DAT: The Emergency Events Database. Int. J. Disaster Risk Reduct. 2025, 124, 105509. [Google Scholar] [CrossRef]
- Behera, S.K.; Luo, J.-J.; Masson, S.; Delecluse, P.; Gualdi, S.; Navarra, A.; Yamagata, T. Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Clim. 2005, 18, 4514–4530. [Google Scholar] [CrossRef]
- Munzhedzi, L.; Mugari, E.; Nethengwe, N.S.; Gumbo, A.D. Trends in extreme rainfall and their relationship to flooding episodes in Vhembe district, South Africa. Environ. Res. Commun. 2024, 6, 095016. [Google Scholar] [CrossRef]
- Ojara, M.A.; Yunsheng, L.; Babaousmail, H.; Wasswa, P. Trends and zonal variability of extreme rainfall events over East Africa during 1960–2017. Nat. Hazards 2021, 109, 33–61. [Google Scholar] [CrossRef]
- Halbert, K.; Nguyen, C.C.; Payrastre, O.; Gaume, E. Reducing uncertainty in flood frequency analyses: A comparison of local and regional approaches involving information on extreme historical floods. J. Hydrol. 2016, 541, 90–98. [Google Scholar] [CrossRef]
- Lai, C.D.; Murthy, D.N.P.; Xie, M. Weibull distributions. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 282–287. [Google Scholar] [CrossRef]
- Greene, W.H. A gamma-distributed stochastic frontier model. J. Econom. 1990, 46, 141–163. [Google Scholar] [CrossRef]
- Waldo, D.R.; Smith, L.W.; Cox, E.L.; Weinland, B.T.; Lucas, H.L., Jr. Logarithmic normal distribution for description of sieved forage materials. J. Dairy Sci. 1971, 54, 1465–1469. [Google Scholar] [CrossRef]
- Cooray, K. Generalized gumbel distribution. J. Appl. Stat. 2010, 37, 171–179. [Google Scholar] [CrossRef]
- Atchison, J.; Shen, S.M. Logistic-normal distributions: Some properties and uses. Biometrika 1980, 67, 261–272. [Google Scholar] [CrossRef]
- Salas, J.D.; Asce, M.; Obeysekera, J.; Asce, M. Revisiting the Concepts of Return Period and Risk for Nonstationary Hydrologic Extreme Events. J. Hydrol. Eng. 2014, 19, 554–568. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Houteta, D.K.; Sylla, M.B.; Tall, M.; Dajuma, A.; Pal, J.S.; Lennard, C.; Wolski, P.; Moufouma-Okia, W.; Hewitson, B. Spatial and Temporal Trend Analysis of Flood Events Across Africa During the Historical Period. Water 2025, 17, 3531. https://doi.org/10.3390/w17243531
Houteta DK, Sylla MB, Tall M, Dajuma A, Pal JS, Lennard C, Wolski P, Moufouma-Okia W, Hewitson B. Spatial and Temporal Trend Analysis of Flood Events Across Africa During the Historical Period. Water. 2025; 17(24):3531. https://doi.org/10.3390/w17243531
Chicago/Turabian StyleHouteta, Djanna Koubodana, Mouhamadou Bamba Sylla, Moustapha Tall, Alima Dajuma, Jeremy S. Pal, Christopher Lennard, Piotr Wolski, Wilfran Moufouma-Okia, and Bruce Hewitson. 2025. "Spatial and Temporal Trend Analysis of Flood Events Across Africa During the Historical Period" Water 17, no. 24: 3531. https://doi.org/10.3390/w17243531
APA StyleHouteta, D. K., Sylla, M. B., Tall, M., Dajuma, A., Pal, J. S., Lennard, C., Wolski, P., Moufouma-Okia, W., & Hewitson, B. (2025). Spatial and Temporal Trend Analysis of Flood Events Across Africa During the Historical Period. Water, 17(24), 3531. https://doi.org/10.3390/w17243531

