Analysis of Application of Design Standards for Future Climate Change Adaptive Agricultural Reservoirs Using Cluster Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Climate Change Vulnerability Assessment Reservoir
2.2. Classification of Climatic Homogeneity Regions
2.3. Cluster Analysis and Performance Evaluation
2.3.1. K-Means Clustering
2.3.2. Gaussian Mixture Model Clustering
2.3.3. Performance Evaluation
- Silhouette score
- 2.
- Calinski-Harabasz Index
- 3.
- Akaike Information Criterion
- 4.
- Bayesian Information Criterion
2.3.4. Standard Reservoir Selection Methods Applicable to Design Criteria
3. Results and Discussion
3.1. Data Preprocessing
3.2. Optimal Clustering Method and Number of Clusters
3.3. Results of Standard Reservoirs Selection for Design Criteria
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Economic Forum. Global Risks Perceptions Survey; World Economic Forum: Geneva, Switzerland, 2024. [Google Scholar]
- Madsen, H.; Lawrence, D.; Lang, M.; Martinkova, M.; Kjeldsen, T.R. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J. Hydrol. 2014, 519, 3634–3650. [Google Scholar] [CrossRef]
- Korea Rural Community Corporation (KRC). A Study on The Development of Climate Change Impact Investigation Methodology and Guidelines for Agricultural Infrastructure Improvement Project; Korea Rural Community Corporation (KRC): Naju-si, Republic of Korea, 2023. (In Korean) [Google Scholar]
- Reynolds, D.A. Gaussian mixture models. Encycl. Biom. 2009, 741, 827–832. [Google Scholar]
- Kim, S.J.; Bae, S.J.; Kim, S.; Yoo, S.H.; Choi, J.Y.; Jang, M.W. Assessing the Potential Impact of Climate Change on Irrigation by Reservoir. J. Korean Soc. Agric. Eng. 2021, 63, 141–150. (In Korean) [Google Scholar]
- Kim, S.J.; Bae, S.J.; Kim, S.; Yoo, S.H.; Jang, M.W. Assessing sensitivity of paddy rice to climate change in South Korea. Water 2016, 8, 554. [Google Scholar] [CrossRef]
- Korea Rural Community Corporation (KRC). A Research on Application of Design Standards Reflecting Future Climate Change Scenarios; Korea Rural Community Corporation (KRC): Naju-si, Republic of Korea, 2023. (In Korean) [Google Scholar]
- Teng, T.; Chen, Y.; Wang, S.; Jia, W.; Wang, Y.; Liu, Z.; Liu, K. Water injection softening modeling of hard roof and application in Buertai coal mine. Environ. Earth Sci. 2025, 84, 54. [Google Scholar] [CrossRef]
- Sun, C.; Shi, C.; Zhu, Z.; Lin, H.; Li, Z.; Du, F.; Cao, Z.; Lu, P.; Liu, L. Overburden failure characteristics and fracture evolution rule under repeated mining with multiple key strata control. Sci. Rep. 2025, 15, 28029. [Google Scholar] [CrossRef]
- Nam, W.H.; Kim, T.G.; Hong, E.M.; Hayes, M.J.; Svoboda, M.D. Water supply risk assessment of agricultural reservoirs using irrigation vulnerability model and cluster analysis. J. Korean Soc. Agric. Eng. 2015, 57, 59–67. (In Korean) [Google Scholar] [CrossRef]
- Jang, M.W. County-based vulnerability evaluation to agricultural drought using principal component analysis -The case of Gyeonggi-do-. J. Korean Soc. Rural Plan. 2006, 12, 37–48. (In Korean) [Google Scholar]
- Kim, J.U.; Kim, C.G.; Lee, J.W.; Kim, S.J. Development of Naïve-Bayes classification and multiple linear regression model to predict agricultural reservoir storage rate based on weather forecast data. J. Korea Water Resour. Assoc. 2018, 51, 839–852. (In Korean) [Google Scholar]
- Song, S.H.; Lee, J.H.; Park, D.J.; Lee, M.W. A Study on climate change vulnerability assessment for agricultural water and Korea Rural Community Corporation (KRC) climate adaptation measures. J. Clim. Change Res. 2023, 14, 1005–1011. (In Korean) [Google Scholar] [CrossRef]
- Yoon, S.K.; Lee, T.; Seong, K.; Ahn, Y. Calculation of future rainfall scenarios to consider the impact of climate change in Seoul City’s hydraulic facility design standards. J. Korea Water Resour. Assoc. 2021, 54, 419–431. (In Korean) [Google Scholar]
- Hwang, J.; Ahn, J.; Jeong, C.; Heo, J. A study on the variation of design flood due to climate change in the ungauged urban catchment. J. Korea Water Resour. Assoc. 2018, 51, 395–404. (In Korean) [Google Scholar]
- Wright, D.B.; Bosma, C.D.; Lopez-Cantu, T. U.S. Hydrologic Design Standards Insufficient Due to Large Increases in Frequency of Rainfall Extremes. Geophys. Res. Lett. 2019, 46, 8144–8153. [Google Scholar] [CrossRef]
- Department for Environment Food and Rural Affairs (Defra). Government Response to the Climate Change Committee; Department for Environment Food and Rural Affairs (Defra): London, UK, 2023. [Google Scholar]
- Ministry of Agriculture, Forestry and Fisheries (MAFF). Design Standards for Land Improvement Project Plan ‘Farm Roads’; Ministry of Agriculture, Forestry and Fisheries (MAFF): Tokyo, Japan, 2023.
- Environmental Protection Agency (EPA). Anacortes, Washington Rebuilds Water Treatment Plant for Climate Change; Environmental Protection Agency (EPA): Washington, DC, USA, 2023.
- Ministry of Environment (ME). A Study on the Amendment of River Design Standards Considering Climate Change; Ministry of Environment (ME): Tokyo, Japan, 2019.
- Ministry of the Interior and Safety (MOIS). Establishment of Disaster Prevention Performance Targets by Region Considering Future Climate Change Set and Operating Standards; Ministry of the Interior and Safety (MOIS): Sejong-si, Republic of Korea, 2017.
- Jain, A.K. Data Clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 8, 651–666. [Google Scholar] [CrossRef]
- Lloyd, S. Least Squares Quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965; Volume 1, pp. 281–297. [Google Scholar]
- Li, L.; Hansman, R.J.; Palacios, R.; Welsch, R. Anomaly detection via a Gaussian Mixture Model for flight operation and safety monitoring. Transp. Res. Part C Emerg. Technol. 2016, 64, 45–57. [Google Scholar]
- Shahapure, K.R.; Nicholas, C. Cluster Quality Analysis Using Silhouette Score. In Proceedings of the 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), Sydney, Australia, 6–9 October 2020; pp. 747–748. [Google Scholar]
- Shutaywi, M.; Kachouie, N.N. Silhouette Analysis for Performance Evaluation in Machine Learning with Applications to Clustering. Entropy 2021, 23, 759. [Google Scholar] [CrossRef] [PubMed]
- Caliński, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 1974, 3, 1–27. [Google Scholar]
- Milligan, G.W.; Cooper, M.C. An examination of procedures for determining the number of clusters in a data set. Psychometrika 1985, 50, 159–179. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike; Springer: New York, NY, USA, 1973; pp. 277–291. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Advanced Issues and Deeper Insights. In Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002; pp. 267–351. [Google Scholar]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]












| Location | Number of Reservoir | Location | Number of Reservoir | Total |
|---|---|---|---|---|
| Gangwon | 70 | Sejong | 1 | 1678 |
| Gyeonggi | 77 | Ulsan | 21 | |
| Gyeongnam | 126 | Incheon | 16 | |
| Gyeongbuk | 286 | Jeonnam | 419 | |
| Gwangju | 8 | Jeonbuk | 199 | |
| Daegu | 13 | Jeju | 5 | |
| Daejeon | 3 | Chungnam | 173 | |
| Busan | 4 | Chungbuk | 123 |
| Specification of Reservoir | Maximum | Minimum | Average | Number of Data |
|---|---|---|---|---|
| Effective storage capacity (1000 m3) | 258,562 | 100 | 1668 | 1678 |
| pre-processing ratio of watershed | 92.6 | 0.01 | 5.2 | |
| post-processing ratio of watershed | 10.0 | 1.0 | 3.8 | 1446 |
| Effective Storage Capacity (1000 m3) | Maximum Value | Minimum Value | Average Value | Number of Data |
|---|---|---|---|---|
| 100 ≤ x< 400 | 399.4 | 100.0 | 224.1 | 519 |
| 400 ≤ x< 1000 | 998.3 | 400.0 | 646.2 | 479 |
| 1000 ≤ x< 10,000 | 9946.0 | 1000.0 | 2416.3 | 422 |
| 10,000 ≤ x | 258,562.0 | 10,733.8 | 36,847.0 | 26 |
| Effective Storage Capacity (1000 m3) | k | K-Means | Gaussian Mixture Model | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Silhouette Score | CHI | AIC | BIC | Silhouette Score | CHI | AIC | BIC | ||
| 100 ≤ x < 400 | 3 | 0.61 | 2237 | 2 × 104 | 2 × 104 | 0.18 | 373 | 52 | 128 |
| 4 | 0.57 | 2605 | 1.5 × 104 | 1.5 × 104 | 0.15 | 483 | 58 | 147 | |
| 5 | 0.56 | 3233 | 1.2 × 104 | 1.2 × 104 | 0.05 | 390 | 63 | 165 | |
| 400 ≤ x < 1000 | 3 | 0.58 | 1882 | 0.7 × 106 | 0.7 × 106 | 0.56 | 1694 | 52 | 127 |
| 4 | 0.58 | 2453 | 0.5 × 106 | 0.5 × 106 | 0.20 | 415 | 58 | 146 | |
| 5 | 0.56 | 2871 | 0.4 × 106 | 0.4 × 106 | 0.18 | 637 | 64 | 164 | |
| 1000 ≤ x < 10,000 | 3 | 0.67 | 1185 | 0.7 × 108 | 0.7 × 108 | 0.46 | 469 | 56 | 129 |
| 4 | 0.63 | 1786 | 0.5 × 108 | 0.5 × 108 | 0.22 | 266 | 62 | 147 | |
| 5 | 0.32 | 2131 | 0.4 × 108 | 0.4 × 108 | 0.17 | 433 | 68 | 165 | |
| Cluster | 100 ≤ x < 400 | 400 ≤ x < 1000 | 1000 ≤ x < 10,000 | |||
|---|---|---|---|---|---|---|
| Effective Storage Capacity (1000 m3) | Ratio of Watershed | Effective Storage Capacity (1000 m3) | Ratio of Watershed | Effective Storage Capacity (1000 m3) | Ratio of Watershed | |
| Cluster 0 | 348.8 | 4.8 | 845.2 | 2.4 | 1680.7 | 6.2 |
| Cluster 1 | 175.2 | 5.3 | 448.7 | 3.6 | 5562.6 | 2.8 |
| Cluster 2 | 232.4 | 2.8 | 567.7 | 2.7 | 3725.1 | 4.6 |
| Cluster 3 | 119.5 | 2.9 | 635.5 | 5.3 | 2255.3 | 2.5 |
| Cluster 4 | - | 938.7 | 4.7 | 1367.8 | 2.6 | |
| Cluster by Effective Storage Capacity | 100 ≤ x < 400 (1000 m3) | 400 ≤ x < 1000 (1000 m3) | 1000 ≤ x < 10,000 (1000 m3) | Total | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Homo Climatic Region | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 4 | ||
| 1 | O | O | O | O | O | O | O | O | - | O | O | O | O | O | 13 | |
| 2 | - | O | - | O | O | - | - | O | - | O | O | - | O | O | 8 | |
| 3 | O | O | O | O | O | O | O | O | - | O | O | O | O | O | 13 | |
| 4 | O | O | O | O | O | O | O | O | - | O | O | O | O | O | 13 | |
| 5 | O | O | O | O | O | O | O | O | O | - | O | O | O | O | 13 | |
| 6 | O | O | O | O | O | O | O | O | O | - | O | O | O | O | 13 | |
| 7 | O | O | O | - | O | O | O | O | O | O | O | O | - | O | 12 | |
| 8 | O | O | O | O | O | O | O | O | O | O | O | O | O | O | 14 | |
| 9 | - | - | - | - | O | - | - | O | - | O | - | - | - | - | 3 | |
| 10 | O | O | O | O | O | O | O | O | O | O | O | O | O | O | 14 | |
| 11 | O | O | O | O | O | O | O | O | - | O | O | O | O | O | 13 | |
| 12 | O | O | O | O | O | O | O | O | O | O | O | O | O | O | 14 | |
| 13 | O | O | O | O | O | O | O | - | - | O | - | - | O | 1 | 10 | |
| 14 | O | O | O | O | O | O | O | O | O | O | O | O | O | O | 14 | |
| 15 | O | O | - | - | - | O | - | - | O | O | - | O | O | - | 7 | |
| 16 | O | O | O | O | O | O | O | O | O | O | - | - | O | O | 12 | |
| 17 | - | - | - | - | O | - | - | O | O | O | - | O | O | O | 7 | |
| 18 | O | O | O | O | O | O | O | O | O | O | O | O | O | O | 14 | |
| 19 | O | O | O | O | O | O | O | O | O | O | O | O | O | O | 14 | |
| 20 | O | O | O | - | O | O | O | O | O | O | - | - | O | O | 11 | |
| 21 | O | O | - | - | O | O | O | O | - | O | O | O | O | O | 11 | |
| 22 | O | O | O | O | O | O | O | O | O | O | O | O | O | O | 14 | |
| 23 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
| 24 | O | O | O | - | - | O | O | O | O | O | O | O | O | O | 12 | |
| 25 | O | O | O | O | O | O | O | O | O | O | O | O | O | O | 14 | |
| 26 | - | O | - | - | - | - | - | - | - | - | - | - | - | - | 1 | |
| Sub total | 21 | 23 | 19 | 17 | 22 | 21 | 20 | 22 | 16 | 22 | 18 | 19 | 22 | 22 | 284 | |
| Total | 80 | 101 | 103 | |||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, D.-H.; Na, R.; Kim, H.; Yoo, S.-H.; Lee, S.-H. Analysis of Application of Design Standards for Future Climate Change Adaptive Agricultural Reservoirs Using Cluster Analysis. Water 2025, 17, 3463. https://doi.org/10.3390/w17243463
Joo D-H, Na R, Kim H, Yoo S-H, Lee S-H. Analysis of Application of Design Standards for Future Climate Change Adaptive Agricultural Reservoirs Using Cluster Analysis. Water. 2025; 17(24):3463. https://doi.org/10.3390/w17243463
Chicago/Turabian StyleJoo, Dong-Hyuk, Ra Na, Hayoung Kim, Seung-Hwan Yoo, and Sang-Hyun Lee. 2025. "Analysis of Application of Design Standards for Future Climate Change Adaptive Agricultural Reservoirs Using Cluster Analysis" Water 17, no. 24: 3463. https://doi.org/10.3390/w17243463
APA StyleJoo, D.-H., Na, R., Kim, H., Yoo, S.-H., & Lee, S.-H. (2025). Analysis of Application of Design Standards for Future Climate Change Adaptive Agricultural Reservoirs Using Cluster Analysis. Water, 17(24), 3463. https://doi.org/10.3390/w17243463

