Simulation of Actual Evapotranspiration and Its Multiple-Timescale Attribution Analysis in the Upper Reaches of the Jinsha River, China
Abstract
1. Introduction
2. Research Region and Data
3. Approaches
3.1. Bernaola–Galván (BG) Segmentation Algorithm
3.2. ABCD Hydrological Model
3.3. Multiple-Timescale Budyko Model
4. Result and Analysis
4.1. Mutation Analysis of Runoff Depth in the URJR
4.2. Runoff Simulation
4.3. Trend Analysis of Multi-Timescale Actual Evapotranspiration in the URJR
4.4. Multiple-Timescale Attribution Analysis of Actual Evapotranspiration in the URJR
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Askari, A.; Fathian, H.; Nikbakht-Shahbazi, A.; Hasonizade, H.; Zohrabi, N.; Shabani, M. Separating the attributions of anthropogenic activities and climate change to streamflow and multivariate dependence analysis. Acta Geophys. 2025, 73, 1947–1963. [Google Scholar] [CrossRef]
- Didovets, I.; Krysanova, V.; Nurbatsina, A.; Fallah, B.; Krylova, V.; Saparova, A.; Niyazov, J.; Kalashnikova, O.; Hattermann, F. Attribution of current trends in streamflow to climate change for 12 Central Asian catchments. Clim. Change 2024, 177, 16. [Google Scholar] [CrossRef]
- Holko, L.; Danko, M.; Sleziak, P. Analysis of changes in hydrological cycle of a pristine mountain catchment. 2. Isotopic data, trend and attribution analyses. J. Hydrol. Hydromech. 2020, 68, 192–199. [Google Scholar] [CrossRef]
- Marhaento, H.; Booij, M.; Hoekstra, A. Attribution of changes in stream flow to land use change and climate change in a mesoscale tropical catchment in Java, Indonesia. Hydrol. Res. 2017, 48, 1143–1155. [Google Scholar] [CrossRef]
- Sonali, P.; Nagesh Kumar, D. Detection and attribution of seasonal temperature changes in India with climate models in the CMIP5 archive. J. Water Clim. Change 2016, 7, 83–102. [Google Scholar] [CrossRef]
- Johnson, R.; Alila, Y. Nonstationary stochastic paired watershed approach: Investigating forest harvesting effects on floods in two large, nested, and snow-dominated watersheds in British Columbia, Canada. J. Hydrol. 2023, 625, 129970. [Google Scholar] [CrossRef]
- Feng, T.; Su, T.; Ji, F.; Zhi, R.; Han, Z.X. Temporal Characteristics of Actual Evapotranspiration Over China Under Global Warming. J. Geophys. Res. Atmos. 2018, 123, 5845–5858. [Google Scholar] [CrossRef]
- He, G.; Zhao, Y.; Wang, J.; Gao, X.; He, F.; Li, H.; Zhai, J.; Wang, Q.; Zhu, Y. Attribution analysis based on Budyko hypothesis for land evapotranspiration change in the Loess Plateau, China. J. Arid Land 2019, 11, 939–953. [Google Scholar] [CrossRef]
- Duethmann, D.; Bolch, T.; Farinotti, D.; Kriegel, D.; Vorogushyn, S.; Merz, B.; Pieczonka, T.; Jiang, T.; Su, B.; Güntner, A. Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia. Water Resour. Res. 2015, 51, 4727–4750. [Google Scholar] [CrossRef]
- Nabaei, S.; Saghafian, B. Quantifying streamflow drivers by anthropogenic time series attribution method in human-nature system. Theor. Appl. Climatol. 2021, 144, 1335–1348. [Google Scholar] [CrossRef]
- Jovanovic, T.; Sun, F.; Mahjabin, T.; Mejia, A. Disentangling the effects of climate and urban growth on streamflow for sustainable urban development: A stochastic approach to flow regime attribution. Landsc. Urban Plan. 2018, 177, 160–170. [Google Scholar] [CrossRef]
- Whitney, K.; Vivoni, E.; Bohn, T.; Mascaro, G.; Wang, Z.; Xiao, M.; Mahmoud, M.; Cullom, C.; White, D. Spatial attribution of declining Colorado River streamflow under future warming. J. Hydrol. 2023, 617, 129125. [Google Scholar] [CrossRef]
- Gunacti, M.; Kandemir, F.; Najar, M.; Kuzucu, A.; Uyar, M.; Barbaros, F.; Boyacioglu, H.; Gul, G.; Gul, A. Attribution of changes in the water balance of a basin to land-use changes through combined modelling of basin hydrology and land-use dynamics. J. Water Clim. Change 2022, 13, 4087–4104. [Google Scholar] [CrossRef]
- Setti, S.; Maheswaran, R.; Radha, D.; Sridhar, V.; Barik, K.; Narasimham, M. Attribution of Hydrologic Changes in a Tropical River Basin to Rainfall Variability and Land-Use Change: Case Study from India. J. Hydrol. Eng. 2020, 25, 05020015. [Google Scholar] [CrossRef]
- Barkhordari, H.; Asgari Dastjerdi, P.; Nasseri, M. Development of a framework estimating regional gridded streamflow and actual evapotranspiration datasets: Fusing Budyko and water balance closure methods using remotely sensed ancillary data. J. Hydrol. 2025, 660, 133456. [Google Scholar] [CrossRef]
- Jaramillo, F.; Cory, N.; Arheimer, B.; Laudon, H.; van der Velde, Y.; Hasper, T.B.; Teutschbein, C.; Uddling, J. Dominant effect of increasing forest biomass on evapotranspiration: Interpretations of movement in Budyko space. Hydrol. Earth Syst. Sci. 2018, 22, 567–580. [Google Scholar] [CrossRef]
- Ji, J.; Sun, M.; Ji, G.; Li, L.; Chen, W.; Huang, J.; Guo, Y. Simulation of actual evaporation and its multi-time scale attribution analysis for major rivers in China. J. Hydrol. 2025, 657, 133121. [Google Scholar] [CrossRef]
- Nayak, A.; Biswal, B.; Sudheer, K. A novel framework to determine the usefulness of satellite-based soil moisture data in streamflow prediction using dynamic Budyko model. J. Hydrol. 2021, 595, 125849. [Google Scholar] [CrossRef]
- Carmona, A.M.; Poveda, G.; Sivapalan, M.; Vallejo-Bernal, S.M.; Bustamante, E. A scaling approach to Budyko’s framework and the complementary relationship of evapotranspiration in humid environments: Case study of the Amazon River basin. Hydrol. Earth Syst. Sci. 2016, 20, 589–603. [Google Scholar] [CrossRef]
- Lhomme, J.-P.; Moussa, R. Matching the Budyko functions with the complementary evaporation relationship: Consequences for the drying power of the air and the Priestley–Taylor coefficient. Hydrol. Earth Syst. Sci. 2016, 20, 4857–4865. [Google Scholar] [CrossRef]
- Douville, H.; Ribes, A.; Decharme, B.; Alkama, R.; Sheffield, J. Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration. Nat. Clim. Change 2012, 3, 59–62. [Google Scholar] [CrossRef]
- Gerrits, A.; Savenije, H.; Veling, E.; Pfister, L. Analytical derivation of the Budyko curve based on rainfall characteristics and a simple evaporation model. Water Resour. Res. 2009, 45, W04403. [Google Scholar] [CrossRef]
- Singh, V.; Singh, P.; Jain, S.; Jain, S.; Cudennec, C.; Hessels, T. Examining evaporative demand and water availability in recent past for sustainable agricultural water management in India at sub-basin scale. J. Clean. Prod. 2022, 346, 130993. [Google Scholar] [CrossRef]
- Budyko, M. Climate and Life; Academic Press: San Diego, CA, USA, 1974; pp. 321–330. [Google Scholar]
- Potter, N.; Zhang, L. Interannual variability of catchment water balance in Australia. J. Hydrol. 2009, 369, 120–129. [Google Scholar] [CrossRef]
- Bai, H.; Lu, X.; Yang, X.; Huang, J.; Mu, X.; Zhao, G.; Gui, F.; Yue, C. Assessing impacts of climate change and human activities on the abnormal correlation between actual evaporation and atmospheric evaporation demands in southeastern China. Sustain. Cities Soc. 2020, 56, 102075. [Google Scholar] [CrossRef]
- Ji, G.; Liu, Z.; Gao, H.; Chen, W.; Huang, J.; Zhang, Y.; Guo, Y.; Chen, Y. Monthly scale actual evaporation simulation and attribution analysis in Gan River Basin from 1961 to 2020. Res. Soil Water Conserv. 2025, 32, 195–202. (In Chinese) [Google Scholar]
- Yu, J.; Li, Z.; Feng, Y. Estimation and Attribution Analysis of Actual Evapotranspiration in the Middle Reach of Heihe River Basin Based on Budyko Theory. Water Sav. Irrig. 2022, 2, 54–58+65. (In Chinese) [Google Scholar]
- Li, S.; Song, J.; Qi, G. Analysis of Spatiotemporal Variation and Attribution of Evapotranspiration in Weihe River Basin Based on Budyko Model. Res. Soil Water Conserv. 2024, 31, 304–314. [Google Scholar]
- Su, T.; Wang, S.; Sun, S.; Feng, T.; Huang, B.; Ma, Q.; Li, S.; Feng, G. Analysis of actual evapotranspiration changes in China based on multi-source data and assessment of the contribution of driving factors using an extended Budyko framework. Theor. Appl. Climatol. 2024, 155, 1653–1666. [Google Scholar] [CrossRef]
- Su, T.; Xie, D.; Feng, T.; Huang, B.; Qian, Z.; Feng, G.; Wu, Y. Quantifying the contribution of terrestrial water storage to actual evapotranspiration trends by the extended Budyko model in Northwest China. Atmos. Res. 2022, 273, 106147. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, Y.; Xiao, W.; Ruan, B.; Lu, F.; Hou, B.; Wang, Y.; Cui, H. Impacts of climate and vegetation on actual evapotranspiration in typical arid mountainous regions using a Budyko-based framework. Hydrol. Res. 2021, 52, 212–228. [Google Scholar] [CrossRef]
- Wu, Y.; Fang, H.; Huang, L.; Ouyang, W. Changing runoff due to temperature and precipitation variations in the dammed Jinsha River. J. Hydrol. 2020, 582, 124500. [Google Scholar] [CrossRef]
- Yue, S.; Ji, G.; Huang, J.; Cheng, M.; Guo, Y.; Chen, W. Quantitative Assessment of the Contribution of Climate and Underlying Surface Change to Multiscale Runoff Variation in the Jinsha River Basin, China. Land 2023, 12, 1564. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, W.; Yu, S.; Liang, S.; Hu, Q. Assessment of the Contributions of Climate Change and Human Activities to Runoff Variation: Case Study in Four Subregions of the Jinsha River Basin, China. J. Hydrol. Eng. 2021, 26, 05021024. [Google Scholar] [CrossRef]
- Wang, L.; Cao, H.; Li, Y.; Feng, B.; Qiu, H.; Zhang, H. Attribution Analysis of Runoff in the Upper Reaches of Jinsha River, China. Water 2022, 14, 2768. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zhang, Q.; Zhang, X.; Xu, Y.; Liu, X.; Mao, J.; Xu, C. Cumulative and offsetting effects of Streamflow Response to Climate change and Large Reservoir Group in the Jinsha River Basin, China. J. Hydrol. Reg. Stud. 2025, 60, 102480. [Google Scholar] [CrossRef]
- Bernaola-Galván, P.; Ivanov, P.; Amaral, L.; Stanley, H. Scale Invariance in the Nonstationarity of Human Heart Rate. Phys. Rev. Lett. 2001, 87, 168105. [Google Scholar] [CrossRef]
- Feng, G.; Gong, Z.; Dong, W.; Li, J. Abrupt climate change detection based on heuristic segmentation algorithm. Acta Phys. Sin. 2005, 11, 5494–5499. (In Chinese) [Google Scholar] [CrossRef]
- Qi, J.; Ma, D.; Chen, Z.; Tian, Q.; Tian, Y.; He, Z.; Ma, Q.; Ma, Y.; Guo, L. Runoff Evolution Characteristics and Predictive Analysis of Chushandian Reservoir. Water 2025, 17, 2015. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Wang, M.; Li, X.; Zhang, Y.; Yang, B.; Lai, C. A framework for optimization and assessment of long-term urban stormwater management scenarios under climate change and performance challenges. J. Environ. Manag. 2025, 390, 126298. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Liu, Y.; Song, H.; Ren, M.; Cai, Q.; Sun, C.; Li, Q.; Ling, H.; Zhang, T.; Ye, M.; et al. Human-induced water-environment changes recorded in tree rings in the lower Tarim River. J. Hydrol. 2025, 661, 133665. [Google Scholar] [CrossRef]
- Wang, X.; Gao, B.; Wang, X. A Modified ABCD Model with Temperature-Dependent Parameters for Cold Regions: Application to Reconstruct the Changing Runoff in the Headwater Catchment of the Golmud River, China. Water 2020, 12, 1812. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, D.; Yang, H.; Sivapalan, M. Unifying catchment water balance models for different time scales through the maximum entropy production principle. Water Resour. Res. 2016, 52, 7503–7512. [Google Scholar] [CrossRef]
- Zou, Y.; Yan, B.; Gu, D.; Chang, J.; Sun, M. A water-energy complementary model for monthly runoff simulation. J. Hydrol. 2024, 639, 131624. [Google Scholar] [CrossRef]
- Jiang, K.; Mo, S.; Chen, M.; Yu, K.; Lyu, J.; Li, P.; Li, Z. Runoff variation and its attribution analysis in the typical basin of Loess Plateau at multiple temporal and spatial scales. J. Hydrol. Reg. Stud. 2024, 56, 101963. [Google Scholar] [CrossRef]
- Jehanzaib, M.; Shah, S.; Yoo, J.; Kim, T. Investigating the impacts of climate change and human activities on hydrological drought using non-stationary approaches. J. Hydrol. 2020, 588, 125052. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X.; Zhang, Y.; Liu, C. Assessing the impacts of vegetation greenness change on evapotranspiration and water yield in China. Water Resour. Res. 2020, 56, e2019WR027019. [Google Scholar] [CrossRef]
- Liu, X.; Yang, K.; Ferreira, V.G.; Bai, P. Hydrologic Model Calibration with Remote Sensing Data Products in Global Large Basins. Water Resour. Res. 2022, 58, e2022WR032929. [Google Scholar] [CrossRef]
- Chen, X.; Alimohammadi, N.; Wang, D. Modeling interannual variability of seasonal evaporation and storage change based on the extended Budyko framework. Water Resour. Res. 2013, 49, 6067–6078. [Google Scholar] [CrossRef]
- Ji, G.; Wu, L.; Wang, L.; Yan, D.; Lai, Z. Attribution Analysis of Seasonal Runoff in the Source Region of the Yellow River Using Seasonal Budyko Hypothesis. Land 2021, 10, 542. [Google Scholar] [CrossRef]
- Sun, Y.; Tian, F.; Yang, L.; Hu, H. Exploring the spatial variability of contributions from climate variation and change in catchment properties to streamflow decrease in a mesoscale basin by three different methods. J. Hydrol. 2014, 508, 170–180. [Google Scholar] [CrossRef]
- Jiang, C.; Xiong, L.; Wang, D.; Liu, P.; Guo, S.; Xu, C.Y. Separating the impacts of climate change and human activities on runoff using the Budyko-type equations with time-varying parameters. J. Hydrol. 2015, 522, 326–338. [Google Scholar] [CrossRef]
- Li, Z.; Huang, S.; Liu, D.; Leng, G.; Zhou, S.; Huang, Q. Assessing the effects of climate change and human activities on runoff variations from a seasonal perspective. Stoch. Environ. Res. Risk Assess. 2020, 34, 575–592. [Google Scholar] [CrossRef]
- Xin, Z.; Li, Y.; Zhang, L.; Ding, W.; Ye, L.; Wu, J.; Zhang, C. Quantifying the relative contribution of climate and human impacts on seasonal streamflow. J. Hydrol. 2019, 574, 936–945. [Google Scholar] [CrossRef]
- Sun, M.; Gao, B.; Xiao, W.; Hou, B. Spatiotemporal Variability of Evapotranspiration in Recent 61 Years and Its Response to Climate Change in the Three Gorges Reservoir Area. Water Resour. Power 2022, 40, 1–5. (In Chinese) [Google Scholar]
- Zhan, Y.; Zhang, W.; Yan, Y.; Wang, C.; Rong, Y.; Zhu, J.; Lu, H. Analysis of actual evapotranspiration evolution and influencing factors in the Yangtze River Basin. Acta Ecol. Sin. 2021, 41, 6924–6935. (In Chinese) [Google Scholar]
- Bai, P.; Cai, C. Attributive analysis of land evapotranspiration changes in China from 1982 to 2019. Acta Geogr. Sin. 2023, 78, 2750–2762. (In Chinese) [Google Scholar]
- Hao, Z.; Ouyang, L.; Ju, Q.; Dunzhu, J.C. Variation of Actual Evaporation at Wudaogou Experiment Station and Analysis of Influencing Factors. Water Resour. Power 2014, 32, 18–21. (In Chinese) [Google Scholar]
- Zhao, C.; Shi, F.; Sheng, Y. The trend and influencing factors of water surface evaporation in Aksu Oasis in the past 30 years. J. Soil Water Conserv. 2012, 26, 237–240+245. (In Chinese) [Google Scholar]





| Stations | Periods | a | b | c | d | Periods | NSE | RE/% |
|---|---|---|---|---|---|---|---|---|
| Batang | Base period | 0.70 | 390 | 0.60 | 0.50 | Calibration period (1967–1982) | 0.80 | −9.31 |
| Validation period (1983–1998) | 0.84 | −3.39 | ||||||
| Variation period | 0.75 | 400 | 0.53 | 0.50 | Calibration period (1999–2007) | 0.80 | 8.34 | |
| Validation period (2008–2016) | 0.84 | −3.92 | ||||||
| Shigu | Base period | 0.60 | 432 | 0.57 | 0.64 | Calibration period (1967–1977) | 0.87 | −3.24 |
| Validation period (1978–1987) | 0.88 | 4.47 | ||||||
| Variation period | 0.70 | 400 | 0.50 | 0.40 | Calibration period (1988–2002) | 0.83 | 4.25 | |
| Validation period (2003–2016) | 0.86 | −7.02 |
| Time | Batang | Shigu | ||
|---|---|---|---|---|
| β (mm/a) | Z | β (mm/a) | Z | |
| January | 0.02 | 2.52 ** | 0.03 | 3.87 ** |
| February | 0.03 | 2.68 ** | 0.04 | 3.89 ** |
| March | 0.03 | 3.65 ** | 0.04 | 4.11 ** |
| April | 0.05 | 3.84 ** | 0.05 | 4.59 ** |
| May | 0.11 | 4.30 ** | 0.13 | 5.20 ** |
| June | 0.12 | 3.78 ** | 0.17 | 5.23 ** |
| July | 0.16 | 3.34 ** | 0.22 | 5.37 ** |
| August | 0.12 | 3.32 ** | 0.21 | 5.42 ** |
| September | 0.09 | 2.59 ** | 0.16 | 4.35 ** |
| October | 0.06 | 2.97 ** | 0.08 | 4.34 ** |
| November | 0.04 | 2.78 ** | 0.05 | 4.03 ** |
| December | 0.03 | 2.59 ** | 0.04 | 4.37 ** |
| Spring | 0.06 | 4.77 ** | 0.08 | 5.35 ** |
| Summer | 0.14 | 4.20 ** | 0.20 | 5.87 ** |
| Autumn | 0.06 | 3.03 ** | 0.09 | 4.73 ** |
| Winter | 0.03 | 3.70 ** | 0.04 | 5.16 ** |
| Batang | Shigu | |||||||
|---|---|---|---|---|---|---|---|---|
| Time | Parameters | Evaluation Indexes | Parameters | Evaluation Indexes | ||||
| Ω | φ | NSE | RE% | ω | φ | NSE | RE% | |
| January | 0.85 | 0.83 | 0.86 | 0.04 | 0.72 | 0.83 | 0.83 | 0.04 |
| February | 0.89 | 0.78 | 0.95 | 0.05 | 0.77 | 0.96 | 0.94 | 0.19 |
| March | 0.87 | 0.20 | 0.75 | 0.09 | 0.72 | 0.13 | 0.70 | −0.02 |
| April | 0.81 | 0.20 | 0.78 | 0.16 | 0.70 | 0.15 | 0.71 | −0.02 |
| May | 0.80 | 0.40 | 0.77 | 0.86 | 0.70 | 0.15 | 0.72 | −0.01 |
| June | 0.86 | 0.09 | 0.72 | −0.03 | 0.79 | 0.14 | 0.73 | −0.01 |
| July | 0.97 | 0.15 | 0.79 | 0.10 | 0.89 | 0.23 | 0.75 | −0.38 |
| August | 1.10 | 0.31 | 0.73 | −0.07 | 0.92 | 0.22 | 0.71 | 0.01 |
| September | 0.97 | 0.23 | 0.75 | 0.12 | 0.82 | 0.26 | 0.70 | −4.07 |
| October | 0.96 | 0.47 | 0.74 | 0.63 | 0.82 | 0.41 | 0.75 | 0.07 |
| November | 0.85 | 0.49 | 0.93 | 0.27 | 0.71 | 0.33 | 0.93 | −0.05 |
| December | 0.84 | 0.72 | 0.89 | 0.14 | 0.68 | 0.48 | 0.91 | 0.06 |
| Spring | 0.82 | 0.30 | 0.82 | 0.34 | 0.71 | 0.32 | 0.77 | −0.01 |
| Summer | 0.96 | 0.20 | 0.85 | 0.46 | 0.84 | 0.16 | 0.85 | 0.01 |
| Autumn | 0.87 | 0.20 | 0.77 | −0.52 | 0.76 | 0.23 | 0.72 | −0.02 |
| Winter | 0.87 | 0.94 | 0.88 | 0.73 | 0.76 | 0.99 | 0.88 | 0.01 |
| Time | Batang | Shigu | ||
|---|---|---|---|---|
| ETc/mm | ETh/mm | ETc/mm | ETh/mm | |
| January | 0.79 | 0.35 | 0.42 | 0.65 |
| February | 0.89 | 0.21 | 0.56 | 0.62 |
| March | 0.79 | 0.14 | 0.91 | 0.95 |
| April | 1.10 | 0.15 | 0.88 | 1.12 |
| May | 1.22 | 1.28 | 1.77 | 1.99 |
| June | 2.14 | 1.38 | 2.35 | 2.89 |
| July | 3.74 | 1.14 | 2.51 | 3.38 |
| August | 2.62 | 1.73 | 2.39 | 3.36 |
| September | 1.93 | 0.84 | 0.57 | 4.07 |
| October | 0.71 | 0.69 | 0.74 | 1.69 |
| November | 0.76 | 0.39 | 0.94 | 0.81 |
| December | 0.74 | 0.36 | 0.35 | 0.60 |
| Spring | 3.10 | 1.57 | 3.55 | 4.06 |
| Summer | 8.50 | 4.25 | 7.25 | 9.62 |
| Autumn | 3.41 | 1.92 | 2.25 | 6.57 |
| Winter | 2.42 | 0.92 | 1.33 | 1.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Ji, G. Simulation of Actual Evapotranspiration and Its Multiple-Timescale Attribution Analysis in the Upper Reaches of the Jinsha River, China. Water 2025, 17, 3350. https://doi.org/10.3390/w17233350
Wang J, Ji G. Simulation of Actual Evapotranspiration and Its Multiple-Timescale Attribution Analysis in the Upper Reaches of the Jinsha River, China. Water. 2025; 17(23):3350. https://doi.org/10.3390/w17233350
Chicago/Turabian StyleWang, Jiaming, and Guangxing Ji. 2025. "Simulation of Actual Evapotranspiration and Its Multiple-Timescale Attribution Analysis in the Upper Reaches of the Jinsha River, China" Water 17, no. 23: 3350. https://doi.org/10.3390/w17233350
APA StyleWang, J., & Ji, G. (2025). Simulation of Actual Evapotranspiration and Its Multiple-Timescale Attribution Analysis in the Upper Reaches of the Jinsha River, China. Water, 17(23), 3350. https://doi.org/10.3390/w17233350

