Mystique and Pristine Microbiome of Jeju Lava (Yongam) Seawater: Comparative Insights with Mineral Water and Adjacent Seawater
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extractions
2.2. Library Preparation and Illumina Sequencing
2.3. Sequence Processing and Amplicon Sequence Variant (ASV) Generation
2.4. Taxonomic Assignment
2.5. Diversity Analyses
2.6. Statistical and Comparative Analyses
3. Results
3.1. Sequencing Output and Data Quality
3.2. Taxonomic Composition of Microbial Communities
3.3. Species-Level Diversity in Each Water Type
3.4. Alpha and Beta Diversity
3.5. Comparative Ecological Shifts Among YSW, YMW, and NSW
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Orcutt, B.N.; Larowe, D.E.; Biddle, J.F.; Colwell, F.S.; Glazer, B.T.; Reese, B.K.; Kirkpatrick, J.B.; Lapham, L.L.; Mills, H.J.; Sylvan, J.B.; et al. Microbial activity in the marine deep biosphere: Progress and prospects. Front Microbiol. 2013, 4, 189. [Google Scholar] [CrossRef]
- Poli, A.; Finore, I.; Romano, I.; Gioiello, A.; Lama, L.; Nicolaus, B. Microbial Diversity in Extreme Marine Habitats and Their Bio-molecules. Microorganisms 2017, 5, 25. [Google Scholar] [CrossRef]
- Kim, M.; Kim, M.H.; Kim, J.; Kang, K.; Lee, J.; Ghosh, M.; Son, Y.O. Comprehensive in vitro and in vivo investigations of the therapeutic potential of Jeju lava seawater salt in osteoarthritis. Appl. Biol. Chem. 2023, 67, 18. [Google Scholar] [CrossRef]
- Shin, J.; Hwang, S. A Borehole-Based Approach for Seawater Intrusion in Heterogeneous Coastal Aquifers, Eastern Part of Jeju Island, Korea. Water 2020, 12, 609. [Google Scholar] [CrossRef]
- Koh, C.S.; Koh, E.H.; Park, W.B.; Kim, M.C. Hydrogeologic Heterogeneity Impacts on Fresh-Saltwater Interaction in Jeju Volcanic Island, Korea. Groundwater 2025, 63, 621–635. [Google Scholar] [CrossRef]
- Choi, Y.K.; Kang, J.I.; Yang, D.H.; Han, S.C.; Kim, K.J.; Boo, H.J.; Hyun, J.W.; Koh, Y.S.; Boo, H.J.; Yoo, E.S.; et al. Desalinated Lava Seawater Promotes Wound Healing by MMP9 Through Activating ERK Pathways in HaCaT Cells. In Vivo 2025, 39, 2035–2049. [Google Scholar] [CrossRef]
- Heo, H.S.; Kim, Y.E.; Lee, J.H. Antioxidant activity of Jeju lava seawater through translocation of Nrf2 in human fibroblast. Food Sci. Biotechnol. 2024, 33, 2653–2661. [Google Scholar] [CrossRef]
- Im, J.H.; Yi, H.Y.; Chun, J.Y. Impact of diverse mineral hardness in electrodialysis water on the ionotropic gelation mechanism of low methoxyl pectin. Int. J. Biol. Macromol. 2024, 280, 135695. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.H.; Oh, H.M.; Park, M.J.; Jang, D.; Kwon, K.K. Constantimarinum furrinae gen. nov., sp. nov., a marine bacterium isolated from saline volcanic rock aquifer (lava seawater) at Jeju Island, Republic of Korea. J. Microbiol. 2022, 60, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, S.; Tao, J.; Li, M.; Wang, W.; Chen, M.; Fang, X.; Kong, L.; Wang, Y.; Pereira, O.; et al. Multi-omic stock of surface ocean microbiome built by monthly, weekly and daily sampling in Dapeng Bay, China. Sci. Data 2025, 12, 378. [Google Scholar] [CrossRef]
- Freyria, N.J.; de Oliveira, T.C.; Meng, A.; Pelletier, E.; Lovejoy, C. Shotgun metagenomics reveals the flexibility and diversity of Arctic marine microbiomes. ISME Commun. 2025, 5, ycaf007. [Google Scholar] [CrossRef]
- Ochoa-Sánchez, M.; Acuña Gomez, E.P.; Ramírez-Fenández, L.; Eguiarte, L.E.; Souza, V. Current knowledge of the Southern Hemisphere marine microbiome in eukaryotic hosts and the Strait of Magellan surface microbiome project. PeerJ 2023, 11, e15978. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Arahal, D.R.; Lekunberri, I.; González, J.M.; Pascual, J.; Pujalte, M.J.; Pedrós-Alió, C.; Pinhassi, J. Neptuniibacter caesariensis gen. nov., sp. nov., a novel marine genome-sequenced gammaproteobacterium. Int. J. Syst. Evol. Microbiol. 2007, 57, 1000–1006. [Google Scholar] [CrossRef]
- Kudo, R.; Yamano, R.; Yu, J.; Koike, S.; Haditomo, A.H.C.; de Freitas, M.A.M.; Tsuchiya, J.; Mino, S.; Thompson, F.; Romalde, J.L.; et al. Genome taxonomy of the genus Neptuniibacter and proposal of Neptuniibacter victor sp. nov. isolated from sea cucumber larvae. PLoS ONE 2023, 18, e0290060. [Google Scholar] [CrossRef] [PubMed]
- Beaver, R.C.; Neufeld, J.D. Microbial ecology of the deep terrestrial subsurface. ISME J. 2024, 18, wrae091. [Google Scholar] [CrossRef]
- Ben Maamar, S.; Aquilina, L.; Quaiser, A.; Pauwels, H.; Michon-Coudouel, S.; Vergnaud-Ayraud, V.; Labasque, T.; Roques, C.; Abbott, B.W.; Dufresne, A. Groundwater Isolation Governs Chemistry and Microbial Community Structure along Hydrologic Flowpaths. Front. Microbiol. 2015, 6, 1457. [Google Scholar] [CrossRef]
- Karwautz, C.; Zhou, Y.; Kerros, M.E.; Weinbauer, M.G.; Griebler, C. Bottom-up control of the groundwater microbial food-web in an alpine aquifer. Front. Ecol. Evol. 2022, 10, 854228. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, W.; Ma, B.; Liu, X.; Huang, T.; Niu, L.; Zhao, K.; Yang, Y.; Li, H. Aerobic denitrifying using actinobacterial consortium: Novel denitrifying microbe and its application. Sci. Total Environ. 2023, 859, 160236. [Google Scholar] [CrossRef]
- Huang, J.; Yang, J.; Jiang, H.; Wu, G.; Liu, W.; Wang, B.; Xiao, H.; Han, J. Microbial Responses to Simulated Salinization and Desalinization in the Sediments of the Qinghai-Tibetan Lakes. Front. Microbiol. 2020, 11, 1772. [Google Scholar] [CrossRef]
- Belila, A.; El-Chakhtoura, J.; Otaibi, N.; Muyzer, G.; Gonzalez-Gil, G.; Saikaly, P.E.; van Loosdrecht, M.C.M.; Vrouwenvelder, J.S. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production. Water Res. 2016, 94, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yang, Y.; Graham, N.J.D.; Li, Z.; Yang, X.; Wang, Z.; Farhat, N.; Vrouwenvelder, J.S.; Hou, L.A. A comprehensive evaluation of the temporal and spatial fouling characteristics of RO membranes in a full-scale seawater desalination plant. Water Res. 2024, 249, 120914. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Jiang, Z.; Wu, Z.; Sheng, Z.; Yang, X.; Sun, J.; Zhang, X.; Yang, Q.; Yu, X.; Yan, J. Limnobacter alexandrii sp. nov., a thiosulfate-oxidizing, heterotrophic and EPS-bearing Burkholderiaceae isolated from cultivable phycosphere microbiota of toxic Alexandrium catenella LZT09. Antonie Van Leeuwenhoek 2020, 113, 1689–1698. [Google Scholar] [CrossRef]
- Manes, C.L.; West, N.; Rapenne, S.; Lebaron, P. Dynamic bacterial communities on reverse-osmosis membranes in a full-scale desalination plant. Biofouling 2011, 27, 47–58. [Google Scholar] [CrossRef]
- Zhou, Z.; Hua, J.; Xue, J. Salinity drives shifts in soil microbial community composition and network complexity along vegetation community succession in coastal tidal flats. Estuar. Coast. Shelf Sci. 2022, 276, 108005. [Google Scholar] [CrossRef]
- Wu, Z.; Li, M.; Qu, L.; Zhang, C.; Xie, W. Metagenomic insights into microbial adaptation to the salinity gradient of a typical short residence-time estuary. Microbiome 2024, 12, 115. [Google Scholar] [CrossRef] [PubMed]
- Dini-Andreote, F.; de Cássia Pereira e Silva, M.; Triadó-Margarit, X.; Casamayor, E.O.; van Elsas, J.D.; Salles, J.F. Dynamics of bacterial community succession in a salt marsh chronosequence: Evidences for temporal niche partitioning. ISME J. 2014, 8, 1989–2001. [Google Scholar] [CrossRef] [PubMed]

| Water Samples | Total Bases (bp) | Total Reads | GC (%) | AT (%) | Q20 (%) | Q30 (%) |
|---|---|---|---|---|---|---|
| YSW 1 | 47,879,468 | 159,068 | 53.3 | 46.7 | 99.7 | 98.6 |
| YSW 2 | 78,448,426 | 260,626 | 52.8 | 47.2 | 99.6 | 98.5 |
| YSW 3 | 39,237,758 | 130,358 | 53.5 | 46.5 | 99.6 | 98.5 |
| YMW 1 | 119,115,934 | 395,734 | 55.7 | 44.3 | 99.6 | 98.4 |
| YMW 2 | 118,143,102 | 392,502 | 56.4 | 43.6 | 99.5 | 98.3 |
| YMW 3 | 56,205,128 | 186,728 | 55.5 | 44.5 | 99.6 | 98.3 |
| NSW 1 | 66,512,572 | 220,972 | 53.7 | 46.3 | 99.6 | 98.5 |
| NSW 2 | 60,112,108 | 199,708 | 53.6 | 46.4 | 99.6 | 98.4 |
| NSW 3 | 50,712,480 | 168,480 | 53.8 | 46.2 | 99.6 | 98.5 |
| No. | Species | YSW 1 | YSW 2 | YSW 3 | Mean ± SD (%) |
|---|---|---|---|---|---|
| 1 | Neptuniibacter pectenicola | 98.97 | 77.38 | 91.10 | 89.15 ± 10.92 |
| 2 | Unclassified (NA) | 0.68 | 15.23 | 2.49 | 6.13 ± 7.93 |
| 3 | Polaribacter pectinis | 0.00 | 1.59 | 0.00 | 0.53 ± 0.92 |
| 4 | Alcanivorax borkumensis | 0.00 | 0.00 | 1.10 | 0.37 ± 0.64 |
| 5 | Ketobacter alkanivorans | 0.00 | 0.00 | 0.93 | 0.31 ± 0.54 |
| 6 | Bosea thiooxidans | 0.00 | 0.00 | 0.92 | 0.31 ± 0.53 |
| 7 | Acinetobacter tjernbergiae | 0.00 | 0.10 | 0.67 | 0.26 ± 0.36 |
| 8 | Acuticoccus yangtzensis | 0.00 | 0.61 | 0.00 | 0.20 ± 0.35 |
| 9 | Francisella halioticida | 0.00 | 0.61 | 0.00 | 0.20 ± 0.35 |
| 10 | Lactobacillus gasseri | 0.00 | 0.00 | 0.59 | 0.20 ± 0.34 |
| 11 | Lacticaseibacillus paracasei | 0.00 | 0.51 | 0.00 | 0.17 ± 0.29 |
| 12 | Tepidisphaera mucosa | 0.00 | 0.00 | 0.48 | 0.16 ± 0.28 |
| 13 | Lawsonella clevelandensis | 0.00 | 0.00 | 0.45 | 0.15 ± 0.26 |
| 14 | Olsenella intestinalis | 0.00 | 0.00 | 0.42 | 0.14 ± 0.24 |
| 15 | Rhodopila globiformis | 0.00 | 0.00 | 0.39 | 0.13 ± 0.23 |
| No. | Species | YMW 1 | YMW 2 | YMW 3 | Mean ± SD (%) |
|---|---|---|---|---|---|
| 1 | Nocardioides marinus | 45.26 | 58.43 | 39.53 | 47.74 ± 9.70 |
| 2 | Limnobacter alexandrii | 29.31 | 19.41 | 35.90 | 28.21 ± 8.30 |
| 3 | Hydrogenophaga flava | 8.71 | 7.46 | 8.82 | 8.33 ± 0.76 |
| 4 | Unclassified (NA) | 4.00 | 4.77 | 3.46 | 4.08 ± 0.66 |
| 5 | Minwuia thermotolerans | 3.07 | 3.83 | 3.98 | 3.63 ± 0.49 |
| 6 | Polycyclovorans algicola | 5.08 | 1.20 | 2.23 | 2.84 ± 2.01 |
| 7 | Novosphingobium decolorationis | 0.93 | 0.88 | 1.53 | 1.11 ± 0.36 |
| 8 | Nocardioides ginkgobilobae | 0.42 | 0.88 | 0.89 | 0.73 ± 0.27 |
| 9 | Brevundimonas subvibrioides | 0.58 | 0.86 | 0.40 | 0.61 ± 0.24 |
| 10 | Paraperlucidibaca wandonensis | 0.67 | 0.48 | 0.52 | 0.56 ± 0.10 |
| 11 | Parvibaculum lavamentivorans | 0.28 | 0.37 | 0.39 | 0.34 ± 0.06 |
| 12 | Thalassobaculum fulvum | 0.15 | 0.04 | 0.31 | 0.17 ± 0.13 |
| 13 | Marinoscillum luteum | 0.06 | 0.23 | 0.19 | 0.16 ± 0.09 |
| 14 | Bosea thiooxidans | 0.25 | 0.01 | 0.21 | 0.16 ± 0.13 |
| 15 | Sphingomonas echinoides | 0.00 | 0.15 | 0.18 | 0.11 ± 0.10 |
| No. | Species | NSW 1 | NSW 2 | NSW 3 | Mean ± SD (%) |
|---|---|---|---|---|---|
| 1 | Unclassified (NA) | 41.72 | 52.78 | 40.79 | 45.10 ± 6.67 |
| 2 | Glaciecola amylolytica | 31.63 | 21.37 | 28.42 | 27.14 ± 5.25 |
| 3 | Parasynechococcus marenigrum | 8.05 | 8.74 | 6.63 | 7.81 ± 1.08 |
| 4 | Polaribacter marinivivus | 4.82 | 5.72 | 3.60 | 4.71 ± 1.06 |
| 5 | Vibrio chagasii | 0.09 | 0.13 | 9.39 | 3.20 ± 5.36 |
| 6 | Pseudoalteromonas marina | 3.39 | 1.06 | 1.65 | 2.03 ± 1.21 |
| 7 | Litorivicinus marinus | 2.16 | 1.65 | 1.87 | 1.89 ± 0.25 |
| 8 | Opacimonas viscosa | 1.46 | 1.16 | 1.12 | 1.25 ± 0.18 |
| 9 | Luminiphilus syltensis | 0.78 | 0.71 | 0.85 | 0.78 ± 0.07 |
| 10 | Candidatus Pelagibacter communis | 0.79 | 0.89 | 0.58 | 0.75 ± 0.16 |
| 11 | Marinobacterium marisflavi | 0.55 | 0.51 | 0.56 | 0.54 ± 0.03 |
| 12 | Phaeobacter italicus | 0.40 | 0.49 | 0.40 | 0.43 ± 0.05 |
| 13 | Alteromonas abrolhosensis | 0.18 | 0.42 | 0.19 | 0.26 ± 0.14 |
| 14 | Halioglobus pacificus | 0.28 | 0.23 | 0.17 | 0.23 ± 0.05 |
| 15 | Mameliella alba | 0.22 | 0.21 | 0.24 | 0.22 ± 0.01 |
| Representative Species | YSW (%) | YMW (%) | NSW (%) | Ecological Interpretation |
|---|---|---|---|---|
| Neptuniibacter pectenicola | 89.15 | 0 | 0 | Extreme oligotrophic specialist dominant only in confined lava seawater |
| Nocardioides marinus | 0 | 47.74 | 0 | Emerges after desalination; indicator of moderate-salinity adaptive community |
| Limnobacter alexandrii | 0 | 28.21 | 0 | Desalination-associated taxon with oxidative flexibility |
| Hydrogenophaga flava | 0 | 8.33 | 0 | Early colonizer in oxygen-exposed, reduced-salinity environments |
| Glaciecola amylolytica | 0 | 0 | 27.14 | Coastal heterotroph typical of natural seawater |
| Parasynechococcus marenigrum | 0 | 0 | 07.81 | Phototrophic cyanobacterium; absent in YSW/YMW due to light isolation |
| Vibrio chagasii | 0 | 0 | 3.20 | Opportunistic marine bacterium reflecting open-sea variability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, S.-H.; Ko, K.-H.; Jang, W.-G.; Hyun, C.-G. Mystique and Pristine Microbiome of Jeju Lava (Yongam) Seawater: Comparative Insights with Mineral Water and Adjacent Seawater. Water 2025, 17, 3306. https://doi.org/10.3390/w17223306
An S-H, Ko K-H, Jang W-G, Hyun C-G. Mystique and Pristine Microbiome of Jeju Lava (Yongam) Seawater: Comparative Insights with Mineral Water and Adjacent Seawater. Water. 2025; 17(22):3306. https://doi.org/10.3390/w17223306
Chicago/Turabian StyleAn, So-Hyun, Kwang-Hyo Ko, Won-Guk Jang, and Chang-Gu Hyun. 2025. "Mystique and Pristine Microbiome of Jeju Lava (Yongam) Seawater: Comparative Insights with Mineral Water and Adjacent Seawater" Water 17, no. 22: 3306. https://doi.org/10.3390/w17223306
APA StyleAn, S.-H., Ko, K.-H., Jang, W.-G., & Hyun, C.-G. (2025). Mystique and Pristine Microbiome of Jeju Lava (Yongam) Seawater: Comparative Insights with Mineral Water and Adjacent Seawater. Water, 17(22), 3306. https://doi.org/10.3390/w17223306

