Modeling Solar Radiation Data for Reference Evapotranspiration Estimation at a Daily Time Step for Poland
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Region and Data Collection
2.2. Equations
2.2.1. Estimation of Global Solar Radiation with Sunshine Duration-Based Model
2.2.2. Estimation of Global Solar Radiation with a Temperature-Based Model
2.2.3. Estimation of Reference Evapotranspiration
3. Results and Discussion
3.1. Solar Radiation Modeling Results
3.2. Evapotranspiration Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| P-M | Penman–Monteith equation |
| A-P | Angstrom–Prescot equation |
| H-S | Hargeaves–Sammani equation |
| FAO | Food and Agriculture Organization |
| MBE | Mean Bias Error |
| RMSE | Root Mean Square Error |
| RMSPE | Root Mean Square Percentage Error |
| MPE | Mean Percentage Error |
References
- Kleniewska, M.; Berezowski, T.; Mitrowska, D.; Szporak-Wasilewska, S.; Ciężkowski, W. Actual and reference evapotranspiration for a natural, temperate zone fen wetland—Upper Biebrza case study. J. Water Land Dev. 2024, 61, 62–70. [Google Scholar] [CrossRef]
- Howell, T.A.; Evett, S.R. The Penman-Monteith Method. In Proceedings of the Evapotranspiration: Determination of Consumptive Use in Water Rights Proceedings, Denver, CO, USA, 31 December 2004. [Google Scholar]
- Monteith, J.L. Evaporation and the Environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef]
- Allen, R.G.; Food and Agriculture Organization of the United Nations (Eds.) Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 978-92-5-104219-9. [Google Scholar]
- Kossowski, J.; Łykowski, B. Daily Sums of Solar Radiation during Summer Period in Felin near Lublin and Their Relationship with Sushine Duration and Cloudiness. Sci. Rev. Eng. Environ. Sci. 2007, 1, 74–84. (In Polish) [Google Scholar]
- Angstrom, A. Solar and Terrestrial Radiation. Report to the International Commission for Solar Research on Actinometric Investigations of Solar and Atmospheric Radiation. Q. J. R. Meteorol. Soc. 1924, 50, 121–126. [Google Scholar] [CrossRef]
- Prescott, J.A. Evaporation from a Water Surface in Relation to Solar Radiation. Trans. R. Soc. S. Aust. 1940, 64, 114–118. [Google Scholar]
- Suehrcke, H.; Bowden, R.S.; Hollands, K.G.T. Relationship between Sunshine Duration and Solar Radiation. Sol. Energy 2013, 92, 160–171. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Estimating Potential Evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225–230. [Google Scholar] [CrossRef]
- Bristow, K.L.; Campbell, G.S. On the Relationship between Incoming Solar Radiation and Daily Maximum and Minimum Temperature. Agric. For. Meteorol. 1984, 31, 159–166. [Google Scholar] [CrossRef]
- Lobit, P.; López Pérez, L.; Lhomme, J.P. Retrieving Air Humidity, Global Solar Radiation, and Reference Evapotranspiration from Daily Temperatures: Development and Validation of New Methods for Mexico. Part II: Radiation. Theor. Appl. Climatol. 2018, 133, 799–810. [Google Scholar] [CrossRef]
- Black, J.N. The Distribution of Solar Radiation over the Earth’s Surface. Arch. Meteorol. Geophys. Bioklimatol. Ser. B 1956, 7, 165–189. [Google Scholar] [CrossRef]
- Kasten, F.; Czeplak, G. Solar and Terrestrial Radiation Dependent on the Amount and Type of Cloud. Sol. Energy 1980, 24, 177–189. [Google Scholar] [CrossRef]
- Lindauer, M.; Schmid, H.P.; Grote, R.; Steinbrecher, R.; Mauder, M.; Wolpert, B. A Simple New Model for Incoming Solar Radiation Dependent Only on Screen-Level Relative Humidity. J. Appl. Meteorol. Climatol. 2017, 56, 1817–1825. [Google Scholar] [CrossRef]
- Bindi, M.; Miglietta, F. Estimating Daily Global Radiation from Air Temperature and Rainfall Measurements. Clim. Res. 1991, 1, 117–124. [Google Scholar] [CrossRef]
- Liu, D.L.; Scott, B.J. Estimation of Solar Radiation in Australia from Rainfall and Temperature Observations. Agric. For. Meteorol. 2001, 106, 41–59. [Google Scholar] [CrossRef]
- Iziomon, M.G.; Mayer, H. Assessment of Some Global Solar Radiation Parameterizations. J. Atmos. Sol.-Terr. Phys. 2002, 64, 1631–1643. [Google Scholar] [CrossRef]
- Trnka, M.; Žalud, Z.; Eitzinger, J.; Dubrovský, M. Global Solar Radiation in Central European Lowlands Estimated by Various Empirical Formulae. Agric. For. Meteorol. 2005, 131, 54–76. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, L.; Deng, S.; Xu, W.; Zhang, Y. A Critical Review of the Models Used to Estimate Solar Radiation. Renew. Sustain. Energy Rev. 2017, 70, 314–329. [Google Scholar] [CrossRef]
- Valle Júnior, L.C.G.D.; Vourlitis, G.L.; Curado, L.F.A.; Palácios, R.D.S.; Nogueira, J.D.S.; Lobo, F.D.A.; Islam, A.R.M.T.; Rodrigues, T.R. Evaluation of FAO-56 Procedures for Estimating Reference Evapotranspiration Using Missing Climatic Data for a Brazilian Tropical Savanna. Water 2021, 13, 1763. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Bartoszek, K. The Main Characteristics of Atmospheric Circulation over East-Central Europe from 1871 to 2010. Meteorol. Atmos. Phys. 2017, 129, 113–129. [Google Scholar] [CrossRef]
- Matuszko, D.; Bartoszek, K.; Soroka, J. Relationships between Sunshine Duration and Air Temperature in Poland. Geogr. Pol. 2022, 95, 275–290. [Google Scholar] [CrossRef]
- Mahmood, R.; Hubbard, K.G. Effect of Time of Temperature Observation and Estimation of Daily Solar Radiation for the Northern Great Plains, USA. Agron. J. 2002, 94, 723–733. [Google Scholar] [CrossRef]
- Ustrnul, Z.; Marosz, M.; Biernacik, D.; Walus, K.; Chilińska, A.; Wasielewska, K.; Kusek, K. Climate Monitoring Bulletin of Poland, Year 2024; Institute of Meteorology and Water Management IMGW-PIB: Warsaw, Poland, 2024; Available online: https://klimat.imgw.pl/pl/biuletyn-monitoring/#2024/rok (accessed on 30 July 2025). (In Polish)
- Miętus, M.; Owczarek, M.; Filipiak, J. Warunki Termiczne Na Obszarze Wybrzeża i Pomorza w Świetle Wybranych Klasyfikacji; Mat. Badaw; IMGW: Warsaw, Poland, 2002. (In Polish) [Google Scholar]
- Kaczorowska, Z. Opady w Polsce w przekroju wieloletnim. In Przegląd Geograficzny; Wydawnictwa Geologiczne: Warsaw, Poland, 1962; No. 33; 112p. (In Polish) [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 20 August 2025).
- Perpiñán, O. solaR: Solar Radiation and Photovoltaic Systems with R. J. Stat. Softw. 2012, 50, 1–32. [Google Scholar] [CrossRef]
- Michalsky, J.J. The Astronomical Almanac’s Algorithm for Approximate Solar Position (1950–2050). Sol. Energy 1988, 40, 227–235. [Google Scholar] [CrossRef]
- Hinrichsen, K. The Ångström Formula with Coefficients Having a Physical Meaning. Sol. Energy 1994, 52, 491–495. [Google Scholar] [CrossRef]
- Black, J.N.; Bonython, C.W.; Prescott, J.A. Solar Radiation and the Duration of Sunshine. Q. J. R. Meteorol. Soc. 1954, 80, 231–235. [Google Scholar] [CrossRef]
- Podogrocki, J. Spatiotemporal Distribution of Total Solar Radiation in Poland. Ph.D. Thesis, Institute of Meteorology and Water Management in Warsaw, Warszawa, Poland, 1975. (In Polish). [Google Scholar]
- Podogrocki, J. Spatial Distribution of Global Solar Radiation in Poland. Publ. Inst. Geophys. Pol. Acad. Sci. 1978, 5, 17–30. [Google Scholar]
- Almorox, J.; Hontoria, C. Global Solar Radiation Estimation Using Sunshine Duration in Spain. Energy Convers. Manag. 2004, 45, 1529–1535. [Google Scholar] [CrossRef]


| No. | Site Name | Latitude | Longitude | Altitude [m.a.s.l.] | tmax [°C] | tmin [°C] | Sunshine Hours | Years of Record |
|---|---|---|---|---|---|---|---|---|
| 1. | Kołobrzeg | 54°10′57″ N | 15°34′47″ E | 3 | 12.3 | 5.7 | 1727 | 2000–2013 |
| 2. | Legnica | 51°11′33″ N | 16°12′28″ E | 122 | 14.4 | 5.2 | 1774 | 2000–2015 |
| 3. | Lesko | 49°27′59″ N | 22°20′30″ E | 420 | 12.9 | 4.2 | 1738 | 2000–2015 |
| 4. | Łeba | 54°45′13″ N | 17°32′05″ E | 2 | 11.9 | 5.2 | 1901 | 2000–2015 |
| 5. | Łódź | 51°43′06″ N | 19°23′14″ E | 175 | 13.3 | 4.7 | 1782 | 2000–2015 |
| 6. | Mikołajki | 53°47′21″ N | 21°35′23″ E | 127 | 12.0 | 4.6 | 1799 | 2000–2015 |
| 7. | Piła | 53°07′50″ N | 16°44′50″ E | 72 | 13.3 | 4.4 | 1790 | 2000–2015 |
| 8. | Toruń | 53°02′31″ N | 18°35′44″ E | 69 | 13.5 | 4.5 | 1742 | 2000–2015 |
| 9. | Wieluń | 51°12′37″ N | 18°33′24″ E | 199 | 13.6 | 5.2 | 1777 | 2000–2015 |
| 10. | Włodawa | 51°33′12″ N | 23°31′46″ E | 177 | 13.0 | 4.2 | 1840 | 2000–2015 |
| Site Name H [MJ·m−2] | Site Coefficients | Poland Coefficients a = 0.21, b = 0.54 | Global Coefficients a = 0.25, b = 0.50 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| R2 | a b | RMSE [MJ·m−2] | RMSPE [%] | MBE [MJ·m−2] | MPE [%] | RMSE [MJ·m−2] | RMSPE [%] | MBE [MJ·m−2] | MPE [%] | RMSE [MJ m−2] | RMSPE [%] | MBE [MJ m−2] | MPE [%] | |
| Legnica 11.3 | 0.97 | 0.22 0.56 | 1.48 | 13.1 | −0.05 | −0.5 | 1.60 | 14.2 | −0.51 | −4.5 | 1.57 | 13.9 | 0.03 | 0.3 |
| Lesko 11.4 | 0.93 | 0.19 0.59 | 1.75 | 15.3 | −0.49 | −4.3 | 1.92 | 16.8 | −0.52 | −4.5 | 2.00 | 17.5 | 0.06 | 0.5 |
| Łódź 10.1 | 0.95 | 0.22 0.51 | 1.71 | 16.9 | 0.53 | 5.2 | 1.78 | 17.6 | 0.61 | 6.0 | 2.05 | 20.3 | 1.14 | 11.2 |
| Mikołajki 10.9 | 0.97 | 0.22 0.53 | 1.49 | 13.6 | −0.01 | −0.1 | 1.52 | 13.9 | −0.35 | −3.2 | 1.58 | 14.5 | 0.15 | 1.4 |
| Piła 10.4 | 0.97 | 0.20 0.54 | 1.30 | 12.5 | 0.05 | 0.5 | 1.34 | 12.9 | 0.29 | 2.8 | 1.61 | 15.5 | 0.81 | 7.8 |
| Toruń 10.4 | 0.96 | 0.21 0.50 | 1.69 | 16.3 | −0.36 | −3.5 | 1.61 | 15.5 | 0.05 | 0.47 | 1.73 | 16.7 | 0.60 | 5.6 |
| Wieluń 11.1 | 0.97 | 0.23 0.55 | 1.63 | 14.6 | 0.21 | 1.9 | 1.68 | 15.1 | −0.38 | −3.4 | 1.67 | 15.1 | 0.17 | 1.5 |
| Włodawa 10.9 | 0.89 | 0.23 0.49 | 2.67 | 24.5 | 0.02 | 0.2 | 2.71 | 24.9 | 0.09 | 0.8 | 2.76 | 25.3 | 0.61 | 5.6 |
| Kołobrzeg 10.2 | 0.97 | 0.22 0.55 | 1.49 | 14.6 | 0.22 | 2.2 | 1.49 | 14.6 | −0.11 | −1.0 | 1.57 | 15.3 | 0.42 | 4.1 |
| Łeba 10.8 | 0.96 | 0.19 0.53 | 1.88 | 17.5 | −0.67 | −6.2 | 1.67 | 15.6 | −0.11 | −1.0 | 1.76 | 16.4 | 0.36 | 3.4 |
| Site Name | Site Coefficients | Poland Coefficients “A” for Inland Stations = 0.15 “A” for Coastal Stations = 0.18 | Global Coefficients “A” for Inland Stations = 0.16 “A” for Coastal Stations = 0.19 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| R2 | A | RMSE [MJ·m−2] | RMSPE [%] | MBE [MJ·m−2] | MPE [%] | RMSE [MJ·m−2] | RMSPE [%] | MBE [MJ·m−2] | MPE [%] | RMSE [MJ·m−2] | RMSPE [%] | MBE [MJ·m−2] | MPE [%] | |
| Legnica | 0.84 | 0.15 | 3.46 | 30.6 | 0.14 | 1.2 | 3.46 | 30.6 | 0.14 | 1.2 | 3.56 | 31.5 | 0.80 | 7.1 |
| Lesko | 0.81 | 0.15 | 3.89 | 34.0 | −0.20 | −1.7 | 3.89 | 34.0 | −0.20 | −1.7 | 3.86 | 33.7 | 0.55 | 4.8 |
| Łódź | 0.85 | 0.15 | 3.23 | 31.6 | 0.74 | 7.3 | 3.23 | 31.6 | 0.74 | 7.3 | 3.50 | 34.2 | 1.48 | 14.4 |
| Mikołajki | 0.85 | 0.17 | 3.47 | 31.8 | 0.40 | 3.6 | 3.69 | 33.8 | −0.93 | −8.5 | 3.49 | 31.9 | −0.27 | −2.5 |
| Piła | 0.85 | 0.14 | 3.20 | 31.2 | 0.08 | 0.8 | 3.28 | 32.0 | 0.82 | 8.0 | 3.59 | 35.0 | 1.56 | 15.2 |
| Toruń | 0.85 | 0.14 | 3.27 | 31.6 | −0.05 | −0.5 | 3.31 | 32.0 | 0.69 | 6.6 | 3.58 | 34.6 | 1.42 | 13.8 |
| Wieluń | 0.84 | 0.16 | 3.33 | 30.0 | 0.60 | 5.3 | 3.32 | 29.9 | −0.14 | −1.2 | 3.33 | 30.0 | 0.60 | 5.3 |
| Włodawa | 0.81 | 0.15 | 3.69 | 33.9 | 0.26 | 2.4 | 3.69 | 33.9 | 0.26 | 2.4 | 3.82 | 35.0 | 0.96 | 8.8 |
| Kołobrzeg | 0.75 | 0.18 | 4.33 | 41.7 | 0.38 | 3.7 | 4.33 | 41.7 | 0.38 | 3.7 | 4.45 | 42.8 | 0.98 | 9.4 |
| Łeba | 0.74 | 0.17 | 4.65 | 43.2 | −0.50 | −4.7 | 4.61 | 42.9 | 0.10 | 1.0 | 4.69 | 43.6 | 0.71 | 6.6 |
| No. | Site Name | ET0(H) [mm] | ET0(A-P_S) [mm] | ET0(A-P_PL) [mm] | ET0(A-P_G) [mm] | ET0(H-S_S) [mm] | ET0(H-S_PL) [mm] | ET0(H-S_G) [mm] |
|---|---|---|---|---|---|---|---|---|
| Model 1. | Model 2. | Model 3. | Model 4. | Model 5. | Model 6. | Model 7. | ||
| 1. | Legnica | 582 | 581 | 568 | 580 | 583 | 583 | 604 |
| 2. | Lesko | 519 | 512 | 509 | 523 | 521 | 521 | 542 |
| 3. | Łódź | 565 | 573 | 576 | 588 | 578 | 578 | 598 |
| 4. | Mikołajki | 529 | 533 | 523 | 535 | 541 | 503 | 522 |
| 5. | Piła | 537 | 540 | 546 | 558 | 536 | 557 | 578 |
| 6. | Toruń | 540 | 538 | 550 | 563 | 547 | 568 | 589 |
| 7. | Wieluń | 585 | 588 | 573 | 585 | 598 | 578 | 598 |
| 8. | Włodawa | 569 | 567 | 571 | 583 | 574 | 574 | 594 |
| 9. | Kołobrzeg | 484 | 484 | 475 | 487 | 490 | 490 | 507 |
| 10. | Łeba | 485 | 478 | 492 | 502 | 481 | 496 | 511 |
| Site Name | ET0(A-P_S) | ET0(A-P_PL) | ET0(A-P_G) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Model 2 | Model 3 | Model 4 | ||||||||||
| RMSE [mm] | RMSPE [%] | MBE [mm] | MPE [%] | RMSE [mm] | RMSPE [%] | MBE [mm] | MPE [%] | RMSE [mm] | RMSPE [%] | MBE [mm] | MPE [%] | |
| Legnica | 0.1760 | 5.5 | −0.0550 | −1.7 | 0.1917 | 6.2 | −0.0735 | −2.4 | 0.1838 | 5.8 | −0.0100 | −0.3 |
| Lesko | 0.2682 | 9.6 | 0.0431 | 1.5 | 0.2772 | 10.0 | −0.0573 | −2.1 | 0.2814 | 9.8 | 0.0181 | 0.6 |
| Łódź | 0.2119 | 6.8 | −0.0409 | −1.3 | 0.2224 | 7.1 | 0.0590 | 1.9 | 0.2462 | 7.7 | 0.1237 | 3.8 |
| Mikołajki | 0.1800 | 6.2 | −0.0220 | −0.8 | 0.1798 | 6.3 | −0.0294 | −1.0 | 0.1895 | 6.5 | 0.0353 | 1.2 |
| Piła | 0.1578 | 5.3 | −0.0123 | −0.4 | 0.1667 | 5.6 | 0.0462 | 1.5 | 0.2025 | 6.6 | 0.1124 | 3.7 |
| Toruń | 0.2035 | 6.9 | 0.0101 | 0.3 | 0.2187 | 7.3 | 0.0565 | 1.9 | 0.2448 | 8.0 | 0.1255 | 4.1 |
| Wieluń | 0.1923 | 6.0 | −0.0214 | −0.7 | 0.2027 | 6.5 | −0.0647 | −2.1 | 0.1946 | 6.1 | 0.0043 | 0.1 |
| Włodawa | 0.3431 | 11.1 | 0.0070 | 0.2 | 0.3495 | 11.2 | 0.0150 | 0.5 | 0.3574 | 11.2 | 0.0770 | 2.4 |
| Kołobrzeg | 0.1860 | 7.0 | 0.0004 | 0.0 | 0.1925 | 7.4 | −0.0488 | −1.9 | 0.1891 | 7.1 | 0.0183 | 0.7 |
| Łeba | 0.1995 | 7.6 | −0.0346 | −1.3 | 0.2018 | 7.5 | 0.0399 | 1.5 | 0.2244 | 8.2 | 0.0938 | 3.4 |
| Site Name | ET0(H-S_S) | ET0(H-S_PL) | ET0(H-S_G) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Model 5 | Model 6 | Model 7 | ||||||||||
| RMSE [mm] | RMSPE [%] | MBE [mm] | MPE [%] | RMSE [mm] | RMSPE [%] | MBE [mm] | MPE [%] | RMSE [mm] | RMSPE [%] | MBE [mm] | MPE [%] | |
| Legnica | 0.4328 | 13.6 | 0.0085 | 0.3 | 0.4328 | 13.6 | 0.0085 | 0.3 | 0.4505 | 13.6 | 0.1235 | 3.7 |
| Lesko | 0.4595 | 16.1 | 0.0157 | 0.6 | 0.4595 | 16.1 | 0.0157 | 0.6 | 0.4674 | 15.8 | 0.1189 | 4.0 |
| Łódź | 0.3939 | 12.5 | 0.0698 | 2.2 | 0.3939 | 12.5 | 0.0698 | 2.2 | 0.4281 | 13.1 | 0.1783 | 5.5 |
| Mikołajki | 0.4277 | 14.5 | 0.0663 | 2.2 | 0.4590 | 16.7 | −0.1400 | −5.1 | 0.4289 | 15.0 | −0.0368 | −1.3 |
| Piła | 0.4037 | 13.8 | −0.0050 | −0.2 | 0.4163 | 13.7 | 0.1088 | 3.6 | 0.4631 | 14.7 | 0.2226 | 7.0 |
| Toruń | 0.4016 | 13.4 | 0.0420 | 1.4 | 0.4302 | 13.9 | 0.1560 | 5.0 | 0.4899 | 15.2 | 0.2700 | 8.4 |
| Wieluń | 0.4168 | 12.8 | 0.0740 | 2.3 | 0.4175 | 13.2 | −0.0380 | −1.2 | 0.4168 | 12.8 | 0.0740 | 2.3 |
| Włodawa | 0.4613 | 14.7 | 0.0269 | 0.9 | 0.4613 | 14.7 | 0.0269 | 0.9 | 0.4809 | 14.8 | 0.1376 | 4.2 |
| Kołobrzeg | 0.5603 | 20.9 | 0.0093 | 0.3 | 0.5603 | 20.9 | 0.0093 | 0.3 | 0.5776 | 20.8 | 0.1004 | 3.6 |
| Łeba | 0.3529 | 13.4 | 0.0246 | 0.9 | 0.3771 | 13.9 | 0.0638 | 2.4 | 0.4111 | 14.7 | 0.1029 | 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitrowska, D.; Kleniewska, M.; Kuchar, L. Modeling Solar Radiation Data for Reference Evapotranspiration Estimation at a Daily Time Step for Poland. Water 2025, 17, 3304. https://doi.org/10.3390/w17223304
Mitrowska D, Kleniewska M, Kuchar L. Modeling Solar Radiation Data for Reference Evapotranspiration Estimation at a Daily Time Step for Poland. Water. 2025; 17(22):3304. https://doi.org/10.3390/w17223304
Chicago/Turabian StyleMitrowska, Dorota, Małgorzata Kleniewska, and Leszek Kuchar. 2025. "Modeling Solar Radiation Data for Reference Evapotranspiration Estimation at a Daily Time Step for Poland" Water 17, no. 22: 3304. https://doi.org/10.3390/w17223304
APA StyleMitrowska, D., Kleniewska, M., & Kuchar, L. (2025). Modeling Solar Radiation Data for Reference Evapotranspiration Estimation at a Daily Time Step for Poland. Water, 17(22), 3304. https://doi.org/10.3390/w17223304

