Spatiotemporal Analysis of Water Quality Conditions in High-Andean Lakes Based on Satellite Indicators Using Sentinel 2 and Landsat 8/9 Images
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. In Situ Data Sampling and Laboratory Measurements
2.2.2. Satellite Image Processing
2.2.3. Multitemporal Analysis Based on the Trophic State of Ozogoche Lakes
2.2.4. Approximation of the Surface Trophic State by Means of Chl-a Obtained by Remote Sensing
3. Results
3.1. Selection of the Atmospheric Correction Method
3.2. Multitemporal Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| S2 | Sentinel-2 |
| L8 | Landsat-8 |
| L9 | Landsat-9 |
| SNAP | Sentinel Application Platform |
| C2RCC | Case 2 Regional Coast Colour processor |
| Chl-a | Chlorophyll-a |
| TSS | Total Suspended Solids |
| kd_z90max | Diffuse attenuation coefficient at 90% light depth penetration |
| RMSE | Root Mean Square Error |
| TSI | Trophic State Index |
| TOA | Top of Atmosphere |
| ROI(s) | Regions of Interest |
| PNS | Sangay National Park |
| TSI | Carlson’s Trophic State Index |
| NIR | Near-infrared |
| CC | Cloud cover |
| ADeSA | Environmental Developments and Solutions Area |
| OLI | Operational Land Imager |
References
- Salazar, R.N.; Aguirre, C.; Soto, J.; Salinas, P.; Salinas, C.; Prieto, H.; Paneque, M. Physicochemical Parameters Affecting the Distribution and Diversity of the Water Column Microbial Community in the High-Altitude Andean Lake System of La Brava and La Punta. Microorganisms 2020, 8, 1181. [Google Scholar] [CrossRef] [PubMed]
- Cartuche, A.; Guan, Z.; Ibelings, B.W.; Venail, P. Phytoplankton Diversity Relates Negatively with Productivity in Tropical High-Altitude Lakes from Southern Ecuador. Sustainability 2019, 11, 5235. [Google Scholar] [CrossRef]
- Terneus, E.; Vallejo, B.; Gómez, M.; Larenas, C. Trophic Status Index of Lentic Systems from the Diversity of Aquatic Plants from Continental Ecuador (IMAE). Caldasia 2020, 42, 115–128. [Google Scholar] [CrossRef]
- Yang, H.; Shao, X.; Wu, M. A Review on Ecosystem Health Research: A Visualization Based on CiteSpace. Sustainability 2019, 11, 4908. [Google Scholar] [CrossRef]
- Barraza, F.; Alcayaga, H.; Pizarro, A.; Félez-Bernal, J.; Urrutia, R. Estimation of Chlorophyll-a Concentrations in Lanalhue Lake Using Sentinel-2 MSI Satellite Images. Remote Sens. 2022, 14, 5647. [Google Scholar] [CrossRef]
- Zhang, J.J.; Sheng, Y.F.; Chen, W.D.; Lin, H.J.; Sun, G.; Guo, P. Design and Analysis of a Water Quality Monitoring Data Service Platform. Comput. Mater. Contin. 2021, 66, 389–405. [Google Scholar] [CrossRef]
- Ade, C.; Khanna, S.; Lay, M.; Ustin, S.L.; Hestir, E.L. Genus-Level Mapping of Invasive Floating Aquatic Vegetation Using Sentinel-2 Satellite Remote Sensing. Remote Sens. 2022, 14, 3013. [Google Scholar] [CrossRef]
- Gao, M.; Gu, X.; Liu, Y.; Zhan, Y.; Wei, X.; Yu, H.; Liang, M.; Weng, C.; Ding, Y. An Improved Spatiotemporal Data Fusion Method for Snow-Covered Mountain Areas Using Snow Index and Elevation Information. Sensors 2022, 22, 8524. [Google Scholar] [CrossRef]
- Soomets, T.; Uudeberg, K.; Jakovels, D.; Brauns, A.; Zagars, M.; Kutser, T. Validation and Comparison of Water Quality Products in Baltic Lakes Using Sentinel-2 MSI and Sentinel-3 OLCI Data. Sensors 2020, 20, 742. [Google Scholar] [CrossRef]
- Yadav, S.; Yamashiki, Y.; Susaki, J.; Yamashita, Y.; Ishikawa, K. Chlorophyll Estimation of Lake Water and Coastal Water Using Landsat-8 and Sentinel-2A Satellite. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 77–82. [Google Scholar] [CrossRef]
- Maslukah, L.; Wirasatriya, A.; Wijaya, Y.J.; Ismunarti, D.H.; Widiaratih, R.; Krisna, H.N. The Assessment of Chlorophyll-a Retrieval Algorithm and Its Spatial-Temporal Distribution Using Sentinel-2 MSI off the Banjir Kanal Timur River, Semarang, Indonesia. Reg. Stud. Mar. Sci. 2024, 75, 103556. [Google Scholar] [CrossRef]
- DeLuca, N.M.; Zaitchik, B.F.; Curriero, F.C. Can Multispectral Information Improve Remotely Sensed Estimates of Total Suspended Solids? A Statistical Study in Chesapeake Bay. Remote Sens. 2018, 10, 1393. [Google Scholar] [CrossRef]
- Jensen, D.; Simard, M.; Cavanaugh, K.; Sheng, Y.; Fichot, C.G.; Pavelsky, T.; Twilley, R. Improving the Transferability of Suspended Solid Estimation in Wetland and Deltaic Waters with an Empirical Hyperspectral Approach. Remote Sens. 2019, 11, 1629. [Google Scholar] [CrossRef]
- Maslukah, L.; Basayep, I.; Wirasatriya, A.; Indrayanti, E.; Prasetyawan, I.B.; Wijaya, Y.J. Application of Sentinel-2 Imagery for Total Suspended Solids Mapping off the Bodri River, Kendal Regency, Indonesia. Remote Sens. Appl. Soc. Environ. 2024, 36, 101379. [Google Scholar] [CrossRef]
- Caballero, I.; Román, A.; Tovar-Sánchez, A.; Navarro, G. Water Quality Monitoring with Sentinel-2 and Landsat-8 Satellites during the 2021 Volcanic Eruption in La Palma (Canary Islands). Sci. Total Environ. 2022, 822, 153433. [Google Scholar] [CrossRef]
- Erdanaev, E.; Kappas, M.; Wyss, D. Irrigated Crop Types Mapping in Tashkent Province of Uzbekistan with Remote Sensing-Based Classification Methods. Sensors 2022, 22, 5683. [Google Scholar] [CrossRef]
- Sirin, A.A.; Medvedeva, M.A.; Makarov, D.A.; Maslov, A.A.; Joosten, H. Multispectral Satellite Based Monitoring of Land Cover Change and Associated Fire Reduction after Large-Scale Peatland Rewetting Following the 2010 Peat Fires in Moscow Region (Russia). Ecol. Eng. 2020, 158, 106044. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Shi, T.; Hu, S.; Wu, G.; Zhou, Q. Application of Sentinel 2 MSI Images to Retrieve Suspended Particulate Matter Concentrations in Poyang Lake. Remote Sens. 2017, 9, 761. [Google Scholar] [CrossRef]
- Brockmann, C.; Doerffer, R.; Peters, M.; Stelzer, K.; Embacher, S.; Ruescas, A. Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Kyryliuk, D.; Kratzer, S. Evaluation of Sentinel-3A OLCI Products Derived Using the Case-2 Regional Coastcolour Processor over the Baltic Sea. Sensors. Sensors 2019, 19, 3609. [Google Scholar] [CrossRef]
- Comas, X.; Terry, N.; Hribljan, J.A.; Lilleskov, E.A.; Suarez, E.; Chimner, R.A.; Kolka, R.K. Estimating Belowground Carbon Stocks in Peatlands of the Ecuadorian Páramo Using Ground-Penetrating Radar (GPR). Biogeosciences 2017, 122, 370–386. [Google Scholar] [CrossRef]
- Carlson, R.E. A Trophic State Index for Lakes1. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef]
- Ayala Izurieta, J.; Beltrán Dávalos, A.; Jara Santillán, C.A.; Godoy Ponce, S.; Van Wittenberghe, S.; Verrelst, J.; Delegido, J. Spatial and Temporal Analysis of Water Quality in High Andean Lakes with Sentinel-2 Satellite Automatic Water Products. Sensors 2023, 23, 8774. [Google Scholar] [CrossRef]
- Terneus, E. Vegetación Acuática y Estado Trófico de Las Lagunas Andinas de San Pablo y Yahuarcocha, Provincia de Imbabura, Ecuador. Rev. Ecuat. Med. Cienc. Biol. 2017, 35, 121–131. [Google Scholar] [CrossRef]
- Instituto Ecuatoriano Forestal y de Áreas Naturales y Vida Silvestre Dirección Nacional de Areas Naturales y Vida Silvestre. MAATE Plan de Manejo Estratégico Del Parque Nacional Sangay; Instituto Ecuatoriano Forestal y de Áreas Naturales y Vida Silvestre Dirección Nacional de Areas Naturales y Vida Silvestre: Quito, Ecuador, 2014; pp. 1–179. [Google Scholar]
- Pazmiño, Y.C.; Felipe, J.J.D.; Vallbé, M.; Pazmiño, Y. Modeling the Influence of Changes in the Edaphic Environment on the Ecosystem Valuation of the Zone of Influence of the Ozogoche and Atillo Lake Systems in Ecuador. Appl. Sci. 2024, 14, 2249. [Google Scholar] [CrossRef]
- Jenkins, S.H. Standard Methods for the Examination of Water and Wastewater, 2nd ed.; American Public Health Association: Washington, DC, USA, 1982; Volume 16. [Google Scholar]
- European Space Agency Sentinel-2 Data. Available online: https://dataspace.copernicus.eu (accessed on 15 September 2022).
- ESA. Sentinel-2 User Handbook; European Space Agency: Paris, France, 2015; pp. 1–64. [Google Scholar]
- Sofan, P.; Bruce, D.; Jones, E.; Khomarudin, M.R.; Roswintiarti, O. Applying the Tropical Peatland Combustion Algorithm to Landsat-8 Operational Land Imager (Oli) and Sentinel-2 Multi Spectral Instrument (Msi) Imagery. Remote Sens. 2020, 12, 3958. [Google Scholar] [CrossRef]
- Pascualone, F. Producto: PAM-CHIRPS Precipitación Acumulada Mensual CHIRPS; Comisión Nacional de Actividades Espaciales: Buenos Aires, Argentina, 2022; pp. 1–18. [Google Scholar]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Tan, M.L.; Zhang, F.; Chun, K.P.; Li, L.; Kabir, M.H. Evaluating the Effectiveness of CHIRPS Data for Hydroclimatic Studies. Theor. Appl. Climatol. 2024, 155, 1519–1539. [Google Scholar] [CrossRef]
- Sòria, X.; Vicente, E.; Urrego, P.; Pereira, M.; Tenjo, C.; Ruíz-Verdú, A.; Delegido, J.; Soria, J.M.; Peña, R.; Moreno, J. Validation of Water Quality Monitoring Algorithms for Sentinel-2 and Sentinel-3 in Mediterranean Inland Waters with in Situ Reflectance Data. Water 2021, 13, 686. [Google Scholar] [CrossRef]
- Sòria-Perpinyà, X.; Urrego, E.P.; Pereira-Sandoval, M.; Ruiz-Verdú, A.; Soria, J.M.; Delegido, J.; Vicente, E.; Moreno, J. Monitoring Water Transparency of a Hypertrophic Lake (The Albufera of València) Using Multitemporal Sentinel-2 Satellite Images. Limnetica 2020, 39, 373–386. [Google Scholar] [CrossRef]
- Cao, H.; Han, L.; Li, L. Harmonizing Surface Reflectance between Landsat-7 ETM +, Landsat-8 OLI, and Sentinel-2 MSI over China. Environ. Sci. Pollut. Res. 2022, 29, 70882–70898. [Google Scholar] [CrossRef] [PubMed]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Fox, J.; Behrenfeld, M.J.; Haëntjens, N.; Chase, A.; Kramer, S.J.; Boss, E.; Karp-Boss, L.; Fisher, N.L.; Penta, W.B.; Westberry, T.K.; et al. Phytoplankton Growth and Productivity in the Western North Atlantic: Observations of Regional Variability From the NAAMES Field Campaigns. Front. Mar. Sci. 2020, 7, 24. [Google Scholar] [CrossRef]
- Bioweb Ecuador Geografía y Clima Del Ecaudor. Available online: https://bioweb.bio/fungiweb/GeografiaClima/ (accessed on 15 September 2025).
- Wang, Q.; Liu, H.; Wang, D.; Li, D.; Liu, W.; Si, Y.; Liu, Y.; Li, J.; Duan, H.; Shen, M. Assessment of Atmospheric Correction Algorithms for Correcting Sunglint Effects in Sentinel-2 MSI Imagery: A Case Study in Clean Lakes. Remote Sens. 2024, 16, 3060. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.; Tian, Y.Q.; Yu, Q.; Zheng, Y.; Huang, L. Remote Estimation of Colored Dissolved Organic Matter and Chlorophyll-a in Lake Huron Using Sentinel-2 Measurements. J. Appl. Remote Sens. 2017, 11, 036007. [Google Scholar] [CrossRef]
- Vincent, W.F. Effects of Climate Change on Lakes. In Encyclopedia of Inland Waters; ScienceDirect: Amsterdam, The Netherlands, 2009; pp. 55–60. [Google Scholar] [CrossRef]
- López, M.L.; Madroñero, S.M. Estado Trófico de Un Lago Tropical de Alta Montaña: Caso Laguna de La Cocha. Cienc. e Ing. Neogranadina 2015, 25, 21–42. [Google Scholar] [CrossRef]
- Williamson, C.E.; Saros, J.E.; Vincent, W.F.; Smol, J.P. Lakes and Reservoirs as Sentinels, Integrators, and Regulators of Climate Change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- Marchetto, A.; Mosello, R.; Rogora, M.; Manca, M.; Boggero, A.; Morabito, G.; Musazzi, S.; Tartari, G.A.; Nocentini, A.M.; Pugnetti, A.; et al. The Chemical and Biological Response of Two Remote Mountain Lakes in the Southern Central Alps (Italy) to Twenty Years of Changing Physical and Chemical Climate. J. Limnol. 2004, 63, 77–89. [Google Scholar] [CrossRef]
- Margalida, A. Importance of Long-Term Studies to Conservation Practice: The Case of the Bearded Vulture in the Pyrenees. In High Mountain Conservation in a Changing World; Springer: Cham, Switzerland, 2017; Volume 62, ISBN 9783319559810. [Google Scholar]
- Psenner, R.; Schmidt, R. Climate-Driven PH Control of Remote Alpine Lakes and Effects of Acid Deposition. Nature 1992, 356, 781–783. [Google Scholar] [CrossRef]
- Van Colen, W.R.; Mosquera, P.; Vanderstukken, M.; Goiris, K.; Carrasco, M.C.; Decaestecker, E.; Alonso, M.; León-Tamariz, F.; Muylaert, K. Limnology and Trophic Status of Glacial Lakes in the Tropical Andes (Cajas National Park, Ecuador). Freshw. Biol. 2017, 62, 458–473. [Google Scholar] [CrossRef]










| Lake | Altitude (m a.s.l.) | Extension (ha) |
|---|---|---|
| Patoguambuna | 4050 | 4.3 |
| Yanahurcu | 4080 | 8.1 |
| Boazo | 3588 | 29.9 |
| Magtayan | 3802 | 230.9 |
| Cubillin | 3876 | 551.0 |
| Lake | Sampling Date | Image Date | S2 Image Reference |
|---|---|---|---|
| Patoguambuna | 7 August 2021 | 5 July 2021 | S2A_MSIL1C_20210705T153621_N0301_R068_T17MQT_20210705T205715 |
| Yanahurcu | 9 August 2021 | ||
| Boazo | 12 August 2021 | ||
| Magtayan | 13 August 2021 | ||
| Cubillin | 2 September 2021 |
| BANDS S2 | Central Wavelength S2 (nm) | Spatial Resolution S2 (m) | BANDS L8/L9 | Central Wavelength L8/L9 (nm) | Spatial Resolution L8/L9 (m) |
|---|---|---|---|---|---|
| B1 (Coastal aerosol) | 442.7 | 60 | B1 (Coastal aerosol) | 443 | 30 |
| B2 (Blue) | 492.4 | 10 | B2 (Blue) | 482 | 30 |
| B3 (Green) | 559.8 | 10 | B3 (Green) | 561 | 30 |
| B4 (Red) | 664.6 | 10 | B4 (Red) | 655 | 30 |
| B5 (Red-edge1) | 704.1 | 20 | B5 (NIR) | 865 | 30 |
| B6 (Red-edge2) | 740.5 | 20 | B6 (SWIR1) | 1610 | 30 |
| B7 (Red-edge3) | 782.8 | 20 | B7 (SWIR2) | 2200 | 30 |
| B8 (NIR) | 832.8 | 10 | B8 (Panchromatic) | 590 | 15 |
| B8a (NIR narrow) | 864.7 | 20 | B9 (Cirrus) | 1375 | 30 |
| B9 (Water vapor) | 945.1 | 60 | B10 (Thermal) | 10,895 | 100 |
| B10 (SWIR/Cirrus) | 1373.5 | 60 | B11 (Thermal) | 12,005 | 100 |
| B11 (SWIR1) | 1613.7 | 20 | |||
| B12 (SWIR2) | 2202.4 | 20 |
| Lake | Image Date (Month-Day-Year) 2 | %CC 1 | Platform |
|---|---|---|---|
|
Patoguambuna Yanahurcu Boazo Magtayan Cubillin | 23 January 2016 | 14.13 | S2-A |
| 20 November 2016 | 27.76 | L8 | |
| 16 July 2017 | 19.31 | S2-A | |
| 7 January 2018 | 11.68 | S2-B | |
| 12 April 2018 | 14.01 | S2-A | |
| 6 February 2020 | 18.25 | S2-B | |
| 4 August 2020 | 5.26 | S2-B | |
| 27 August 2020 | 31.37 | L8 | |
| 5 July 2021 | 5.39 | S2-A | |
| 21 May 2022 | 23.48 | L9 | |
| 8 September 2023 | 13.23 | S2-B | |
| 26 January 2024 | 31.58 | S2-B | |
| 27 January 2024 | 47.30 | L8 | |
| 30 August 2024 | 14.52 | L9 | |
| 8 August 2024 | 17.12 | S2-A |
| Chl-a Range (mg/m3) | Trophic State | Description |
|---|---|---|
| <1 | Ultraoligotrophic | The environment is low in nutrients but highly oxygenated throughout its depth, and the water clarity is very good. |
| 1–2.5 | Oligotrophic | High transparency, allowing light penetration to the bottom, with low levels of nutrients. |
| 2.5–8 | Mesotrophic | Water bodies with intermediate characteristics between extreme states of nutrient concentration and biomass. |
| 9–25 | Eutrophic | Water bodies with high biological productivity due to an excess of nutrients, especially nitrogen and phosphorus. These bodies of water can support a large number of aquatic plants. |
| ≥25 | Hypertrophic | Water bodies characterized by frequent and severe occurrences of troublesome algae blooms and low transparency. |
| LAKE | Sampling Date | Image Date | Sensor | SITE | In Situ Chl-a (mg/m3) | C2RCC | C2X | C2X-Complex |
|---|---|---|---|---|---|---|---|---|
| Patoguambuna | 7 August 2021 | 5 July 2021 | S2 | P1 | 1.10 | 0.16 | 2.00 | 15.63 |
| Yanahurcu | 9 August 2021 | P2 | 0.33 | 0.26 | 2.64 | 2.60 | ||
| P3 | 0.29 | 0.24 | 6.19 | 26.27 | ||||
| P4 | 0.50 | 0.35 | 4.51 | 27.42 | ||||
| Boazo | 12 August 2021 | P5 | 0.05 | 0.17 | 2.53 | 4.97 | ||
| P6 | 0.87 | 0.29 | 15.33 | 31.85 | ||||
| Magtayan | 13 August 2021 | P7 | 0.64 | 0.17 | 0.81 | 4.64 | ||
| P8 | 0.15 | 0.13 | 2.57 | 5.86 | ||||
| P9 | 0.35 | 0.16 | 1.17 | 4.08 | ||||
| Cubillin | 2 September 2021 | P10 | 1.08 | 0.23 | 0.91 | 15.45 | ||
| P11 | 1.83 | 0.13 | 10.38 | 44.49 | ||||
| RMSE | 0.68 | 5.66 | 20.65 | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantos, V.F.F.; Rodríguez, P.X.L.; Izurieta, J.E.A.; Santillán, C.A.J.; Ruiz-Verdú, A.; Verrelst, J.; Goethals, P.L.M.; Delegido, J. Spatiotemporal Analysis of Water Quality Conditions in High-Andean Lakes Based on Satellite Indicators Using Sentinel 2 and Landsat 8/9 Images. Water 2025, 17, 3145. https://doi.org/10.3390/w17213145
Cantos VFF, Rodríguez PXL, Izurieta JEA, Santillán CAJ, Ruiz-Verdú A, Verrelst J, Goethals PLM, Delegido J. Spatiotemporal Analysis of Water Quality Conditions in High-Andean Lakes Based on Satellite Indicators Using Sentinel 2 and Landsat 8/9 Images. Water. 2025; 17(21):3145. https://doi.org/10.3390/w17213145
Chicago/Turabian StyleCantos, Valeria Fernanda Flores, Patricio X. Lozano Rodríguez, Johanna Elizabeth Ayala Izurieta, Carlos Arturo Jara Santillán, Antonio Ruiz-Verdú, Jochem Verrelst, Peter L. M. Goethals, and Jesús Delegido. 2025. "Spatiotemporal Analysis of Water Quality Conditions in High-Andean Lakes Based on Satellite Indicators Using Sentinel 2 and Landsat 8/9 Images" Water 17, no. 21: 3145. https://doi.org/10.3390/w17213145
APA StyleCantos, V. F. F., Rodríguez, P. X. L., Izurieta, J. E. A., Santillán, C. A. J., Ruiz-Verdú, A., Verrelst, J., Goethals, P. L. M., & Delegido, J. (2025). Spatiotemporal Analysis of Water Quality Conditions in High-Andean Lakes Based on Satellite Indicators Using Sentinel 2 and Landsat 8/9 Images. Water, 17(21), 3145. https://doi.org/10.3390/w17213145

