Long Term Rain Patterns of Major Watersheds in Saudi Arabia
Abstract
1. Introduction
2. Methodology
2.1. Study Area Description
2.2. Data Collection
2.3. Rainfall Trend Detection
2.4. Watershed Delineation Process
3. Results and Discussion
3.1. General and Decadal Rainfall Trend Analysis
3.2. Seasonal Rainfall Trend Analysis
3.3. Rainfall Variations Effect on Watersheds
3.4. Practical Implications for Water Resources and Risk Management
3.5. Study Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rawat, A.; Kumar, D.; Khati, B.S. A review on climate change impacts, models, and its consequences on different sectors: A systematic approach. J. Water Clim. Change 2024, 15, 104–126. [Google Scholar] [CrossRef]
- Sukmara, R.B.; Wahab, M.F. Climate change in south Kalimantan (Borneo): Assessment for rainfall and temperature. J. Infrastruct. Plan. Eng. 2022, 1, 51–59. [Google Scholar] [CrossRef]
- Panja, A.; Garai, S.; Zade, S.; Sahani, S. Climate Data Extraction for Social Science Research: A Step by Step Process; ICAR: New Delhi, India, 2023. [Google Scholar]
- Liu, R.; Zhang, X.; Wang, W.; Wang, Y.; Liu, H.; Ma, M.; Tang, G. Global-scale ERA5 product precipitation and temperature evaluation. Ecol. Indic. 2024, 166, 112481. [Google Scholar] [CrossRef]
- Sa’adi, Z.; Shahid, S.; Ismail, T.; Chung, E.-S.; Wang, X.-J. Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorol. Atmos. Phys. 2019, 131, 263–277. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.N.; Jones, P.D.; Athar, H.; Rahman, M.A. Recent climate change in the Arabian Peninsula: Seasonal rainfall and temperature climatology of Saudi Arabia for 1979–2009. Atmos. Res. 2012, 111, 29–45. [Google Scholar] [CrossRef]
- El-Rawy, M.; Fathi, H.; Zijl, W.; Alshehri, F.; Almadani, S.; Zaidi, F.K.; Aldawsri, M.; Gabr, M.E. Potential effects of climate change on agricultural water resources in Riyadh region, Saudi Arabia. Sustainability 2023, 15, 9513. [Google Scholar] [CrossRef]
- Kumar, V.; Jain, S.K.; Singh, Y. Analysis of long-term rainfall trends in India. Hydrol. Sci. J. 2010, 55, 484–496. [Google Scholar] [CrossRef]
- Kara, Y.; Yavuz, V.; Temiz, C.; Lupo, A.R. Exploring spatio-temporal precipitation variations in Istanbul: Trends and patterns from five stations across two continents. Atmosphere 2024, 15, 539. [Google Scholar] [CrossRef]
- Mbachu, I. Investigating precipitation pattern and variability in the Niger Delta: A statistical analysis of trends and change points (1972–2022). Bull. Geogr. Phys. Geogr. Ser. 2024, 27–43. [Google Scholar] [CrossRef]
- Vinay, H.; Ghosh, A.; Ojha, S.; Poddar, P.; Basak, P. Trend analysis of rainfall and detection of change point in Terai Zone of West Bengal. Int. J. Environ. Clim. Change 2024, 14, 603–613. [Google Scholar] [CrossRef]
- Almazroui, M. Changes in temperature trends and extremes over Saudi Arabia for the period 1978–2019. Adv. Meteorol. 2020, 2020, 8828421. [Google Scholar] [CrossRef]
- Dawood, M. Spatio-statistical analysis of temperature fluctuation using Mann–Kendall and Sen’s slope approach. Clim. Dyn. 2017, 48, 783–797. [Google Scholar] [CrossRef]
- Agbo, E.; Ekpo, C. Trend analysis of the variations of ambient temperature using Mann-Kendall test and Sen’s estimate in Calabar, southern Nigeria. J. Phys. Conf. Ser. 2021, 1734, 012016. [Google Scholar] [CrossRef]
- Alhaji, U.; Yusuf, A.; Edet, C.; Oche, C.O.; Agbo, E. Trend analysis of temperature in Gombe state using Mann Kendall trend test. J. Sci. Res. Rep. 2018, 20, 1–9. [Google Scholar] [CrossRef]
- Zeleke, T.T.; Zakaria Wani Lukwasa, A.; Ture Beketie, K.; Yayeh Ayal, D. Analysis of spatio-temporal precipitation and temperature variability and trend over Sudd-Wetland, Republic of South Sudan. Clim. Serv. 2024, 34, 100451. [Google Scholar] [CrossRef]
- Waqas, M.; Humphries, U.W.; Hlaing, P.T. Time series trend analysis and forecasting of climate variability using deep learning in Thailand. Results Eng. 2024, 24, 102997. [Google Scholar] [CrossRef]
- Sahu, N.; Nayan, R.; Panda, A.; Varun, A.; Kesharwani, R.; Das, P.; Kumar, A.; Mallick, S.K.; Mishra, M.M.; Saini, A. Impact of changes in rainfall and temperature on production of Darjeeling Tea in India. Atmosphere 2024, 16, 1. [Google Scholar] [CrossRef]
- Panda, A.; Sahu, N. Trend analysis of seasonal rainfall and temperature pattern in Kalahandi, Bolangir and Koraput districts of Odisha, India. Atmos. Sci. Lett. 2019, 20, e932. [Google Scholar] [CrossRef]
- Sridhara, S.; Gopakkali, P.; Nandini, R. Trend analysis of precipitation and temperature over different districts of Karnataka: An aid to climate change detection and cropping system option. Int. J. Environ. Clim. Change 2020, 10, 15–25. [Google Scholar] [CrossRef]
- Meskelu, E.; Ayana, M.; Birhanu, D. Analysis of long-term rainfall trend, variability, and drought in the Awash River Basin, Ethiopia. Theor. Appl. Climatol. 2024, 155, 9029–9050. [Google Scholar] [CrossRef]
- Rahman, G.; Kim, J.-Y.; Kim, T.-W.; Park, M.; Kwon, H.-H. Spatial and temporal variations in temperature and precipitation trends in South Korea over the past half-century (1974–2023) using innovative trend analysis. J. Hydro-Environ. Res. 2025, 58, 1–18. [Google Scholar] [CrossRef]
- Furl, C.; Sharif, H.; Alzahrani, M.; El Hassan, A.; Mazari, N. Precipitation amount and intensity trends across southwest Saudi Arabia. J. Am. Water Resour. Assoc. 2014, 50, 74–82. [Google Scholar] [CrossRef]
- Ahmad, N.; Ajmal, M.; Malik, A.; Rahman, Z.U. Meteorological trend analysis for Najd and Hejaz regions, Saudi Arabia. Meteorol. Atmos. Phys. 2022, 134, 35. [Google Scholar] [CrossRef]
- Alazba, A.A.; Mattar, M.A.; El-Shafei, A.; Radwan, F.; Ezzeldin, M.; Alrdyan, N. Comparative Analysis of ANN, GEP, and Water Advance Power Function for Predicting Infiltrated Water Volume in Furrow of Permeable Surface. Water 2025, 17, 1304. [Google Scholar] [CrossRef]
- Chowdhury, S.; Al-Zahrani, M. Implications of Climate Change on Water Resources in Saudi Arabia. Arab. J. Sci. Eng. 2013, 38, 1959–1971. [Google Scholar] [CrossRef]
- Radwan, F.; Alazba, A.A.; Mossad, A. Flood risk assessment and mapping using AHP in arid and semiarid regions. Acta Geophys. 2019, 67, 215–229. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Alazba, A.A.; Mattar, M.A.; El-Shafei, A.; Ezzeldin, M.; Radwan, F.; Alrdyan, N. Water Demand Determination for Landscape Using WUCOLS and LIMP Mathematical Models. Water 2025, 17, 1429. [Google Scholar] [CrossRef]
- Elfeki, A.; Jarbou, B.; Muhammad, L.; Hannachi, A. Spatiotemporal analysis of monthly rainfall over Saudi Arabia and global teleconnections. Geomat. Nat. Hazards Risk 2022, 13, 2618–2648. [Google Scholar] [CrossRef]
- Radwan, F.; Alazba, A.A. Suitable sites identification for potential rainwater harvesting (PRWH) using a multi-criteria decision support system (MCDSS). Acta Geophys. 2023, 71, 449–468. [Google Scholar] [CrossRef]
- Elsherif, S.; El-Zawahry, A.; Soliman, A. Spatio-Temporal Rainfall Variability Analysis, Case Study: KSA. Int. J. Eng. Trends Technol. 2021, 69, 136–143. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.N.; Saeed, S.; Saeed, F.; Ismail, M. Future Changes in Climate over the Arabian Peninsula based on CMIP6 Multimodel Simulations. Earth Syst. Environ. 2020, 4, 611–630. [Google Scholar] [CrossRef]
- MEWA. National Water Strategy. Available online: https://www.mewa.gov.sa/en/Ministry/Agencies/TheWaterAgency/Topics/Pages/Strategy.aspx (accessed on 11 September 2025).
- Estrela, M.J.; Corell, D.; Miró, J.J.; Niclós, R. Analysis of precipitation and drought in the main southeastern Iberian river headwaters (1952–2021). Atmosphere 2024, 15, 166. [Google Scholar] [CrossRef]
- Uwizewe, C.; Jianping, L.; Habumugisha, T.; Bello, A.A. Investigation of the historical trends and variability of rainfall patterns during the March–May Season in Rwanda. Atmosphere 2024, 15, 609. [Google Scholar] [CrossRef]
- dos Santos, L.O.F.; Machado, N.G.; Biudes, M.S.; Geli, H.M.; Querino, C.A.S.; Ruhoff, A.L.; Ivo, I.O.; Lotufo Neto, N. Trends in Precipitation and Air Temperature extremes and their relationship with Sea Surface temperature in the Brazilian midwest. Atmosphere 2023, 14, 426. [Google Scholar] [CrossRef]
- Aditya, F.; Gusmayanti, E.; Sudrajat, J. Rainfall trend analysis using Mann-Kendall and Sen’s slope estimator test in West Kalimantan. Proc. IOP Conf. Ser. Earth Environ. Sci. 2021, 893, 012006. [Google Scholar] [CrossRef]
- Radwan, F.; Alazba, A.A.; Mossad, A. Watershed morphometric analysis of Wadi Baish Dam catchment area using integrated GIS-based approach. Arab. J. Geosci. 2017, 10, 256. [Google Scholar] [CrossRef]
- Radwan, F.; Alazba, A.A.; Mossad, A. Estimating potential direct runoff for ungauged urban watersheds based on RST and GIS. Arab. J. Geosci. 2018, 11, 748. [Google Scholar] [CrossRef]
- Radwan, F.; Alazba, A.A.; Mossad, A. Analyzing the geomorphometric characteristics of semiarid urban watersheds based on an integrated GIS-based approach. Model. Earth Syst. Environ. 2020, 6, 1913–1932. [Google Scholar] [CrossRef]
- Almazroui, M. Rainfall Trends and Extremes in Saudi Arabia in Recent Decades. Atmosphere 2020, 11, 964. [Google Scholar] [CrossRef]
- Luong, T.M.; Dasari, H.P.; Doan, Q.V.; Alduwais, A.K.; Hoteit, I. Organized precipitation and associated large-scale circulation patterns over the Kingdom of Saudi Arabia. Int. J. Climatol. 2024, 44, 3295–3314. [Google Scholar] [CrossRef]
- Al-Mutairi, M.; Abdel Basset, H.; Morsy, M.; Abdeldym, A. On the Effect of Red Sea and Topography on Rainfall over Saudi Arabia: Case Study. Atmosphere 2019, 10, 669. [Google Scholar] [CrossRef]
- Chakraborty, A.; Behera, S.K.; Mujumdar, M.; Ohba, R.; Yamagata, T. Diagnosis of tropospheric moisture over Saudi Arabia and influences of IOD and ENSO. Mon. Weather Rev. 2006, 134, 598–617. [Google Scholar] [CrossRef]
- Patlakas, P.; Stathopoulos, C.; Flocas, H.; Kalogeri, C.; Kallos, G. Regional Climatic Features of the Arabian Peninsula. Atmosphere 2019, 10, 220. [Google Scholar] [CrossRef]
- Hasanean, H.; Almazroui, M. Rainfall: Features and Variations over Saudi Arabia, A Review. Climate 2015, 3, 578–626. [Google Scholar] [CrossRef]
- Luong, T.M.; Dasari, H.P.; Attada, R.; Chang, H.I.; Risanto, C.B.; Castro, C.L.; Zampieri, M.; Vitart, F.; Hoteit, I. Rainfall climatology and predictability over the Kingdom of Saudi Arabia at subseasonal scale. Q. J. R. Meteorol. Soc. 2025, e5015. [Google Scholar] [CrossRef]
- Islam, M.N.; Zamreeq, A.O.; Ismail, M.; Habeebullah, T.M.A.; Ghulam, A.S. Jazan Rainfall’s Seasonal Shift in Saudi Arabia: Evidence of a Changing Regional Climate. Atmosphere 2025, 16, 300. [Google Scholar] [CrossRef]
- Bucchignani, E.; Mercogliano, P.; Panitz, H.-J.; Montesarchio, M. Climate change projections for the Middle East–North Africa domain with COSMO-CLM at different spatial resolutions. Adv. Clim. Change Res. 2018, 9, 66–80. [Google Scholar] [CrossRef]
- Seraphin, P.; Gonçalvès, J.; Hamelin, B.; Stieglitz, T.; Deschamps, P. Influence of intensive agriculture and geological heterogeneity on the recharge of an arid aquifer system (Saq–Ram, Arabian Peninsula) inferred from GRACE data. Hydrol. Earth Syst. Sci. 2022, 26, 5757–5771. [Google Scholar] [CrossRef]
- Alshehri, F.; Mohamed, A. Analysis of Groundwater Storage Fluctuations Using GRACE and Remote Sensing Data in Wadi As-Sirhan, Northern Saudi Arabia. Water 2023, 15, 282. [Google Scholar] [CrossRef]
- Turral, H.; Burke, J.; Faurès, J.-M. Climate Change, Water and Food Security; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011. [Google Scholar]
- Rahman, M.M.; Akter, R.; Abdul Bari, J.B.; Hasan, M.A.; Rahman, M.S.; Abu Shoaib, S.; Shatnawi, Z.N.; Alshayeb, A.F.; Shalabi, F.I.; Rahman, A.; et al. Analysis of Climate Change Impacts on the Food System Security of Saudi Arabia. Sustainability 2022, 14, 14482. [Google Scholar] [CrossRef]
- Sefry, S.A.; El-Haddad, B.A.; AbuAlfadael, E.Y.; Youssef, A.M. Extreme Rainfall Events in Saudi Arabia as a Result of Climate Change: A Case Study: The Devastating Jeddah Flood on November 25, 2022. In Environmental Hazards in the Arabian Gulf Region: Assessments and Solutions; Abd el-aal, A.E.-A.K., Al-Enezi, A., Karam, Q.E., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 519–542. [Google Scholar] [CrossRef]
- Abdelkader, M.M.; Al-Amoud, A.I.; El Alfy, M.; El-Feky, A.; Saber, M. Assessment of flash flood hazard based on morphometric aspects and rainfall-runoff modeling in Wadi Nisah, central Saudi Arabia. Remote Sens. Appl. Soc. Environ. 2021, 23, 100562. [Google Scholar] [CrossRef]
- Jasechko, S.; Seybold, H.; Perrone, D.; Fan, Y.; Shamsudduha, M.; Taylor, R.G.; Fallatah, O.; Kirchner, J.W. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 2024, 625, 715–721. [Google Scholar] [CrossRef] [PubMed]














| Reg. | Period | Z | p-Value | Sig. | Tau | Reg. | Period | Z | p-Value | Sig. | Tau |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Al-Bahah | G | −3.1 | 0.00 | * | −0.3 | Mecca | G | −1.2 | 0.24 | NS | −0.1 |
| D1 | 0.5 | 0.59 | NS | 0.16 | D1 | 0.4 | 0.72 | NS | 0.11 | ||
| D2 | 0.5 | 0.59 | NS | 0.16 | D2 | 0.0 | 1.00 | NS | 0.02 | ||
| D3 | −1.8 | 0.07 | NS | −0.47 | D3 | −1.3 | 0.21 | NS | −0.33 | ||
| D4 | 1.1 | 0.28 | NS | 0.29 | D4 | 2.5 | 0.01 | * | 0.64 | ||
| Al-Jawf | G | −2.3 | 0.02 | * | −0.3 | Medina | G | −3.8 | 0.00 | * | −0.4 |
| D1 | −0.5 | 0.59 | NS | −0.16 | D1 | −0.9 | 0.37 | NS | −0.24 | ||
| D2 | 0.0 | 1.00 | NS | 0.02 | D2 | −1.1 | 0.28 | NS | −0.29 | ||
| D3 | −2.7 | 0.01 | * | −0.69 | D3 | −0.4 | 0.72 | NS | −0.11 | ||
| D4 | 1.6 | 0.11 | NS | 0.42 | D4 | 1.4 | 0.15 | NS | 0.38 | ||
| Al-Qassim | G | −4.2 | 0.00 | * | −0.5 | Najran | G | −2.3 | 0.02 | * | −0.3 |
| D1 | −1.3 | 0.21 | NS | −0.34 | D1 | −2.0 | 0.05 | * | −0.51 | ||
| D2 | −0.9 | 0.37 | NS | −0.24 | D2 | 0.0 | 1.00 | NS | 0.02 | ||
| D3 | −2.0 | 0.05 | * | −0.51 | D3 | −1.4 | 0.15 | NS | −0.38 | ||
| D4 | 1.8 | 0.07 | NS | 0.47 | D4 | 0.4 | 0.72 | NS | 0.11 | ||
| Asir | G | −4.1 | 0.00 | * | −0.4 | Northern Border | G | −2.7 | 0.01 | * | −0.3 |
| D1 | −0.9 | 0.37 | NS | −0.24 | D1 | 0.5 | 0.59 | NS | 0.16 | ||
| D2 | −1.1 | 0.28 | NS | −0.29 | D2 | 0.4 | 0.72 | NS | 0.11 | ||
| D3 | −1.1 | 0.28 | NS | −0.29 | D3 | −2.0 | 0.05 | * | −0.51 | ||
| D4 | 1.4 | 0.15 | NS | 0.38 | D4 | 1.8 | 0.07 | NS | 0.47 | ||
| Eastern | G | −1.8 | 0.08 | NS | −0.2 | Riyadh | G | −3.7 | 0.00 | * | −0.4 |
| D1 | −1.6 | 0.11 | NS | −0.42 | D1 | −0.5 | 0.59 | NS | −0.16 | ||
| D2 | 0.0 | 1.00 | NS | 0.02 | D2 | −0.5 | 0.59 | NS | −0.16 | ||
| D3 | −1.4 | 0.15 | NS | −0.38 | D3 | −1.6 | 0.11 | NS | −0.42 | ||
| D4 | −0.5 | 0.59 | NS | −0.16 | D4 | −0.7 | 0.47 | NS | −0.20 | ||
| Hail | G | −5.4 | 0.00 | * | −0.6 | Tabuk | G | −1.6 | 0.11 | NS | −0.2 |
| D1 | −1.6 | 0.11 | NS | −0.42 | D1 | −0.4 | 0.72 | NS | −0.11 | ||
| D2 | −0.2 | 0.86 | NS | −0.07 | D2 | −1.1 | 0.28 | NS | −0.29 | ||
| D3 | −2.0 | 0.05 | * | −0.51 | D3 | 2.3 | 0.02 | * | 0.60 | ||
| D4 | 1.3 | 0.21 | NS | 0.33 | D4 | 0.4 | 0.72 | NS | 0.11 | ||
| Jizan | G | −2.5 | 0.01 | * | −0.3 | ||||||
| D1 | −0.5 | 0.59 | NS | −0.16 | |||||||
| D2 | −0.4 | 0.72 | NS | −0.11 | |||||||
| D3 | −1.4 | 0.15 | NS | −0.38 | |||||||
| D4 | 0.5 | 0.59 | NS | 0.16 |
| Watershed No. | Area (km2) | Perimeter (km) | Shared Regions | ||
|---|---|---|---|---|---|
| 1 | 777,818.5 | 5606.5 | Eastern, Riyadh, Najran, Asir, Mecca, Al-Bahah, Jizan, and Medina | ||
| 2 | 221,539.9 | 3398.0 | Riyadh, Al-Qassim, Hail, Medina, and Eastern | ||
| 3 | 133,396.1 | 3378.1 | Riyadh and Eastern | ||
| 4 | 131,900.6 | 2894.3 | Al-Jawf, Tabuk, and Northern Borders | ||
| 5 | 107,694.1 | 2505.2 | Medina and Tabuk | ||
| 6 | 63,462.4 | 1926.7 | Riyadh and Eastern | ||
| 7 | 45,226.2 | 1578.7 | Riyadh and Eastern | ||
| 8 | 32,688.7 | 1533.1 | Hail and Northern Borders | ||
| 9 | 25,276.7 | 1056.8 | Tabuk | ||
| 10 | 19,741.1 | 1025.1 | Riyadh and Eastern | ||
| Watershed No. | Precipitation (mm) (Max.-Min.) Avg. | ||||
| G | D1 | D2 | D3 | D4 | |
| 1 | (55.7–191.7) 94 | (45.9–269.2) 105.9 | (95.6–261.5) 143.3 | (51.0–129.9) 83.2 | (28.5–106.2) 43.7 |
| 2 | (62.7–111.2) 89.8 | (84.6–152.5) 123.7 | (89.5–166.5) 131.2 | (45.4–97.5) 74.3 | (23.7–36.9) 29.9) |
| 3 | (81.5–100.2) 91.8 | (88.4–115.8) 103.1 | (106.7–158.4) 145.2 | (77.9–88.1) 81.5 | (31.9–44.4) 37.2 |
| 4 | (35.6–72.5) 55.1 | (52.9–103.9) 73.7 | (34.9–100.8) 70.0 | (23.6–56.0) 41.6 | (28.9–39.9) 34.9 |
| 5 | (37.7–88.1) 62.8 | (55.2–105.9) 82.5 | (39.0–134.9) 93.7 | (25.5–75.5) 47.1 | (19.1–36.0) 27.8 |
| 6 | (79.9–99.1) 89.5 | (88.7–130.2) 106.2 | (110.0–154.0) 138.2 | (74.5–86.0) 79.3 | (31.3–41.4) 34.4 |
| 7 | (74.2–88.6) 83.2 | (83.2–95.9) 90.9 | (81.3–153.7) 122.1 | (77.9–83.9) 80.5 | (32.1–48.3) 39.4 |
| 8 | (57.8–84.3) 72.4 | (75.3–125.9) 103.9 | (75.1–117.3) 97.0 | (44.3–67.1) 56.2 | (27.6–37.3) 32.6 |
| 9 | (30.2–50.9) 36.1 | (46.9–70.3) 53.4 | (24.9–63.9) 35.8 | (18.5–37.6) 24.0 | (30.4–32.0) 31.0 |
| 10 | (79.9–88.6) 85.3 | (92.3–102.4) 97.8 | (103.7–146.4) 125.9 | (78.4–80.8) 79.4 | (33.7–43.1) 38.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alazba, A.A.; Mossad, A.; Geli, H.M.E.; El-Shafei, A.; Alrdyan, N.; Ezzeldin, M.; Radwan, F. Long Term Rain Patterns of Major Watersheds in Saudi Arabia. Water 2025, 17, 3086. https://doi.org/10.3390/w17213086
Alazba AA, Mossad A, Geli HME, El-Shafei A, Alrdyan N, Ezzeldin M, Radwan F. Long Term Rain Patterns of Major Watersheds in Saudi Arabia. Water. 2025; 17(21):3086. https://doi.org/10.3390/w17213086
Chicago/Turabian StyleAlazba, A A, Amr Mossad, Hatim M. E. Geli, Ahmed El-Shafei, Nasser Alrdyan, Mahmoud Ezzeldin, and Farid Radwan. 2025. "Long Term Rain Patterns of Major Watersheds in Saudi Arabia" Water 17, no. 21: 3086. https://doi.org/10.3390/w17213086
APA StyleAlazba, A. A., Mossad, A., Geli, H. M. E., El-Shafei, A., Alrdyan, N., Ezzeldin, M., & Radwan, F. (2025). Long Term Rain Patterns of Major Watersheds in Saudi Arabia. Water, 17(21), 3086. https://doi.org/10.3390/w17213086

