From Flood to Drip Irrigation: A Review of Irrigation Modernization Trade-Offs
Abstract
1. Introduction
2. Materials and Methods
2.1. Article Search and Screening
2.2. Article Review and Analysis
- Bibliographic information (i.e., title, authors, year of publication),
- Geographical scope (i.e., continent and country level) and scale of the study (i.e., farm/field scale and larger scale such as basins, aquifers, regions),
- Methodological approach adopted by the study (i.e., field experiment with measurement in field- and desk-based methodologies, including modeling, socio–economic analysis, etc.).
- Water use—Including impacts on water savings, irrigation efficiency, i.e., the ratio of water consumed by crops relative to water applied [30], water use efficiency (WUE), which refers to the ratio of yield relative to the water consumed (kg/m3), or water productivity (WP), which is the ratio of physical crop production or the economic value of production (in terms of gross or net value) per unit volume of water used [31].
- Crop—Covering effects on crops, such as yield, growth and overall conditions.
- Environment—Encompassing impacts on ecosystems or environmental modifications, energy consumption, and greenhouse gas (GHG) emissions.
- Socio-economic aspects—Addressing economic, social, and cultural consequences for farmers or any other water users.
3. Results
3.1. General Trends
3.2. Impacts
3.2.1. Water Use Impacts
3.2.2. Crop Impacts
3.2.3. Environmental Impacts
3.2.4. Socio–Economic Impacts
4. Discussion
4.1. Trade-Offs
4.2. Policy Discourse
4.3. Research Limitations and Future Developments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| WUE | Water use efficiency |
| WP | Water productivity |
| GHG | Greenhouse gas emissions |
| WUA | Water Users Association |
References
- Biswas, A.K.; Tortajada, C. Assessing Global Water Megatrends; Springer: Singapore, 2018; pp. 1–26. [Google Scholar] [CrossRef]
- UN-Water. The United Nations World Water Development Report 2019: Leaving No One Behind; Ubiquity Press: London, UK, 2019. [Google Scholar] [CrossRef]
- IPCC. AR5 Synthesis Report: Climate Change 2014; IPCC: Geneva, Switzerland, 2014; Volume 218, Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 26 April 2022).
- FAO. The State of Food and Agriculture: Climate Change, Agriculture and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016; Available online: https://www.fao.org/publications (accessed on 24 April 2022).
- Jägermeyr, J.; Pastor, A.; Biemans, H.; Gerten, D. Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation. Nat. Commun. 2017, 8, 15900. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2020; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Onyena, A.P.; Sam, K. The blue revolution: Sustainable water management for a thirsty world. Discov. Sustain. 2025, 6, 63. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manag. 2015, 155, 113–124. [Google Scholar] [CrossRef]
- Berbel, J.; Expósito, A.; Gutiérrez-Martín, C.; Mateos, L. Effects of the Irrigation Modernization in Spain 2002–2015. Water Resour. Manag. 2019, 33, 1835–1849. [Google Scholar] [CrossRef]
- McCartney, M.P.; Whiting, L.; Makin, I.; Lankford, B.A.; Ringler, C. Rethinking irrigation modernisation: Realising multiple objectives through the integration of fisheries. Mar. Freshw. Res. 2019, 70, 1201. [Google Scholar] [CrossRef]
- Hoffmann, P.; Villamayor-Tomas, S. Irrigation modernization and the efficiency paradox: A meta-study through the lens of Networks of Action Situations. Sustain. Sci. 2023, 18, 181–199. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Williams, J.; Perry, C.J.; Molle, F.; Ringler, C.; Steduto, P.; Udall, B.; Wheeler, S.A.; Wang, Y.; Garrick, D.; et al. The paradox of irrigation efficiency. Science 2018, 361, 748–750. [Google Scholar] [CrossRef]
- European Parliament and the Council of the European Union. Regulation (EU) No 1305/2013 of the European Parliament and of the Council of 17 December 2013 on support for rural development by the European Agricultural Fund for Rural Development (EAFRD) and repealing Council Regulation (EC) No 1698/2005. Off. J. Eur. Union 2013, 347, 487–548. [Google Scholar]
- Venot, J.P.; Kuper, M.; Zwarteveen, M. Drip Irrigation for Agriculture; Routledge: London, UK; New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Lamm, F.R.; Colaizzi, P.D.; Sorensen, R.B.; Bordovsky, J.P.; Dougherty, M.; Balkcom, K.; Zaccaria, D.; Bali, K.M.; Rudnick, D.R.; Peters, R.T. A 2020 Vision of Subsurface Drip Irrigation in the U.S. Trans. ASABE 2021, 64, 1319–1343. [Google Scholar] [CrossRef]
- Ticehurst, J.L.; Curtis, A.L. The intention of irrigators to adopt water use efficient measures: Case studies in the north and south of the Murray–Darling Basin. Australas. J. Water Resour. 2018, 22, 149–161. [Google Scholar] [CrossRef]
- Ward, F.A.; Pulido-Velazquez, M. Water conservation in irrigation can increase water use. Proc. Natl. Acad. Sci. USA 2008, 105, 18215–18220. [Google Scholar] [CrossRef]
- Contor, B.A.; Taylor, R.G. Why Improving Irrigation Efficiency Increases Total Volume of Consumptive Use. Irrig. Drain. 2013, 62, 273–280. [Google Scholar] [CrossRef]
- Scott, C.A.; Vicuña, S.; Blanco-Gutiérrez, I.; Meza, F.; Varela-Ortega, C. Irrigation efficiency and water-policy implications for river basin resilience. Hydrol. Earth Syst. Sci. 2014, 18, 1339–1348. [Google Scholar] [CrossRef]
- Wagener, T.; Sivapalan, M.; Troch, P.A.; McGlynn, B.L.; Harman, C.J.; Gupta, H.V.; Kumar, P.; Rao, P.S.C.; Basu, N.B.; Wilson, J.S. The future of hydrology: An evolving science for a changing world. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Masseroni, D.; Ricart, S.; De Cartagena, F.R.; Monserrat, J.; Gonçalves, J.M.; De Lima, I.; Facchi, A.; Sali, G.; Gandolfi, C. Prospects for Improving Gravity-Fed Surface Irrigation Systems in Mediterranean European Contexts. Water 2017, 9, 20. [Google Scholar] [CrossRef]
- Séraphin, P.; Vallet-Coulomb, C.; Gonçalvès, J. Partitioning groundwater recharge between rainfall infiltration and irrigation return flow using stable isotopes: The Crau aquifer. J. Hydrol. 2016, 542, 241–253. [Google Scholar] [CrossRef]
- Poch-Massegú, R.; Jiménez-Martínez, J.; Wallis, K.; de Cartagena, F.R.; Candela, L. Irrigation return flow and nitrate leaching under different crops and irrigation methods in Western Mediterranean weather conditions. Agric. Water Manag. 2014, 134, 1–13. [Google Scholar] [CrossRef]
- Sese-Minguez, S.; Boesveld, H.; Asins-Velis, S.; Van der Kooij, S.; Maroulis, J. Transformations accompanying a shift from surface to drip irrigation in the Cànyoles Watershed, Valencia, Spain. Water Altern. 2017, 10, 81–99. [Google Scholar]
- García-Mollá, M.; Medina, R.P.; Vega-Carrero, V.; Sanchis-Ibor, C. Economic efficiency of drip and flood irrigation. Comparative analysis at farm scale using DEA. Agric. Water Manag. 2025, 309, 109314. [Google Scholar] [CrossRef]
- Perry, C.; Steduto, P.; Karajeh, F. Does Improved Irrigation Technology Save Water? A Review of the Evidence; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2017; Available online: https://openknowledge.fao.org/items/b4445410-aca5-491c-8247-10ab4281fa91 (accessed on 4 August 2025).
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Israelsen, O.W. Irrigation Principles and Practices, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1950. [Google Scholar]
- Jensen, M.E. Beyond irrigation efficiency. Irrig. Sci. 2007, 25, 233–245. [Google Scholar] [CrossRef]
- Narayanamoorthy, A. Economic Impact of Drip Irrigation in India: An Empirical Analysis with Farm Level Data; Springer: Cham, Switzerland, 2022; pp. 329–360. [Google Scholar] [CrossRef]
- Leghari, S.J.; Hu, K.; Wei, Y.; Wang, T.; Bhutto, T.A.; Buriro, M. Modelling water consumption, N fates and maize yield under different water-saving management practices in China and Pakistan. Agric. Water Manag. 2021, 255, 107033. [Google Scholar] [CrossRef]
- Mehmood, F.; Wang, G.; Abubakar, S.A.; Zain, M.; Rahman, S.U.; Gao, Y.; Duan, A. Optimizing irrigation management sustained grain yield, crop water productivity, and mitigated greenhouse gas emissions from the winter wheat field in North China Plain. Agric. Water Manag. 2023, 290, 108599. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Tan, J. Interannual Variations of Evapotranspiration and Water Use Efficiency over an Oasis Cropland in Arid Regions of North-Western China. Water 2020, 12, 1239. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, M.; Chen, H.; Fu, X.; Wang, L.; Wang, R. Soil moisture and salinity dynamics of drip irrigation in saline-alkali soil of Yellow River basin. Front. Environ. Sci. 2023, 11, 1130455. [Google Scholar] [CrossRef]
- Leghari, S.J.; Hu, K.; Wei, Y.; Wang, T.; Laghari, Y. Modelling the effects of cropping systems and irrigation methods on water consumption, N fates and crop yields in the North China Plain. Comput. Electron. Agric. 2024, 218, 108677. [Google Scholar] [CrossRef]
- Wang, X.; Huo, Z.; Guan, H.; Guo, P.; Qu, Z. Drip irrigation enhances shallow groundwater contribution to crop water consumption in an arid area. Hydrol. Process. 2018, 32, 747–758. [Google Scholar] [CrossRef]
- Dong, S.; Kang, Y.; Wan, S.; Li, X.; Miao, J. Drip-irrigation using highly saline groundwater increases sunflower yield in heavily saline soil. Agron. J. 2021, 113, 2950–2959. [Google Scholar] [CrossRef]
- Sikaoui, L.; Nangia, V.; Karrou, M.; Oweis, T. Improved on-farm irrigation management for olive growing—A case study from Morocco. Ann. Arid Zone 2016, 55, 147–151. [Google Scholar]
- Raza, A.; Zaka, M.A.; Khurshid, T.; Nawaz, M.A.; Ahmed, W.; Afzal, M.B.S. Different Irrigation Systems Affect the Yield and Water Use Efficiencyof Kinnow Mandarin (Citrus reticulata blanco.). J. Anim. Plant Sci. 2020, 30, 1178–1186. [Google Scholar] [CrossRef]
- Ali, M.Y.; Saleem, S.; Irshad, M.N.; Mehmood, A.; Nisar, M.; Ali, I. Comparative study of different irrigation system for cotton crop in district Rahim Yar khan, Punjab, Pakistan. Int. J. Agric. Ext. 2020, 8, 131–138. [Google Scholar] [CrossRef]
- Li, Z.; Zong, R.; Wang, T.; Wang, Z.; Zhang, J. Adapting Root Distribution and Improving Water Use Efficiency via Drip Irrigation in a Jujube (Zizyphus jujube Mill.) Orchard after Long-Term Flood Irrigation. Agriculture 2021, 11, 1184. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, J.A.; Pérez-Urrestarazu, L.; Camacho-Poyato, E.; Montesinos, P. The paradox of irrigation scheme modernization: More efficient water use linked to higher energy demand. Span. J. Agric. Res. 2011, 9, 1000–1008. [Google Scholar] [CrossRef]
- INTERA. Remote-Sensing-Based Comparison of Water Consumption by Drip-Irrigated versus Flood-Irrigated Fields; INTERA Inc.: Austin, TX, USA, 2013; Available online: http://www.ose.state.nm.us/Basins/Colorado/AWSA/Studies/2013_Intera_DmingFldDripRpt.pdf (accessed on 4 August 2025).
- Sampedro-Sanchez, D. Can Irrigation Technologies Save Water in Closed Basins? The effects of Drip Irrigation on Water Resources in the Guadalquivir River Basin (Spain). Water Altern. 2022, 15, 501–522. [Google Scholar]
- Küçükyumuk, C.; Kaçal, E.; Ertek, A.; Öztürk, G.; Kurttaş, Y.S.K. Pomological and vegetative changes during transition from flood irrigation to drip irrigation: Starkrimson Delicious apple variety. Sci. Hortic. 2012, 136, 17–23. [Google Scholar] [CrossRef]
- Eranki, P.L.; El-Shikha, D.; Hunsaker, D.J.; Bronson, K.F.; Landis, A.E. A comparative life cycle assessment of flood and drip irrigation for guayule rubber production using experimental field data. Ind. Crops Prod. 2017, 99, 97–108. [Google Scholar] [CrossRef]
- Montazar, A.; Zaccaria, D.; Bali, K.; Putnam, D. A Model to Assess the Economic Viability of Alfalfa Production Under Subsurface Drip Irrigation in California. Irrig. Drain. 2017, 66, 90–102. [Google Scholar] [CrossRef]
- Jat, H.S.; Sharma, P.C.; Datta, A.; Choudhary, M.; Kakraliya, S.K.; Singh, Y.; Sidhu, H.S.; Gerard, B.; Jat, M.L. Re-designing irrigated intensive cereal systems through bundling precision agronomic innovations for transitioning towards agricultural sustainability in North-West India. Sci. Rep. 2019, 9, 17929. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.K.; Ramatshaba, T.S.; Wang, G.; Liang, Y.; Liu, H.; Gao, Y.; Duan, A. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain. Agric. Water Manag. 2019, 217, 292–302. [Google Scholar] [CrossRef]
- Liu, Q.; Lan, Y.; Tan, F.; Tu, Y.; Sun, Y.; Yougu, G.; Yang, Z.; Ding, C.; Li, T. Drip Irrigation Elevated Olive Productivity in Southwest China. HortTechnology 2019, 29, 122–127. [Google Scholar] [CrossRef]
- Umair, M.; Hussain, T.; Jiang, H.; Ahmad, A.; Yao, J.; Qi, Y.; Zhang, Y.; Min, L.; Shen, Y. Water-Saving Potential of Subsurface Drip Irrigation For Winter Wheat. Sustainability 2019, 11, 2978. [Google Scholar] [CrossRef]
- Gao, J.; Xu, C.; Luo, N.; Liu, X.; Huang, S.; Wang, P. Mitigating global warming potential while coordinating economic benefits by optimizing irrigation managements in maize production. J. Environ. Manag. 2021, 298, 113474. [Google Scholar] [CrossRef]
- Andrews, H.M.; Homyak, P.M.; Oikawa, P.Y.; Wang, J.; Jenerette, G.D. Water-conscious management strategies reduce per-yield irrigation and soil emissions of CO2, N2O, and NO in high-temperature forage cropping systems. Agric. Ecosyst. Environ. 2022, 332, 107944. [Google Scholar] [CrossRef]
- Kumar, J.; Nibhoria, A.; Yadav, P.K.; Satyajeet; Jat, M.; Antil, S.K. Relative performance of drip irrigation in comparison to conventional methods of irrigation in Indian mustard (Brassica juncea) in south-west Haryana. Indian J. Agric. Sci. 2023, 93, 1320–1325. [Google Scholar] [CrossRef]
- Merza, N.; Atab, H.; Al-Fatlawi, Z.; Alsharifi, S. Effect of irrigation systems on rice productivity. Sabrao J. Breed. Genet. 2023, 52, 587–597. [Google Scholar] [CrossRef]
- Li, C.; Han, W.; Peng, M. Effects of drip and flood irrigation on carbon dioxide exchange and crop growth in the maize ecosystem in the Hetao Irrigation District, China. J. Arid Land 2024, 16, 282–297. [Google Scholar] [CrossRef]
- Yadav, A.; Upreti, H.; Singhal, G.D. Crop water stress index and its sensitivity to meteorological parameters and canopy temperature. Theor. Appl. Climatol. 2024, 155, 2903–2915. [Google Scholar] [CrossRef]
- Wang, J.; He, X.; Gong, P.; Heng, T.; Zhao, D.; Wang, C.; Chen, Q.; Wei, J.; Lin, P.; Yang, G. Response of fragrant pear quality and water productivity to lateral depth and irrigation amount. Agric. Water Manag. 2024, 292, 108652. [Google Scholar] [CrossRef]
- Liu, H.-L.; Chen, X.; Bao, A.-M.; Wang, L.; Pan, X.; He, X.-L. Effect of Irrigation Methods on Groundwater Recharge in Alluvial Fan Area. J. Irrig. Drain. Eng. 2012, 138, 266–273. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, H.; Zhang, P.; Bai, Y.; Zhang, Q. Impact of Changing Irrigation Patterns on Saltwater Dynamics of Soil in Farmlands and their Shelterbelts in the Irrigated Zone of Kalamiji Oasis. Irrig. Drain. 2015, 64, 393–399. [Google Scholar] [CrossRef]
- Jin, X.; Chen, M.; Fan, Y.; Yan, L.; Wang, F. Effects of Mulched Drip Irrigation on Soil Moisture and Groundwater Recharge in the Xiliao River Plain, China. Water 2018, 10, 1755. [Google Scholar] [CrossRef]
- Pool, S.; Francés, F.; Garcia-Prats, A.; Pulido-Velazquez, M.; Sanchis-Ibor, C.; Schirmer, M.; Yang, H.; Jiménez-Martínez, J. From Flood to Drip Irrigation Under Climate Change: Impacts on Evapotranspiration and Groundwater Recharge in the Mediterranean Region of Valencia (Spain). Earth’s Futur. 2021, 9, e2020EF001859. [Google Scholar] [CrossRef]
- Pool, S.; Francés, F.; Garcia-Prats, A.; Puertes, C.; Pulido-Velazquez, M.; Sanchis-Ibor, C.; Schirmer, M.; Yang, H.; Jiménez-Martínez, J. Hydrological Modeling of the Effect of the Transition From Flood to Drip Irrigation on Groundwater Recharge Using Multi-Objective Calibration. Water Resour. Res. 2021, 57, e2021WR029677. [Google Scholar] [CrossRef]
- Wael, M.; Riad, P.; Hassan, N.A.; Nofal, E.R. Assessment of modern irrigation versus flood irrigation on groundwater potentiality in old clayey lands. Ain Shams Eng. J. 2024, 15, 102776. [Google Scholar] [CrossRef]
- Yan, L.; Chen, M.; Hu, P.; Li, D.; Wang, Y. An analysis on the influence of precipitation infiltration on groundwater under different irrigation conditions in the semi-arid area. Water Supply 2021, 21, 1111–1118. [Google Scholar] [CrossRef]
- Yakirevich, A.; Weisbrod, N.; Kuznetsov, M.; Villarreyes, C.R.; Benavent, I.; Chavez, A.; Ferrando, D. Modeling the impact of solute recycling on groundwater salinization under irrigated lands: A study of the Alto Piura aquifer, Peru. J. Hydrol. 2013, 482, 25–39. [Google Scholar] [CrossRef]
- Tudi, M.; Wang, L.; Wei, B.; Yang, L.; Yu, J.; Jiang, F.; Xue, Y.; Li, H.; Wang, F.; Li, L.; et al. Effects of drip and flood irrigation on soil heavy metal migration and associated risks in China. Ecol. Indic. 2024, 161, 111986. [Google Scholar] [CrossRef]
- Pal, S.; Patel, N.; Malik, A.; Sharma, A.; Pal, U.; KG, R.; Singh, D. Eco-friendly treatment of wastewater and its impact on soil and vegetables using flood and micro-irrigation. Agric. Water Manag. 2023, 275, 108025. [Google Scholar] [CrossRef]
- Wei, C.; Ren, S.; Yang, P.; Wang, Y.; He, X.; Xu, Z.; Wei, R.; Wang, S.; Chi, Y.; Zhang, M. Effects of irrigation methods and salinity on CO2 emissions from farmland soil during growth and fallow periods. Sci. Total. Environ. 2021, 752, 141639. [Google Scholar] [CrossRef]
- Jackson, T.M.; Khan, S.; Hafeez, M. A comparative analysis of water application and energy consumption at the irrigated field level. Agric. Water Manag. 2010, 97, 1477–1485. [Google Scholar] [CrossRef]
- Ward, F.A. Economic impacts on irrigated agriculture of water conservation programs in drought. J. Hydrol. 2014, 508, 114–127. [Google Scholar] [CrossRef]
- Hussain, K.; Majeed, A.; Nawaz, K.; Afghan, S.; Ali, K.; Lin, F.; Zafar, Z.; Raza, G. Comparative study of subsurface drip irrigation and flood irrigation systems for quality and yield of sugarcane. African J. Agric. Res. 2010, 5, 3026–3034. [Google Scholar]
- Mupaso, N.; Manzungu, E.; Mutambara, J.; Hanyani-Mlambo, B. The Impact of Irrigation Technology on The Financial and Economic Performance of Smallholder Irrigation in Zimbabwe. Irrig. Drain. 2014, 63, 430–439. [Google Scholar] [CrossRef]
- Khor, L.Y.; Feike, T. Economic sustainability of irrigation practices in arid cotton production. Water Resour. Econ. 2017, 20, 40–52. [Google Scholar] [CrossRef]
- Ortega-Reig, M.; Sanchis-Ibor, C.; Palau-Salvador, G.; García-Mollá, M.; Avellá-Reus, L. Institutional and management implications of drip irrigation introduction in collective irrigation systems in Spain. Agric. Water Manag. 2017, 187, 164–172. [Google Scholar] [CrossRef]
- Perry, C. Accounting for water use: Terminology and implications for saving water and increasing production. Agric. Water Manag. 2011, 98, 1840–1846. [Google Scholar] [CrossRef]
- Carlson, G.; Massari, C.; Rotiroti, M.; Bonomi, T.; Preziosi, E.; Wilder, A.; Whitaker, D.; Girotto, M. Intensive irrigation buffers groundwater declines in key European breadbasket. Nat. Water 2025, 3, 683–692. [Google Scholar] [CrossRef]
- Vallet-Coulomb, C.; Séraphin, P.; Gonçalvès, J.; Radakovitch, O.; Cognard-Plancq, A.-L.; Crespy, A.; Babic, M.; Charron, F. Irrigation return flows in a mediterranean aquifer inferred from combined chloride and stable isotopes mass balances. Appl. Geochem. 2017, 86, 92–104. [Google Scholar] [CrossRef]
- Pérez-Blanco, C.D.; Sapino, F. Economic Sustainability of Irrigation-Dependent Ecosystem Services Under Growing Water Scarcity. Insights From the Reno River in Italy. Water Resour. Res. 2022, 58, e2021WR030478. [Google Scholar] [CrossRef]
- Owens, K.; Carmody, E.; Grafton, Q.; O’DOnnell, E.; Wheeler, S.; Godden, L.; Allen, R.; Lyster, R.; Steduto, P.; Jiang, Q.; et al. Delivering global water security: Embedding water justice as a response to increased irrigation efficiency. WIREs Water 2022, 9, e1608. [Google Scholar] [CrossRef]
- Pérez-Blanco, C.D.; Loch, A.; Ward, F.; Perry, C.; Adamson, D. Agricultural water saving through technologies: A zombie idea. Environ. Res. Lett. 2021, 16, 114032. [Google Scholar] [CrossRef]
- Playán, E.; Mateos, L. Modernization and optimization of irrigation systems to increase water productivity. Agric. Water Manag. 2006, 80, 100–116. [Google Scholar] [CrossRef]
- van der Kooij, S.; Zwarteveen, M.; Boesveld, H.; Kuper, M. The efficiency of drip irrigation unpacked. Agric. Water Manag. 2013, 123, 103–110. [Google Scholar] [CrossRef]
- Morrisett, C.N.; Van Kirk, R.W.; Bernier, L.O.; Holt, A.L.; Perel, C.B.; Null, S.E. The irrigation efficiency trap: Rational farm-scale decisions can lead to poor hydrologic outcomes at the basin scale. Front. Environ. Sci. 2023, 11, 1188139. [Google Scholar] [CrossRef]
- Daccache, A.; Ciurana, J.S.; Diaz, J.A.R.; Knox, J.W. Water and energy footprint of irrigated agriculture in the Mediterranean region. Environ. Res. Lett. 2014, 9, 124014. [Google Scholar] [CrossRef]
- Qin, J.; Duan, W.; Zou, S.; Chen, Y.; Huang, W.; Rosa, L. Global energy use and carbon emissions from irrigated agriculture. Nat. Commun. 2024, 15, 3084. [Google Scholar] [CrossRef]
- CBD. Annex A to COP 5 Decision V/6: Ecosystem Approach; Convention on Biological Diversity: Montreal, QC, Canada, 2000. [Google Scholar]
- Hoff, H. Understanding the Nexus: Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus; Stockholm Environment Institute: Stockholm, Sweden, 2011. [Google Scholar]
- Ringler, C.; Bhaduri, A.; Lawford, R. The nexus across water, energy, land and food (WELF): Potential for improved resource use efficiency? Curr. Opin. Environ. Sustain. 2013, 5, 617–624. [Google Scholar] [CrossRef]
- Union for the Mediterranean. UFM Water Policy Framework for Actions 2030; Union for the Mediterranean: Barcelona, Spain, 2020. [Google Scholar]
- Lucca, E.; El Jeitany, J.; Castelli, G.; Pacetti, T.; Bresci, E.; Nardi, F.; Caporali, E. A review of water-energy-food-ecosystems Nexus research in the Mediterranean: Evolution, gaps and applications. Environ. Res. Lett. 2023, 18, 83001. [Google Scholar] [CrossRef]
- United Nations High-Level Panel on Water. Making Every Drop Count—An Agenda for Water Action; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Mennig, P. A never-ending story of reforms: On the wicked nature of the Common Agricultural Policy. npj Sustain. Agric. 2024, 2, 20. [Google Scholar] [CrossRef]
- Brinegar, H.R.; Ward, F.A. Basin impacts of irrigation water conservation policy. Ecol. Econ. 2009, 69, 414–426. [Google Scholar] [CrossRef]
- Molle, F.; Tanouti, O. Squaring the circle: Agricultural intensification vs. water conservation in Morocco. Agric. Water Manag. 2017, 192, 170–179. [Google Scholar] [CrossRef]
- Hellegers, P.; Davidson, B.; Russ, J.; Waalewijn, P. Irrigation subsidies and their externalities. Agric. Water Manag. 2022, 260, 107284. [Google Scholar] [CrossRef]
- Pérez-Blanco, C.D.; Hrast-Essenfelder, A.; Perry, C. Irrigation Technology and Water Conservation: A Review of the Theory and Evidence. Rev. Environ. Econ. Policy 2020, 14, 216–239. [Google Scholar] [CrossRef]
- Berbel, J.; Mateos, L. Does investment in irrigation technology necessarily generate rebound effects? A simulation analysis based on an agro-economic model. Agric. Syst. 2014, 128, 25–34. [Google Scholar] [CrossRef]
- Giannoccaro, G.; Roselli, L.; Sardaro, R.; de Gennaro, B.C. Design of an incentive-based tool for effective water saving policy in agriculture. Agric. Water Manag. 2022, 272, 107866. [Google Scholar] [CrossRef]





| Exclusion Criteria | Inclusion Criteria |
|---|---|
| Document type | Drip and flood terms mentioned in the abstract |
| Full text accessibility | Comparison between irrigation regimes |
| Language (only English) | Description of impacts |
| Source | Case Study Location (Country) | Crop | Yield | Nitrogen Use Efficiency | Plant Growth | Root Zone Stability |
|---|---|---|---|---|---|---|
| [47] | Turkey | Apple | x | |||
| [40] | Morocco | Olive | x | |||
| [48] | USA | Rubber | x | |||
| [49] | USA | Alfalfa | x | |||
| [38] | China | Maize | x | |||
| [50] | India | Multi crops | x | x | ||
| [51] | China | Wheat | x | x | x | |
| [52] | China | Olive | x | |||
| [53] | China | Wheat | x | |||
| [42] | Pakistan | Cotton | x | |||
| [41] | Pakistan | Citrus | x | |||
| [39] | China | Sunflower | x | |||
| [54] | China | Maize | x | |||
| [33] | China | Maize | x | x | x | |
| [43] | China | Jujube | x | x | ||
| [55] | USA | Alfalfa | x | |||
| [56] | India | Mustard | x | |||
| [34] | China | Wheat | x | |||
| [57] | Iraq | Rice | x | x | ||
| [36] | China | Maize | x | x | ||
| [37] | China | Wheat, Maize | x | x | ||
| [58] | China | Maize | x | x | ||
| [59] | India | Wheat | x | |||
| [60] | China | Pear |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santini, A.; Masiero, M.; Amato, G.; Pettenella, D.M. From Flood to Drip Irrigation: A Review of Irrigation Modernization Trade-Offs. Water 2025, 17, 3018. https://doi.org/10.3390/w17203018
Santini A, Masiero M, Amato G, Pettenella DM. From Flood to Drip Irrigation: A Review of Irrigation Modernization Trade-Offs. Water. 2025; 17(20):3018. https://doi.org/10.3390/w17203018
Chicago/Turabian StyleSantini, Alessandra, Mauro Masiero, Giulia Amato, and Davide Matteo Pettenella. 2025. "From Flood to Drip Irrigation: A Review of Irrigation Modernization Trade-Offs" Water 17, no. 20: 3018. https://doi.org/10.3390/w17203018
APA StyleSantini, A., Masiero, M., Amato, G., & Pettenella, D. M. (2025). From Flood to Drip Irrigation: A Review of Irrigation Modernization Trade-Offs. Water, 17(20), 3018. https://doi.org/10.3390/w17203018

