Impact of Sediment Plume on Benthic Microbial Community in Deep-Sea Mining
Abstract
1. Introduction
2. Distribution Characteristics of Benthic Microorganisms in Polymetallic Nodule Areas
2.1. Spatial Distribution Characteristics of Microbial Communities in Sediments of Polymetallic Nodule Areas
| Area | Dominant Taxa | References | |
|---|---|---|---|
| Location | Longitude and Latitude | ||
| Eastern Pacific Ocean | γ-Pseudomonadota, α-Pseudomonadota, δ-Pseudomonadota and Acidimicrobiia | [20] | |
| Burkholderiales, Pseudomonadales, Nitrosopumilales | [30] | ||
| Pseudomonadota and Bacillota | [21] | ||
| Western Pacific Ocean | Nitrosopumilus, Sphingomonas, Woeseia and Ralstonia | [35] | |
| γ-Pseudomonadota (49.8%), α-Pseudomonadota (4.9%), Actinobacteriota (15.5%), Bacteroidota (11.9%), Bacillota (4.2%), Chloroflexota (3.6%), Thermoproteota (3.0%) and Acidobacteriota (2.0%) | [23] | ||
| Pseudomonadota (32–82%), Archaea (4–37%), Bacillota (2–18%) and Water mold (1–6%) | [24] | ||
| α-Pseudomonadota (35.8%), γ-Pseudomonadota (35.3%), Bacillota (14.7%), Actinomycetes (14.32%) | [25] | ||
| 157.03°–161.09° E, 20.02°–23.18° N | Actinobacteria, Bacillota, Flavobacterium, α-Pseudomonadota and γ-Pseudomonadota | [26] | |
| 155°–160° E, 19°–21° N | α-Pseudomonadota (24.76%), γ-Pseudomonadota (20.21%), δ-Pseudomonadota (6.48%), Chloroflexota, Acidobacteriota, Gemmatimonas, Planctomycetota, Actinobacteria, Bacteroidetes and Nitrospirae | [27] | |
| Indian Ocean | (12.4° S, 75.33° E), (12.56° S, 74.41° E) (13.4° S, 75.33° E) | Bacillota, Actinobacteria and Bacteroidota. Sediments below 10 cm are dominated by Bacillota. | [22] |
2.2. Comparison of Microbial Communities in the Water Column, Polymetallic Nodules and Sediments of Polymetallic Nodule Areas
2.3. Metabolic and Ecological Functions of Benthic Microorganisms in Polymetallic Nodule Areas
3. Impacts of Sediment Plumes on Benthic Microbial Community During Polymetallic Nodule Mining
3.1. In Situ Deep-Sea Experiments on the Effects of Sediment Plumes on Benthic Microbial Community
3.2. Shallow-Water Experimental Study on the Effects of Plumes on Benthic Microbial Community
3.3. Sediment Plume Threshold
4. Conclusions and Prospects
4.1. Conclusions
- (1)
- The common microbial taxa in sediments from various polymetallic nodule regions worldwide are Pseudomonadota and Bacillota. And the benthic microbial communities exhibit strong spatial heterogeneity influenced by seafloor topography and sediment depth. However, the lack of time-series data obscures community dynamics and succession patterns. Moreover, the heavy reliance on DNA-based taxonomic profiles limits the understanding of microbes’ in situ metabolic activities and the underlying mechanisms of community assembly.
- (2)
- A thin sediment layer as shallow as 2 cm can rapidly alter benthic microbial community structure and suppress biogeochemical functions such as carbon cycling. Recovery of these ecological functions may take decades. Additionally, a synergistic effect between physical burial and chemical stress caused by metal leaching, which is a key factor driving the significant long-term risks of mining activities to the seafloor ecosystem. Compared to taxonomic abundance alone, microbial functional indicators provide a more sensitive measure of disturbance caused by deep-sea mining.
4.2. Prospects
- (1)
- Fundamental ecological research on benthic microbial communities in polymetallic nodule areas: It is recommended to systematically investigate the dynamic patterns of benthic microbial communities in polymetallic nodule regions under the influences of seasonal changes, geological evolution, and ecological succession. By integrating multi-omics approaches—including metagenomics, metatranscriptomics, and metabolomics—the project will quantify the relative contributions of environmental selection, biotic interactions, and stochastic processes in shaping community assembly. An environment–gene–ecological process coupling model will be established to reveal underlying mechanisms. Additionally, cross-regional comparative studies between the CCZ, the Indian Ocean, and other representative regions will be conducted to elucidate how geological structures, ocean current patterns, and mineral compositions influence microbial biogeographic distribution.
- (2)
- Ecological effects of microbial communities under sediment plume: It is proposed to conduct hierarchical investigations into the impacts of sediment plumes. First, it is recommended to establish a time-series in situ observation system using sediment traps and deep-sea landers to collect continuous samples under varying levels of disturbance. Combined with metagenomic sequencing and isotope tracing techniques, this approach aims to reveal the dynamic succession of microbial communities from initial response to post-disturbance stabilization. Second, by integrating metatranscriptomics and metabolomics, a three-dimensional analytical framework—linking species composition, functional genes, and metabolic pathways—will be developed to uncover the mechanisms by which key ecological functions such as carbon, nitrogen, and sulfur cycling are restructured under plume influence. To dissect community assembly processes, null model analysis combined with network topology metrics will be used to quantify the relative contributions of deterministic versus stochastic processes, with particular attention to niche differentiation driven by the resettlement of iron and manganese oxides. In parallel, controlled microcosm experiments are recommended. These will manipulate variables such as sediment coverage thickness, particle size, and redox gradients to explore the coupled effects of physical burial and chemical stress. Finally, a multi-parameter coupled model should be constructed to integrate plume dispersion dynamics, sediment geochemistry, and microbial response thresholds. This model will provide a theoretical foundation for developing a microbial indicator–based ecological risk assessment framework tailored to deep-sea mining impacts.
- (3)
- Standardization of thresholds for sediment plume: It is recommended to establish a standardized threshold framework for sediment plumes, grounded in benthic microbial ecological responses. First, a standardized indicator system should be established by coupling biogeochemical parameters—such as microbial abundance, community structure shifts, and key enzyme activities—with physical sedimentation metrics. This approach aims to overcome the limitations of current one-dimensional threshold assessments. Second, multi-scale experimental validation is essential. Laboratory simulations should be calibrated using in situ deep-sea observation data, and a three-dimensional dynamic plume model incorporating microbial physiological stress responses should be developed to address the hydrodynamic discrepancies between shallow-water simulations and actual deep-sea environments. It is also recommended to establish long-term ecological monitoring stations. These should be integrated with controlled mining trials to track changes in microbial functional gene expression and biogeochemical fluxes. From the perspective of ecosystem service functions, this will enable the construction of dose–response relationships between disturbance intensity and ecological thresholds. Finally, international collaboration should be strengthened. Comparative studies across polymetallic nodule provinces are needed to formulate tiered threshold standards—such as reversible disturbance thresholds and irreversible damage thresholds. These will provide a scientifically grounded and operationally feasible basis for environmental risk management in deep-sea mining.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, G.; Song, S.; Hao, H.; Chunsheng, W.; Peiyuan, Q.; Zongling, W.; Xianpeng, S.; Chengbing, S. Progress of environmental research and management related to mineral resources in international seabed. Chin. J. Nonferrous Met. 2021, 31, 2722–2737. [Google Scholar]
- Li, J.; Wang, Y.; Liu, L.; Xu, X. Current status and prospect of deep-sea mining technology. Sci. Technol. Foresight 2022, 1, 92–102. [Google Scholar]
- Yu, M.; Deng, X.; Yao, H.; Liu, Y. The progress in the investigation and study of global deep-sea polumetallic nodules. Geol. China 2018, 45, 29–38. [Google Scholar]
- Sharma, R. Perspectives on Deep-Sea Mining: Sustainability, Technology, Environmental Policy and Management; Springer International Publishing: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Dongkuan, Z.; Meilin, L.; Jianxin, X. Experimental study on sediment disturbance during collection of deep-sea polymetallic nodules. Min. Metall. Eng. 2023, 43, 20–23. [Google Scholar]
- Fan, Z.; Jia, Y.; Teng, X.; Sun, Z.; Song, X.; Yang, Y.; Wang, L.; Li, B. Review on potential engineering geological environment impacts of deep-sea polymetallic nodules mining. J. Eng. Geol. 2021, 29, 1676–1691. [Google Scholar]
- Fan, Z. In Situ Observation of Sediment Plumes in Polymetallic Nodule Area of the Western Pacific Ocean; Ocean University of China: Qingdao, China, 2022. [Google Scholar]
- Haffert, L.; Haeckel, M.; de Stigter, H.; Janssen, F. Assessing the temporal scale of deep-sea mining impacts on sediment biogeochemistry. Biogeosciences 2020, 17, 2767–2789. [Google Scholar] [CrossRef]
- Orcutt, B.N.; Bradley, J.A.; Brazelton, W.J.; Estes, E.R.; Goordial, J.M.; Huber, J.A.; Jones, R.M.; Mahmoudi, N.; Marlow, J.J.; Murdock, S.; et al. Impacts of deep-sea mining on microbial ecosystem services. Limnol. Oceanogr. 2020, 65, 1489–1510. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, M.; Xia, J. Research progress on deep-sea mining plume analysis and environmental impact assessment. Ship Boat 2024, 35, 110–120. [Google Scholar]
- Peukert, A.; Schoening, T.; Alevizos, E.; Koeser, K.; Kwasnitschka, T.; Greinert, J. Understanding Mn-nodule distribution and evaluation of related deep-sea mining impacts using AUV-based hydroacoustic and optical data. Biogeosciences 2018, 15, 2525–2549. [Google Scholar] [CrossRef]
- Wang, C.; Ding, Y.; Luo, Y.; Kuang, F.; Zhang, J. Status and perspectives of environmental impact studies on deep-sea mining sediment plumes. J. Appl. Oceanogr. 2024, 43, 473–484. [Google Scholar]
- Wang, C.; Zhou, H. Assessment of potential impacts of deep-sea mining on marine ecosystem Ⅱ. Benthic ecosystem. Mar. Environ. Sci. 2001, 20, 32–37. [Google Scholar]
- Niner, H.J.; Ardron, J.A.; Escobar, E.G.; Gianni, M.; Jaeckel, A.; Jones, D.O.B.; Levin, L.A.; Smith, C.R.; Thiele, T.; Turner, P.J.; et al. Deep-Sea mining with no net loss of biodiversity-an impossible aim. Front. Mar. Sci. 2018, 5, 53. [Google Scholar]
- Van Dover, C.L.; Ardron, J.A.; Escobar, E.; Gianni, M.; Gjerde, K.M.; Jaeckel, A.; Jones, D.O.B.; Levin, L.A.; Niner, H.J.; Pendleton, L.; et al. Biodiversity loss from deep-sea mining. Nat. Geosci. 2017, 10, 464–465. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, H. Assessment on the potential impacts of deep-sea mining on the marine ecosystem Ⅰ. Epipelagic ecosystem. Mar. Environ. Sci. 2001, 20, 1–6+11. [Google Scholar]
- Hein, J.R.; Koschinsky, A.; Kuhn, T. Deep-ocean polymetallic nodules as a resource for critical materials. Nat. Rev. Earth Environ. 2020, 1, 158–169. [Google Scholar] [CrossRef]
- Weaver, P.P.E.; Aguzzi, J.; Boschen-Rose, R.E.; Colaco, A.; de Stigter, H.; Gollner, S.; Haeckel, M.; Hauton, C.; Helmons, R.; Jones, D.O.B.; et al. Assessing plume impacts caused by polymetallic nodule mining vehicles. Mar. Policy 2022, 139, 105011. [Google Scholar] [CrossRef]
- Cho, H.; Kim, K.-H.; Son, S.K.; Hyun, J.-H. Fine-scale microbial communities associated with manganese nodules in deep-sea sediment of the Korea deep ocean study area in the Northeast Equatorial Pacific. Ocean. Sci. J. 2018, 53, 337–353. [Google Scholar] [CrossRef]
- Molari, M.; Janssen, F.; Vonnahme, T.R.; Wenzhoefer, F.; Boetius, A. The contribution of microbial communities in polymetallic nodules to the diversity of the deep-sea microbiome of the Peru Basin (4130–4198 m depth). Biogeosciences 2020, 17, 3203–3222. [Google Scholar] [CrossRef]
- Jing, X.; Wang, X.; Xiong, S.; Zhu, S.; Chen, Y.; Yang, J.; Chen, J. Bacterial diversity in deep-sea sediments from two stations in the east Pacific polymetallic nodule province. Acta Microbiol. Sin. 2016, 56, 1434–1449. [Google Scholar]
- Shah, S.; Damare, S.R.; Mascarenhas-Pereira, M.B.L.; Patil, J.; Parab, S.; Nair, S.; Ghosh, A. An insight into the prokaryotic diversity from a polymetallic nodule-rich region in the Central Indian Ocean Basin using next generation sequencing approach. Front. Microbiol. 2024, 15, 1295149. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y. Microbial Diversity of Submarine Rare Earth-Rich Sediments and Ferromanganese Nodules in Western Pacific. Master’s Thesis, First Institute of Oceanography, MNR, Qingdao, China, 2023. [Google Scholar]
- Sun, J.; Zhou, H.; Cheng, H.; Chen, Z.; Yang, J.; Wang, Y.; Jing, C. Depth-dependent distribution of prokaryotes in sediments of the manganese crust on Nazimov Guyots of the Magellan Seamounts. Microb. Ecol. 2023, 86, 3027–3042. [Google Scholar] [CrossRef]
- Zhang, S. Research of Microbial Diversity in Polymetallic Nodule Fields and Cobalt-Rich Crust Region, Polyphasic Taxonomy Study on Genus Brevirhabdus. Master’s Thesis, Zhejiang University, Hangzhou, China, 2016. [Google Scholar]
- Chen, T.; Chen, X.; Ren, N.; Xue, Z.; Zhu, S.; Yang, J.; Chen, J. Diversity of potential culturable humic substance-transforming bacteria in sediments from 12 stations in the western Pacific polymetallic nodule province. Microbiol. China 2022, 49, 1541–1552. [Google Scholar]
- Wang, Y.; Cui, H.; Li, J.; Su, D.; Wang, C.; Yang, J. The structure of bacterial communities and its response to the sedimentary disturbance in the surface sediment of western Pacific polymetallic nodule area. J. Mar. Sci. 2021, 39, 21–32. [Google Scholar]
- Lejzerowicz, F.; Gooday, A.J.; Angeles, I.B.; Cordier, T.; Morard, R.; Apotheloz-Perret-Gentil, L.; Lins, L.; Menot, L.; Brandt, A.; Levin, L.A.; et al. Eukaryotic biodiversity and spatial patterns in the Clarion-Clipperton Zone and other abyssal regions: Insights from sediment DNA and RNA metabarcoding. Front. Mar. Sci. 2021, 8, 671033. [Google Scholar] [CrossRef]
- Peng, S.; Dong, F.; Li, L.; Liu, J.; Lu, D.; Quan, Y.; Jia, Y.; Wang, Y. Bacterial Diversity in Deep-Sea Sediment of West Pacific Nodule Province. Water 2024, 16, 3172. [Google Scholar] [CrossRef]
- China Minmetals Corporation. Environmental Impact Statement Testing of Polymetallic Nodule Collector Vehicle in the Block A-5 of the Minmetals Contract Area; China Minmetals Corporation: Beijing, China, 2024. [Google Scholar]
- Shulse, C.N.; Maillot, B.; Smith, C.R.; Church, M.J. Polymetallic nodules, sediments, and deep waters in the equatorial North Pacific exhibit highly diverse and distinct bacterial, archaeal, and microeukaryotic communities. Microbiologyopen 2017, 6, e00428. [Google Scholar] [CrossRef]
- Tully, B.J.; Heidelberg, J.F. Microbial communities associated with ferromanganese nodules and the surrounding sediments. Front. Microbiol. 2013, 4, 51172. [Google Scholar] [CrossRef]
- Zhang, D.; Li, X.; Wu, Y.; Xu, X.; Liu, Y.; Shi, B.; Peng, Y.; Dai, D.; Sha, Z.; Zheng, J. Microbe-driven elemental cycling enables microbial adaptation to deep-sea ferromanganese nodule sediment fields. Microbiome 2023, 11, 160. [Google Scholar] [CrossRef] [PubMed]
- Bergo, N.M.; Torres-Ballesteros, A.; Signori, C.N.; Benites, M.; Jovane, L.; Murton, B.J.; Da Rocha, U.N.; Pellizari, V.H. Spatial patterns of microbial diversity in Fe-Mn deposits and associated sediments in the Atlantic and Pacific oceans. Sci. Total Environ. 2022, 837, 155792. [Google Scholar] [CrossRef]
- Beijing Pioneer Hi-Tech Development Corporation Limited. Environmental Impact Statement—Seabed Collection and Relay Linkage Test in the Beijing Pioneer Polymetallic Nodule Contract Area; Beijing Pioneer Hi-Tech Development Corporation Limited: Beijing, China, 2024. [Google Scholar]
- Li, J.; Li, L.; Bai, S.; Chen, S.; Xu, H.; Ta, K.; Qu, Y.; Wang, Y.; Yao, H.; Dong, Y.; et al. Geochemical and molecular characteristics of ferromanganese deposits and surrounding sediments in the Mariana Trench: An Implication for the geochemical Mn cycle in sedimentary environments of the trench zone. Geochim. Cosmochim. Acta 2021, 310, 155–168. [Google Scholar] [CrossRef]
- Lindh, M.V.; Maillot, B.M.; Shulse, C.N.; Gooday, A.J.; Amon, D.J.; Smith, C.R.; Church, M.J. From the Surface to the Deep-Sea: Bacterial Distributions across Polymetallic Nodule Fields in the Clarion-Clipperton Zone of the Pacific Ocean. Front. Microbiol. 2017, 8, 1696. [Google Scholar] [CrossRef]
- Shiraishi, F.; Mitsunobu, S.; Suzuki, K.; Hoshino, T.; Morono, Y.; Inagaki, F. Dense microbial community on a ferromanganese nodule from the ultra-oligotrophic South Pacific Gyre: Implications for biogeochemical cycles. Earth Planet. Sci. Lett. 2016, 447, 10–20. [Google Scholar] [CrossRef]
- Wu, Y.; Liao, L.; Wang, C.; Ma, W.; Meng, F.; Wu, M.; Xu, X. A comparison of microbial communities in deep-sea polymetallic nodules and the surrounding sediments in the Pacific Ocean. Oceanogr. Res. Pap. 2013, 79, 40–44. [Google Scholar] [CrossRef]
- Jiang, X.; Gong, J.; Ren, J.; Liu, Q.; Zhang, J.; Chou, Y. An interdependent relationship between microbial ecosystems and ferromanganese nodules from the Western Pacific Ocean. Sediment. Geol. 2020, 398, 105588. [Google Scholar] [CrossRef]
- Cecchetto, M.M.; Moser, A.; Smith, C.R.; van Oevelen, D.; Sweetman, A.K. Abyssal seafloor response to fresh phytodetrital input in three areas of particular environmental interest (APEIs) in the western clarion-clipperton zone (CCZ). Oceanogr. Res. Pap. 2023, 195, 103970. [Google Scholar] [CrossRef]
- Xu, M.; Wang, P.; Wang, F.; Xiao, X. Microbial Diversity at a Deep-Sea Station of the Pacific Nodule Province. Biodivers Conserv. 2005, 14, 3363–3380. [Google Scholar] [CrossRef]
- Mevenkamp, L.; Guilini, K.; Boetius, A.; De Grave, J.; Laforce, B.; Vandenberghe, D.; Vincze, L.; Vanreusel, A. Responses of an abyssal meiobenthic community to short-term burial with crushed nodule particles in the south-east Pacific. Biogeosciences 2019, 16, 2329–2341. [Google Scholar] [CrossRef]
- Vonnahme, T.R.; Molari, M.; Janssen, F.; Wenzhoefer, F.; Haeckel, M.; Titschack, J.; Boetius, A. Effects of a deep-sea mining experiment on seafloor microbial communities and functions after 26 years. Sci. Adv. 2020, 6, eaaz5922. [Google Scholar] [CrossRef]
- de Jonge, D.S.W.; Stratmann, T.; Lins, L.; Vanreusel, A.; Purser, A.; Marcon, Y.; Rodrigues, C.F.; Ravara, A.; Esquete, P.; Cunha, M.R.; et al. Abyssal food-web model indicates faunal carbon flow recovery and impaired microbial loop 26 years after a sediment disturbance experiment. Prog. Oceanogr. 2020, 189, 102446. [Google Scholar] [CrossRef]
- Jones, D.O.B.; Arias, M.B.; Van Audenhaege, L.; Blackbird, S.; Boolukos, C.; Bribiesca-Contreras, G.; Copley, J.T.; Dale, A.; Evans, S.; Fleming, B.F.M.; et al. Long-term impact and biological recovery in a deep-sea mining track. Nature 2025, 642, 112–118. [Google Scholar] [CrossRef]
- Xie, Q.; Han, X.; Wei, M.; Qiu, Z.; Dong, C.; Wu, Y.; Wu, X.; Yu, J. Characteristics and evolution of bacterial communities in the Wocan hydrothermal plume-influenced zone, Carlsberg Ridge, northwestern Indian Ocean. Acta Microbiol. Sin. 2022, 62, 1974–1985. [Google Scholar]
- Fernandes, L.; Jesus, H.; Almeida, P.; Sandrini, J.; Bianchini, A.; Santos, H. The influence of the Doce River mouth on the microbiome of nearby coastal areas three years after the Fundao Dam failure, Brazil. Sci. Total Environ. 2022, 807, 151777. [Google Scholar] [CrossRef] [PubMed]
- Gillard, B.; Chatzievangelou, D.; Thomsen, L.; Ullrich, M.S. Heavy-Metal-Resistant Microorganisms in Deep-Sea Sediments Disturbed by Mining Activity: An Application Toward the Development of Experimental in vitro Systems. Front. Mar. Sci. 2019, 6, 462. [Google Scholar] [CrossRef]
- Grient, J.M.A.; Drazen, J.C. Evaluating deep-sea communities’ susceptibility to mining plumes using shallow-water data. Sci. Total Environ. 2022, 852, 158162. [Google Scholar] [CrossRef]
- Stenvers, V.I.; Hauss, H.; Bayer, T.; Havermans, C.; Hentschel, U.; Schmittmann, L.; Sweetman, A.K.; Hoving, H.-J.T. Experimental mining plumes and ocean warming trigger stress in a deep pelagic jellyfish. Nat. Commun. 2023, 14, 7352. [Google Scholar] [CrossRef]
- Ma, W.; Schott, D.; van Rhee, C. Numerical calculations of environmental impacts for deep sea mining activities. Sci. Total Environ. 2019, 652, 996–1012. [Google Scholar] [CrossRef]
- Kaikkonen, L.; Helle, I.; Kostamo, K.; Kuikka, S.; Tornroos, A.; Nygard, H.; Venesjarvi, R.; Uusitalo, L. Causal approach to determining the environmental risks of seabed mining. Environ. Sci. Technol. 2021, 55, 8502–8513. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, M.; Dong, F.; Jia, Y.; Qi, B.; Yu, S.; Peng, S.; Liang, B.; Li, L.; Yu, L.; Zhang, X.; et al. Impact of Sediment Plume on Benthic Microbial Community in Deep-Sea Mining. Water 2025, 17, 3013. https://doi.org/10.3390/w17203013
Bai M, Dong F, Jia Y, Qi B, Yu S, Peng S, Liang B, Li L, Yu L, Zhang X, et al. Impact of Sediment Plume on Benthic Microbial Community in Deep-Sea Mining. Water. 2025; 17(20):3013. https://doi.org/10.3390/w17203013
Chicago/Turabian StyleBai, Mei, Fang Dong, Yonggang Jia, Baoyun Qi, Shimin Yu, Shaoyuan Peng, Bingchen Liang, Lei Li, Liwei Yu, Xiuzhan Zhang, and et al. 2025. "Impact of Sediment Plume on Benthic Microbial Community in Deep-Sea Mining" Water 17, no. 20: 3013. https://doi.org/10.3390/w17203013
APA StyleBai, M., Dong, F., Jia, Y., Qi, B., Yu, S., Peng, S., Liang, B., Li, L., Yu, L., Zhang, X., & Li, Y. (2025). Impact of Sediment Plume on Benthic Microbial Community in Deep-Sea Mining. Water, 17(20), 3013. https://doi.org/10.3390/w17203013
