In Situ Monitoring of Water Isotopic Composition for Vapor and Precipitation Near-Surface Ground in East Asia Subtropical Monsoon Region
Abstract
1. Introduction
2. Method
2.1. Measurements and Calculations
2.2. Moisture Source Diagnostic
3. Results
3.1. Meteorological Measurements
3.2. The Isotopic Composition of Water Vapor and Precipitation
3.3. Characteristics of LMWL and LMVL
4. Discussion
4.1. Isotope Effect of Precipitation and Water Vapor
4.2. Relationship and Deviation Between Isotope Ratio of Water Vapor and Precipitation
4.2.1. Correlation Controlled by Equilibrium Fractionation
4.2.2. Mixing of Ground-Level Water Vapor into the Cloud Base
4.3. Identification of Local Water Vapor Sources
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Gat, J.R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef]
- Malov, A.I.; Tokarev, I.V. Using stable isotopes to characterize the conditions of groundwater formation on the eastern slope of the Baltic Shield (NW Russia). J. Hydrol. 2019, 578, 124130. [Google Scholar] [CrossRef]
- Brown, D.; Worden, J.; Noone, D. Comparison of atmospheric hydrology over convective continental regions using water vapor isotope measurements from space. J. Geophys. Res. Atmos. 2008, 113, 15124. [Google Scholar] [CrossRef]
- Yoshimura, K.; Kanamitsu, M.; Noone, D.; Oki, T. Historical isotope simulation using Reanalysis atmospheric data. J. Geophys. Res. Atmos. 2008, 113, D19108. [Google Scholar] [CrossRef]
- Galewsky, J.; Steen-Larsen, H.C.; Field, R.D.; Worden, J.; Risi, C.; Schneider, M. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Rev. Geophys. 2016, 54, 809–865. [Google Scholar] [CrossRef]
- Wen, X.; Yang, B.; Sun, X.; Lee, X. Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland. Agric. For. Meteorol. 2016, 230–231, 89–96. [Google Scholar] [CrossRef]
- Randel, W.J.; Moyer, E.; Park, M.; Jensen, E.; Bernath, P.; Walker, K.; Boone, C. Global variations of HDO and HDO/H2O ratios in the upper troposphere and lower stratosphere derived from ACE-FTS satellite measurements. J. Geophys. Res. Atmos. 2012, 117, D06303. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, S.; Sun, X.; Yu, G.; Lee, X. Water vapor and precipitation isotope ratios in Beijing. J. Geophys. Res. Atmos. 2010, 115, 133–134. [Google Scholar] [CrossRef]
- Lee, X.; Sargent, S.; Smith, R. In situ measurement of the water vapor 18O/16O isotope ratio for atmospheric and ecological applications. J. Atmos. Ocean. Technol. 2005, 22, 1305. [Google Scholar] [CrossRef]
- Gupta, P.; Noone, D.; Galewsky, J.; Sweeney, C.; Vaughn, B.H. Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology. Rapid Commun. Mass Spectrom. 2009, 2, 2534. [Google Scholar] [CrossRef]
- Steen-Larsen, H.C.; Sveinbjörnsdottir, A.E.; Peters, A.J.; Masson-Delmotte, V.; Guishard, M.P.; Hsiao, G.; Jouzel, J.; Noone, D.; Warren, J.K.; White, J.W.C. Climatic Controls on Water Vapor Deuterium Excess in the Marine Boundary Layer of the North Atlantic Based on 500 Days of in Situ, Continuous Measurements. Atmos. Meas. Tech. 2014, 14, 2363–2401. [Google Scholar] [CrossRef]
- Risi, C.; Bony, S.; Vimeux, F. Influence of convective processes on the isotopic composition (delta O-18 and delta D) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J. Geophys. Res. Atmos. 2008, 113, D19306. [Google Scholar] [CrossRef]
- Yoshimura, K.; Kanamitsu, M.; Dettinger, M. Regional downscaling for stable water isotopes: A case study of an atmospheric river event. J. Geophys. Res. Atmos. 2010, 115, 311–319. [Google Scholar] [CrossRef]
- Guan, H.; Zhang, X.; Skrzypek, G.; Sun, Z.; Xu, X. Deuterium excess variations of rainfall events in a coastal area of South Australia and its relationship with synoptic weather systems and atmospheric moisture sources. J. Geophys. Res. Atmos. 2013, 118, 1123–1138. [Google Scholar] [CrossRef]
- Aemisegger, F.; Pfahl, S.; Sodemann, H.; Lehner, I.; Seneviratne, S.I.; Wernli, H. Deuterium excess as a proxy for continental moisture recycling and plant transpiration. Atmos. Chem. Phys. 2013, 14, 4029–4054. [Google Scholar] [CrossRef]
- Steen-Larsen, H.C.; Sveinbjörnsdottir, A.E.; Jonsson, T.; Ritter, F.; Bonne, J.-L.; Masson-Delmotte, V.; Sodemann, H.; Blunier, T.; Dahl-Jensen, D.; Vinther, B.M. Moisture sources and synoptic to seasonal variability of North Atlantic water vapor isotopic composition. J. Geophys. Res. Atmos. 2015, 120, 5757–5774. [Google Scholar] [CrossRef]
- Welp, L.R.; Lee, X.; Griffis, T.J.; Wen, X.-F.; Xiao, W.; Li, S.; Sun, X.; Hu, Z.; Martin, M.V.; Huang, J. A meta-analysis of water vapor deuterium-excess in the midlatitude atmospheric surface layer. Glob. Biogeochem. Cycles 2012, 26, 1–12. [Google Scholar] [CrossRef]
- Schmidt, M.; Maseyk, K.; Lett, C.; Biron, P.; Richard, P.; Bariac, T.; Seibt, U. Concentration effects on laser-based δ18O and δ2H measurements and implications for the calibration of vapour measurements with liquid standards. Rapid Commun. Mass Spectrom. 2010, 24, 3553–3561. [Google Scholar] [CrossRef]
- Steen-Larsen, H.C.; Johnsen, S.J.; Masson-Delmotte, V.; Stenni, B.; Risi, C.; Sodemann, H.; Balslev-Clausen, D.; Blunier, T.; Dahl-Jensen, D.; Ellehøj, M.D.; et al. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet. Atmos. Chem. Phys. 2013, 13, 4815–4828. [Google Scholar] [CrossRef]
- Aemisegger, F.; Sturm, P.; Graf, P.; Sodemann, H.; Pfahl, S.; Knohl, A.; Wernli, H. Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial laser-based spectrometers: An instrument characterisation study. Atmos. Meas. Tech. 2012, 5, 1491–1511. [Google Scholar] [CrossRef]
- Bailey, A.; Noone, D.C.; Berkelhammer, M.; Steen-Larsen, H.C.; Sato, P. The stability and calibration of water vapor isotope ratio measurements during long-term deployments. Atmos. Meas. Tech. 2015, 8, 4521–4538. [Google Scholar] [CrossRef]
- Tremoy, G.; Vimeux, F.; Cattani, O.; Mayaki, S.; Souley, I.; Favreau, G. Measurements of water vapor isotope ratios with wavelength-scanned cavity ring-down spectroscopy technology: New insights and important caveats for deuterium excess measurements in tropical areas in comparison with isotope-ratio mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 3469–3480. [Google Scholar] [CrossRef] [PubMed]
- Bonne, J.L.; Massondelmotte, V.; Cattani, O.; Delmotte, M.; Risi, C.; Sodemann, H.; Steen-Larsen, H.C. The isotopic composition of water vapour and precipitation in Ivittuut, southern Greenland. Atmos. Chem. Phys. 2014, 14, 4419–4439. [Google Scholar] [CrossRef]
- Majoube, M. Fractionnement en oxygène 18 et en deutérium entre l’eau et sa vapeur. J. Chim. Phys. 1971, 68, 1423–1436. [Google Scholar] [CrossRef]
- Horita, J.; Wesolowski, D.J. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochim. Cosmochim. Acta 1994, 58, 3425–3437. [Google Scholar] [CrossRef]
- Lee, X.; Smith, R.; Williams, J. Water vapour 18O/16O isotope ratio in surface air in New England, USA. Tellus B Chem. Phys. Meteorol. 2006, 58, 293–304. [Google Scholar] [CrossRef]
- Sunmonu, N.; Muramoto, K.; Kurita, N.; Yoshimura, K.; Fujiyoshi, Y. Characteristics of Seasonal Variation of Near-Surface Water Vapor D/H Isotope Ratio Revealed by Continuous in situ Measurement in Sapporo, Japan. SOLA 2012, 8, 5–8. [Google Scholar] [CrossRef]
- Casado, M.; Landais, A.; Masson-Delmotte, V.; Genthon, C.; Kerstel, E.; Kassi, S.; Arnaud, L.; Picard, G.; Prie, F.; Cattani, O.; et al. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau. Atmos. Chem. Phys. 2016, 16, 8521–8538. [Google Scholar] [CrossRef]
- Yu, W.; Tian, L.; Ma, Y.; Xu, B.; Qu, D. Simultaneous monitoring of stable oxygen isotope composition in water vapour and precipitation over the central Tibetan Plateau. Atmospheric Meas. Tech. 2015, 15, 10251–10262. [Google Scholar] [CrossRef]
- Zhang, S.C.; Sun, W.Z.; Liu, J.M. Stable isotopes in precipitation in the vapor transport path in Kunming of Southwest China. Resour. Environ. Yangtze Basin 2005, 14, 665–669. [Google Scholar]
- Xue, J.B.; Zhong, W.; Zhao, Y.J. Stable Oxygen Isotope in Precipitation in Guangzhou in Relation to the Meteorological Factors and the Monsoon Activity. J. Glaciol. Geocryol. 2008, 30, 761–768. [Google Scholar]
- Bastrikov, V.; Steen-Larsen, H.C.; Masson-Delmotte, V.; Gribanov, K.; Cattani, O.; Jouzel, J.; Zakharov, V. Continuous measurements of atmospheric water vapour isotopes in Western Siberia (Kourovka). Atmospheric Meas. Tech. 2014, 7, 1763–1776. [Google Scholar] [CrossRef]
- Hourdin, F.; Musat, I.; Bony, S.; Braconnot, P.; Codron, F.; Dufresne, J.-L.; Fairhead, L.; Filiberti, M.-A.; Friedlingstein, P.; Grandpeix, J.-Y.; et al. The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim. Dyn. 2006, 27, 787–813. [Google Scholar] [CrossRef]
- Werner, M.; Langebroek, P.M.; Carlsen, T.; Herold, M.; Lohmann, G. Stable water isotopes in the ECHAM5 general circulation model: Toward high-resolution isotope modeling on a global scale. J. Geophys. Res. 2011, 116, D15109. [Google Scholar] [CrossRef]
- Rahul, P.; Ghosh, P.; Bhattacharya, S.K.; Yoshimura, K. Controlling factors of precipitation and water vapor isotope at Bangalore, India: Constraints from observations in 2013 Indian monsoon. J. Geophys. Res. Atmos. 2016, 121, 13936–13952. [Google Scholar] [CrossRef]
- Galewsky, J.; Hurley, J.V. An advection-condensation model for subtropical water vapor isotopic ratios. J. Geophys. Res. Atmos. 2010, 115, D16116. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Sun, W.; Huang, Y.; Zhang, J. Relations between oxygen stable isotopic ratios in precipitation and relevant meteorological factors in southwest China. Sci. China Ser. D Earth Sci. 2007, 50, 571–581. [Google Scholar] [CrossRef]
- Benetti, M.; Reverdin, G.; Pierre, C.; Merlivat, L.; Risi, C.; Steen-Larsen, H.C.; Vimeux, F. Deuterium excess in marine water vapor: Dependency on relative humidity and surface wind speed during evaporation. J. Geophys. Res. Atmos. 2014, 119, 584–593. [Google Scholar] [CrossRef]
- Winnick, M.J.; Chamberlain, C.P.; Caves, J.K.; Welker, J.M. Quantifying the isotopic ‘continental effect’. Earth Planet Sci. Lett. 2014, 406, 123–133. [Google Scholar] [CrossRef]
- Lawrence, J.R.; Gedzelman, S.D.; Dexheimer, D.N.; Cho, H.; Carrie, G.D.; Gasparini, R.; Anderson, C.R.; Bowman, K.P.; Biggerstaff, M.I. Stable isotopic composition of water vapor in the tropics. J. Geophys. Res. Atmos. 2004, 109, 6115. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, X.; Wang, J.; Yu, G.; Wen, X. Short-term variations of vapor isotope ratios reveal the influence of atmospheric processes. J. Geogr. Sci. 2011, 21, 401–416. [Google Scholar] [CrossRef]
- Brown, D.; Worden, J.; Noone, D. Characteristics of tropical and subtropical atmospheric moistening derived from Lagrangian mass balance constrained by measurements of HDO and H2O. J. Geophys. Res. Atmos. 2013, 118, 54–72. [Google Scholar] [CrossRef]
- Samuels-Crow, K.E.; Galewsky, J.; Hardy, D.R.; Sharp, Z.D.; Worden, J.; Braun, C. Upwind convective influences on the isotopic composition of atmospheric water vapor over the tropical Andes. J. Geophys. Res. Atmos. 2014, 119, 7051–7063. [Google Scholar] [CrossRef]
- Galewsky, J. Constraining supersaturation and transport processes in a South American cold-air outbreak using stable isotopologues of water vapor. J. Atmospheric Sci. 2015, 72, 2055–2069. [Google Scholar] [CrossRef]
- Guilpart, E.; Vimeux, F.; Evan, S.; Brioude, J.; Metzger, J.-M.; Barthe, C.; Risi, C.; Cattani, O. The isotopic composition of near-surface water vapor at the Maïdo observatory (Reunion Island, southwestern Indian Ocean) documents the controls of the humidity of the subtropical troposphere. J. Geophys. Res. Atmos. 2017, 122, 9628–9650. [Google Scholar] [CrossRef]
- Steen-Larsen, H.C.; Masson-Delmotte, V.; Sjolte, J.; Johnsen, S.J.; Vinther, B.M.; Bréon, F.-M.; Clausen, H.B.; Dahl-Jensen, D.; Falourd, S.; Fettweis, X.; et al. Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. J. Geophys. Res. Atmos. 2011, 116, 161–165. [Google Scholar] [CrossRef]
- Benetti, M.; Aloisi, G.; Reverdin, G.; Risi, C.; Sèze, G. Importance of boundary layer mixing for the isotopic composition of surface vapor over the subtropical North Atlantic Ocean. J. Geophys. Res. Atmos. 2015, 120, 2190–2209. [Google Scholar] [CrossRef]
- Gonfiantini, R.; Roche, M.-A.; Olivry, J.-C.; Fontes, J.-C.; Zuppi, G.M. The altitude effect on the isotopic composition of tropical rains. Chem. Geol. 2001, 181, 147–167. [Google Scholar] [CrossRef]
- Worden, J.; Bowman, K.; Noone, D.; Beer, R.; Clough, S.; Eldering, A.; Fisher, B.; Goldman, A.; Gunson, M.; Herman, R.; et al. Tropospheric Emission Spectrometer observations of the tropospheric HDO/H2O ratio: Estimation approach and characterization. J. Geophys. Res. Atmos. 2006, 111, D1639. [Google Scholar] [CrossRef]
- Li, X.; Tang, C.; Cui, J. Intra-event isotopic changes in water vapor and precipitation in South China. Water 2021, 13, 940. [Google Scholar] [CrossRef]
- Noone, D. Pairing Measurements of the Water Vapor Isotope Ratio with Humidity to Deduce Atmospheric Moistening and Dehydration in the Tropical Midtroposphere. J. Clim. 2012, 25, 4476–4494. [Google Scholar] [CrossRef]
- Noone, D.; Galewsky, J.; Sharp, Z.D.; Worden, J.; Barnes, J.; Baer, D.; Bailey, A.; Brown, D.P.; Christensen, L.; Crosson, E.; et al. Properties of air mass mixing and humidity in the subtropics from measurements of the D/H isotope ratio of water vapor at the Mauna Loa Observatory. J. Geophys. Res. Atmos. 2011, 116, 898–908. [Google Scholar] [CrossRef]
Vapor | Precipitation | Equilibrium Vapor | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | Month | P (mm) | T (°C) | RH % | V (m/s) | δ18Ov (‰) | δDv (‰) | dv (‰) | H2O (mmol/mol) | δ18Or (‰) | δDr (‰) | dr (‰) | δ18Oe (‰) | δDe (‰) | de (‰) |
2016 | Mar | 253.8 | 14.89 | 89.06 | 1.72 | −13.2 | −90 | 15.2 | 20.17 | −2.1 | −7 | 9.5 | −12.6 | −88 | 12.6 |
2016 | Apr | 272.6 | 22.42 | 89.37 | 1.56 | −12.1 | −86 | 9.9 | 29.64 | −1.3 | −5 | 5.7 | −11.2 | −82 | 7.7 |
2016 | May | 297.9 | 25.01 | 86.35 | 1.87 | −13.5 | −94 | 13.8 | 32.32 | −2.5 | −13 | 6.7 | −12.2 | −87 | 10.4 |
2016 | Jun | 520.5 | 27.52 | 90.20 | 1.40 | −14.8 | −105 | 13.4 | 36.01 | −5.3 | −35 | 7.7 | −16.0 | −113 | 14.7 |
2016 | Jul | 301.4 | 28.19 | 86.90 | 1.82 | −15.2 | −106 | 15.4 | 36.33 | −5.5 | −37 | 6.9 | −15.2 | −109 | 12.6 |
2016 | Aug | 425.8 | 26.98 | 90.55 | 1.54 | −14.5 | −101 | 14.7 | 34.67 | −2.0 | −13 | 3.6 | −16.1 | −115 | 14.2 |
2016 | Sept | 211 | 26.01 | 85.97 | 1.84 | −18.6 | −130 | 18.2 | 31.17 | −5.1 | −34 | 6.9 | −17.5 | −126 | 13.9 |
2016 | Oct | 141.5 | 23.68 | 85.84 | 2.48 | −16.8 | −118 | 16.5 | 29.57 | −2.9 | −18 | 4.6 | −14.2 | −105 | 8.4 |
2016 | Nov | 62 | 17.51 | 88.33 | 2.25 | −16.2 | −114 | 16.4 | 22.17 | −0.7 | −5 | 1.1 | −16.5 | −122 | 10.0 |
2016 | Dec | 3.4 | 13.99 | 76.19 | 2.44 | −14.1 | −98 | 14.5 | 19.70 | −2.2 | −9 | 9.3 | −14.0 | −98 | 13.7 |
2017 | Jan | 13.4 | 13.44 | 90.41 | 2.19 | −14.4 | −102 | 13.3 | 18.77 | ||||||
2017 | Feb | 26.4 | 12.44 | 85.18 | 1.90 | −14.9 | −101 | 18.2 | 10.77 | −0.2 | 0.3 | 1.5 | −12.7 | −90 | 11.5 |
2017 | Mar | 174.5 | 16.40 | 89.94 | 1.96 | −12.4 | −89 | 9.4 | 23.08 | −1.4 | −5 | 6.4 | −11.7 | −84 | 9.9 |
2017 | Apr | 118.3 | 20.25 | 90.90 | 1.43 | −13.1 | −93 | 11.5 | 25.11 | −2.5 | −11 | 9.1 | −12.3 | −85 | 13.5 |
2017 | May | 421.6 | 23.89 | 88.45 | 1.72 | −13.4 | −94 | 12.6 | 28.15 | −4.4 | −23 | 12.5 | −14.5 | −101 | 15.1 |
2017 | Jun | 406.2 | 27.82 | 89.17 | 1.81 | −14.2 | −103 | 11.2 | 37.17 | −6.9 | −47 | 8.6 | −15.7 | −112 | 13.6 |
2017 | Jul | 312.2 | 27.85 | 86.68 | 1.45 | −13.8 | −97 | 13.3 | 35.59 | −6.0 | −40 | 7.5 | −17.4 | −123 | 16.7 |
2017 | Aug | 245.2 | 28.00 | 87.39 | 2.05 | −18.5 | −134 | 13.8 | 35.49 | −8.3 | −55 | 11.1 | −18.8 | −133 | 17.7 |
2017 | Sept | 270.2 | 26.84 | 91.10 | 1.30 | −16.0 | −118 | 10.2 | 36.41 | −6.5 | −42 | 10.1 | −16.1 | −113 | 15.2 |
2017 | Oct | 44.3 | 22.59 | 77.45 | 2.31 | −14.2 | −102 | 11.5 | 27.40 | −4.8 | −30 | 8.4 | −15.1 | −110 | 11.4 |
2017 | Nov | 37.1 | 17.76 | 83.60 | 2.62 | −15.7 | −114 | 11.3 | 24.50 | −3.5 | −24 | 4.2 | −15.1 | −110 | 11.3 |
2017 | Dec | 1.4 | 12.35 | 70.39 | 2.75 | −16.6 | −93 | 34.9 | 13.83 | ||||||
2018 | Jan | 132 | 11.20 | 89.13 | 2.54 | −15.0 | −107 | 12.8 | 15.26 | −5.4 | −29 | 14.3 | −15.4 | −111 | 12.3 |
2018 | Feb | 12.6 | 11.67 | 77.32 | 2.11 | −12.9 | −94 | 9.2 | 16.03 | −1.8 | −3 | 12.0 | −12.5 | −91 | 9.4 |
2018 | Mar | 56.4 | 19.36 | 80.32 | 2.31 | −12.6 | −91 | 9.8 | 21.30 | −0.7 | −2 | 3.2 | −12.4 | −86 | 13.7 |
2018 | Apr | 137.2 | 21.76 | 82.76 | 2.07 | −13.3 | −95 | 11.3 | 18.94 | −0.4 | −1 | 2.8 | −11.3 | −79 | 11.6 |
2018 | May | 98.9 | 27.62 | 80.70 | 2.15 | −13.3 | −97 | 9.3 | 29.36 | −1.0 | −5 | 3.3 | −13.0 | −89 | 14.7 |
2018 | Jun | 489.1 | 27.44 | 85.27 | 1.98 | −15.9 | −114 | 13.4 | 34.32 | −8.1 | −53 | 11.4 | −18.2 | −127 | 19.1 |
2018 | Jul | 270.9 | 28.48 | 84.06 | 2.05 | −3.1 | −23 | 1.3 | −13.8 | −104 | 6.5 | ||||
2018 | Aug | 218 | 27.90 | 87.23 | 1.80 | −7.4 | −55 | 3.8 | −16.1 | −122 | 6.1 | ||||
2018 | Sept | 155.3 | 27.04 | 83.70 | 2.20 | −17.9 | −137 | 6.2 | 21.6 | −8.6 | −69 | −0.6 | −17.0 | −130 | 5.5 |
2018 | Oct | 82.3 | 22.36 | 78.61 | 2.28 | −17.1 | −128 | 9.4 | 20.06 | −2.8 | −14 | 8.3 | −14.3 | −99 | 15.3 |
2018 | Dec | 18.7 | 15.7 | 80.8 | 2.9 | −16.5 | −106 | 26.0 | 21.48 | −1.8 | −10 | 5.1 | −13.1 | −95 | 9.6 |
Meteorological | Precipitation | Vapor | |||||
---|---|---|---|---|---|---|---|
Elements | δ18Or | δDr | dr | δ18Ov | δDv | dv | |
P (mm) | WS | −0.21 ** | −0.18 * | 0.14 | −0.16 * | −0.15 * | 0.09 |
DS | −0.11 | −0.05 | 0.13 | 0.02 | 0.01 | −0.06 | |
YR | −0.22 ** | −0.20 ** | 0.11 | −0.10 * | −0.13 * | −0.02 | |
T (°C) | WS | −0.39 ** | −0.44 ** | −0.22 ** | −0.08 | −0.15 * | −0.18 ** |
DS | −0.19 | −0.34 * | −0.42 ** | 0.33 ** | −0.19 | −0.35 ** | |
YR | −0.42 ** | −0.50 ** | −0.37 ** | −0.01 | −0.11 * | −0.28 ** | |
RH (%) | WS | −0.03 | −0.02 | 0.14 | 0.12 | 0.13 | −0.04 |
DS | 0.03 | 0.03 | 0.02 | 0.11 | 0.11 | −0.1 | |
YR | −0.01 | 0.01 | 0.11 | 0.18 ** | 0.09 | −0.30 ** | |
V (m/s) | WS | −0.14 | −0.16 * | −0.1 | −0.18 ** | −0.20 ** | 0.04 |
DS | −0.11 | −0.1 | 0.01 | −0.11 | −0.11 | 0.03 | |
YR | −0.05 | −0.06 | −0.02 | −0.27 ** | −0.25 ** | 0.16 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Qiu, W.; Lin, Z.; Tang, C.; Cao, Y. In Situ Monitoring of Water Isotopic Composition for Vapor and Precipitation Near-Surface Ground in East Asia Subtropical Monsoon Region. Water 2025, 17, 3011. https://doi.org/10.3390/w17203011
Li X, Qiu W, Lin Z, Tang C, Cao Y. In Situ Monitoring of Water Isotopic Composition for Vapor and Precipitation Near-Surface Ground in East Asia Subtropical Monsoon Region. Water. 2025; 17(20):3011. https://doi.org/10.3390/w17203011
Chicago/Turabian StyleLi, Xingxian, Wenmin Qiu, Ziwei Lin, Changyuan Tang, and Yingjie Cao. 2025. "In Situ Monitoring of Water Isotopic Composition for Vapor and Precipitation Near-Surface Ground in East Asia Subtropical Monsoon Region" Water 17, no. 20: 3011. https://doi.org/10.3390/w17203011
APA StyleLi, X., Qiu, W., Lin, Z., Tang, C., & Cao, Y. (2025). In Situ Monitoring of Water Isotopic Composition for Vapor and Precipitation Near-Surface Ground in East Asia Subtropical Monsoon Region. Water, 17(20), 3011. https://doi.org/10.3390/w17203011