Impact of pH and PS Concentration on the Thermal Degradation of Brilliant Coomassie Blue G-250: An Experimental and Modeling Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Products
2.2. Experimental Procedure
3. Kinetic Model and Calculation Algorithm
Equation | Reaction | Kinetic Constant | Unit | Reference |
---|---|---|---|---|
01 | (0.42−3.21) × 10−5 | (s−1) | Model | |
02 | ●OH + SO4●−⟶ HSO5− | 1 × 1010 | (M−1 s−1) | [25] |
03 | O●−+ H2O ⟷ ●OH + OH− | pKa = 11.9 k3 = 108 k −3 = 1.2 × 1010 | (M−1 s−1) | [26] |
04 | HSO5− + ●OH ⟶ SO5●− + H2O | 1.7 × 107 | (M−1 s−1) | [27] |
05 | HSO5− + SO4●−⟶ SO5●− + HSO4− | 1 × 106 | (M−1 s−1) | [25] |
06 | 2 * SO4●− ⟶ PS | 7 × 108 | (M−1 s−1) | [25] |
07 | H2O2 ⟶ 2 * ●OH | 1.16 × 10−5 | (M−1 s−1) | [28] |
08 | H2O ⟶ H+ + OH− | 1 × 10−3 | (s−1) | [29] |
09 | H+ + OH−⟶ H2O | 1 × 1011 | (M−1 s−1) | [29] |
10 | H2O2 ⟶ HO2− + H+ | 1.3 × 10−1 | (s−1) | [29] |
11 | HO2− + H+⟶ H2O2 | 5 × 1010 | (M−1 s−1) | [26] |
12 | HO2● ⟶ O2●− + H+ | 7 × 105 | (s−1) | [30] |
13 | O2●−+ H+⟶ HO2● | 5 × 1010 | (M−1 s−1) | [31] |
14 | HO2● + O2●−⟶ HO2− + O2 | 9.7 × 107 | (M−1 s−1) | [32] |
15 | 2 * HO2●⟶ H2O2 + O2 | 8.3 × 105 | (M−1 s−1) | [30] |
16 | ●OH + HO2● ⟶ H2O + O2 | 7.1 × 109 | (M−1 s−1) | [26] |
17 | ●OH + O2●− ⟶ OH− + O2 | 1 × 1010 | (M−1 s−1) | [26] |
18 | ●OH + H2O2 ⟶ HO2● + H2O | 2.7 × 107 | (M−1 s−1) | [26] |
19 | ●OH + HO2− ⟶H2O + O2●− | 7.5 × 109 | (M−1 s−1) | [31] |
20 | 2 * H2O2 ⟶ 2 * H2O + O2 | 2.3 × 10−2 | (M−1 s−1) | [33] |
21 | 2 * ●OH ⟶ H2O2 | 5 × 109 | (M−1 s−1) | [26] |
22 | ●OH + O●− ⟶ HO2− | 2 × 1010 | (M−1 s−1) | [33] |
23 | H2O2 + O●− ⟶ O2●−+ H2O | 5 × 108 | (M−1 s−1) | [26] |
24 | HO2− + O●− ⟶ O2●−+ OH− | 4 × 108 | (M−1 s−1) | [26] |
25 | O●− + O2 ⟶ O3●− | 3.6 × 109 | (M−1 s−1) | [26] |
26 | O●− + O2●− + H+⟶ OH− + O2 | 6 × 108 | (M−1 s−1) | [33] |
27 | 2 * SO5●− ⟶ 2 * SO4●− + O2 | 2.1 × 108 | (M−1 s−1) | [25] |
28 | PS + ●OH ⟶ S2O8●− + OH− | 1.2 × 107 | (M−1 s−1) | [25] |
29 | SO4●− + H2O ⟶ H+ + SO42− + ●OH | 660 | (s−1) | [34,35] |
30 | SO4●− + OH− ⟶ SO42− + ●OH | 7 × 107 | (M−1 s−1) | [34,35] |
31 | SO4●− + PS ⟶ SO42− + S2O8●− | 6.5 × 105 | (M−1 s−1) | [36] |
32 | ●OH + P ⟶Prod-●OH | 4.731 × 109 | (M−1 s−1) | Model |
33 | SO4●− + P ⟶ Prod-SO4●− | 1.07 × 108 | (M−1 s−1) | Model |
34 | •OH + S2O82− ⟶ OH− + S2O8−• | 1.2 × 107 | (M−1 s−1) | [25] |
4. Results and Discussions
4.1. Brilliant Coomassie Blue G 250 Degradation by TAP Process in Water
4.2. Determination of Rate Constants
4.3. Initial Persulfate Concentration Effect on BCB Degradation TAP System
4.4. Effect of pH Solution on BCB Degradation by TAP System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forgacs, E.; Cserháti, T.; Oros, G. Removal of Synthetic Dyes from Wastewaters: A Review. Environ. Int. 2004, 30, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of Dyes in Textile Effluent: A Critical Review on Current Treatment Technologies with a Proposed Alternative. Bioresour. Technol. 2001, 77, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, M.; Das, I.; Ghangrekar, M.M.; Blaney, L. Advanced Oxidation Processes: Performance, Advantages, and Scale-up of Emerging Technologies. J. Environ. Manag. 2022, 316, 115295. [Google Scholar] [CrossRef]
- Li, N.; Wu, S.; Dai, H.; Cheng, Z.; Peng, W.; Yan, B.; Chen, G.; Wang, S.; Duan, X. Thermal Activation of Persulfates for Organic Wastewater Purification: Heating Modes, Mechanism and Influencing Factors. Chem. Eng. J. 2022, 450, 137976. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y. A Comprehensive Review on Persulfate Activation Treatment of Wastewater. Sci. Total Environ. 2022, 831, 154906. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Zhu, F.; Li, J.; Yang, H.; Wei, L.; Li, Q.; Jiang, J.; Zhang, G.; Zhao, Q. A Review Study on Sulfate-Radical-Based Advanced Oxidation Processes for Domestic/Industrial Wastewater Treatment: Degradation, Efficiency, and Mechanism. Front. Chem. 2020, 8, 592056. [Google Scholar] [CrossRef]
- Li, Y.; Guo, W.; Li, W.; Liu, X.; Zhu, H.; Zhang, J.; Liu, X.; Wei, L.; Sun, A. Tuning Hard Phase towards Synergistic Improvement of Toughness and Self-Healing Ability of Poly (Urethane Urea) by Dual Chain Extenders and Coordinative Bonds. Chem. Eng. J. 2020, 393, 124583. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Radical Generation by the Interaction of Transition Metals with Common Oxidants. Environ. Sci. Technol. 2004, 38, 3705–3712. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1, 167–176. [Google Scholar] [CrossRef]
- Lim-Ortega, J.K.T.; Liang, C.; Rollon, A.P.; De Luna, M.D.G. Evaluation of Sustained Persulfate Oxidant Release for Remediating Trichloroethylene Contaminated Low Permeability Soil in the Phreatic Zone. ACS Environ. Au 2025, 5, 211–219. [Google Scholar] [CrossRef]
- El-monem, H.A.; Mahanna, H.; El-Halwany, M.; Samy, M. Photo-Thermal Activation of Persulfate for the Efficient Degradation of Synthetic and Real Industrial Wastewaters: System Optimization and Cost Estimation. Environ. Sci. Pollut. Res. 2024, 31, 24153–24162. [Google Scholar] [CrossRef]
- Mora, V.C.; Rosso, J.A.; Mártire, D.O.; Gonzalez, M.C. Phenol Depletion by Thermally Activated Peroxydisulfate at 70 °C. Chemosphere 2011, 84, 1270–1275. [Google Scholar] [CrossRef]
- Fang, G.; Gao, J.; Dionysiou, D.D.; Liu, C.; Zhou, D. Activation of Persulfate by Quinones: Free Radical Reactions and Implication for the Degradation of PCBs. Environ. Sci. Technol. 2013, 47, 4605–4611. [Google Scholar] [CrossRef]
- He, X.; de la Cruz, A.A.; Dionysiou, D.D. Destruction of Cyanobacterial Toxin Cylindrospermopsin by Hydroxyl Radicals and Sulfate Radicals Using UV-254 nm Activation of Hydrogen Peroxide, Persulfate and Peroxymonosulfate. J. Photochem. Photobiol. A Chem. 2013, 251, 160–166. [Google Scholar] [CrossRef]
- Deng, J.; Shao, Y.; Gao, N.; Deng, Y.; Zhou, S.; Hu, X. Thermally Activated Persulfate (TAP) Oxidation of Antiepileptic Drug Carbamazepine in Water. Chem. Eng. J. 2013, 228, 765–771. [Google Scholar] [CrossRef]
- Tan, C.; Gao, N.; Deng, Y.; Li, L.; Deng, J.; Zhou, S. Kinetic Oxidation of Antipyrine in Heat-Activated Persulfate. Desalination Water Treat. 2015, 53, 263–271. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Ioannidi, A.A.; Mantzavinos, D.; Frontistis, Z. Heat-Activated Persulfate for the Degradation of Micropollutants in Water: A Comprehensive Review and Future Perspectives. J. Environ. Manag. 2022, 318, 115568. [Google Scholar] [CrossRef] [PubMed]
- Habache, N.; Bechiri, O. Thermally Activated Persulfate Oxidation of Basic Fuchsin Dye: Effect of Different Operating Parameters, Kinetic, and Thermodynamic Study. Int. J. Chem. Kinet. 2024, 56, 30–42. [Google Scholar] [CrossRef]
- Kathuria, T.; Mehta, A.; Sharma, S.; Kumar, S. Review on Ultrasound-Enhanced Activation of Persulfate/Peroxymonosulfate in Hybrid Advanced Oxidation Technologies. Chem. Eng. Commun. 2024, 211, 1645–1669. [Google Scholar] [CrossRef]
- Hoops, S.; Sahle, S.; Gauges, R.; Lee, C.; Pahle, J.; Simus, N.; Singhal, M.; Xu, L.; Mendes, P.; Kummer, U. COPASI—A Complex Pathway Simulator. Bioinformatics 2006, 22, 3067–3074. [Google Scholar] [CrossRef]
- COPASI. Available online: https://copasi.org/ (accessed on 5 October 2025).
- Criquet, J.; Leitner, N.K.V. Degradation of Acetic Acid with Sulfate Radical Generated by Persulfate Ions Photolysis. Chemosphere 2009, 77, 194–200. [Google Scholar] [CrossRef]
- Criquet, J.; Leitner, N.K.V. Electron Beam Irradiation of Aqueous Solution of Persulfate Ions. Chem. Eng. J. 2011, 169, 258–262. [Google Scholar] [CrossRef]
- Criquet, J.; Allard, S.; Salhi, E.; Joll, C.A.; Heitz, A.; Von Gunten, U. Iodate and Iodo-Trihalomethane Formation during Chlorination of Iodide-Containing Waters: Role of Bromide. Environ. Sci. Technol. 2012, 46, 7350–7357. [Google Scholar] [CrossRef]
- Das, T.N. Reactivity and Role of SO5•− Radical in Aqueous Medium Chain Oxidation of Sulfite to Sulfate and Atmospheric Sulfuric Acid Generation. J. Phys. Chem. A 2001, 105, 9142–9155. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (•OH/•O−) in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 515–886. [Google Scholar] [CrossRef]
- Maruthamuthu, P.; Neta, P. Reactions of Phosphate Radicals with Organic Compounds. J. Phys. Chem. 1977, 81, 1622–1625. [Google Scholar] [CrossRef]
- Yuan, R.; Ramjaun, S.N.; Wang, Z.; Liu, J. Concentration Profiles of Chlorine Radicals and Their Significances in OH-Induced Dye Degradation: Kinetic Modeling and Reaction Pathways. Chem. Eng. J. 2012, 209, 38–45. [Google Scholar] [CrossRef]
- Djaballah, M.L.; Merouani, S.; Bendjama, H.; Hamdaoui, O. Development of a Free Radical-Based Kinetics Model for the Oxidative Degradation of Chlorazol Black in Aqueous Solution Using Periodate Photoactivated Process. J. Photochem. Photobiol. A Chem. 2021, 408, 113102. [Google Scholar] [CrossRef]
- Guo, K.; Wu, Z.; Shang, C.; Yao, B.; Hou, S.; Yang, X.; Song, W.; Fang, J. Radical Chemistry and Structural Relationships of PPCP Degradation by UV/Chlorine Treatment in Simulated Drinking Water. Environ. Sci. Technol. 2017, 51, 10431–10439. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, W.; Sun, J.; Zhu, S.; Li, K.; Meng, X.; Luo, J.; Shi, Z.; Zhou, D.; Crittenden, J.C. Oxidation Mechanisms of the UV/Free Chlorine Process: Kinetic Modeling and Quantitative Structure Activity Relationships. Environ. Sci. Technol. 2019, 53, 4335–4345. [Google Scholar] [CrossRef]
- Bielski, B.H.; Cabelli, D.E.; Arudi, R.L.; Ross, A.B. Reactivity of HO2/O-2 Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 1985, 14, 1041–1100. [Google Scholar] [CrossRef]
- Bulman, D.M.; Mezyk, S.P.; Remucal, C.K. The Impact of pH and Irradiation Wavelength on the Production of Reactive Oxidants during Chlorine Photolysis. Environ. Sci. Technol. 2019, 53, 4450–4459. [Google Scholar] [CrossRef]
- Lutze, H.V.; Bircher, S.; Rapp, I.; Kerlin, N.; Bakkour, R.; Geisler, M.; Von Sonntag, C.; Schmidt, T.C. Degradation of Chlorotriazine Pesticides by Sulfate Radicals and the Influence of Organic Matter. Environ. Sci. Technol. 2015, 49, 1673–1680. [Google Scholar] [CrossRef]
- Mao, Y.; Dong, H.; Liu, S.; Zhang, L.; Qiang, Z. Accelerated Oxidation of Iopamidol by Ozone/Peroxymonosulfate (O3/PMS) Process: Kinetics, Mechanism, and Simultaneous Reduction of Iodinated Disinfection by-Product Formation Potential. Water Res. 2020, 173, 115615. [Google Scholar] [CrossRef]
- Tao, Y.; Brigante, M.; Zhang, H.; Mailhot, G. Phenanthrene Degradation Using Fe(III)-EDDS Photoactivation under Simulated Solar Light: A Model for Soil Washing Effluent Treatment. Chemosphere 2019, 236, 124366. [Google Scholar] [CrossRef]
- Ma, J.; Li, H.; Chi, L.; Chen, H.; Chen, C. Changes in Activation Energy and Kinetics of Heat-Activated Persulfate Oxidation of Phenol in Response to Changes in pH and Temperature. Chemosphere 2017, 189, 86–93. [Google Scholar] [CrossRef]
- Ahmadi, S.; Igwegbe, C.A.; Rahdar, S. The Application of Thermally Activated Persulfate for Degradation of Acid Blue 92 in Aqueous Solution. Int. J. Ind. Chem. 2019, 10, 249–260. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, S.; Geng, J.; Wei, R.; Wen, Y.; Sun, S. Degradation of Norfloxacin by Thermally Activated Persulfate: Kinetics, Optimization and Pathways. Discov. Chem. 2025, 2, 66. [Google Scholar] [CrossRef]
- Wojnárovits, L.; Takács, E. Rate Constants of Sulfate Radical Anion Reactions with Organic Molecules: A Review. Chemosphere 2019, 220, 1014–1032. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, S.; Rayaroth, M.P.; Landge, V.K.; Fedorov, K.; Boczkaj, G. Thermally Activated Persulfate-Based Advanced Oxidation Processes—Recent Progress and Challenges in Mineralization of Persistent Organic Chemicals: A Review. Curr. Opin. Chem. Eng. 2022, 37, 100839. [Google Scholar] [CrossRef]
- Huie, R.E.; Clifton, C.L.; Neta, P. Electron Transfer Reaction Rates and Equilibria of the Carbonate and Sulfate Radical Anions. Int. J. Radiat. Appl. Instrum. Part C Radiat. Phys. Chem. 1991, 38, 477–481. [Google Scholar] [CrossRef]
- Liang, C.; Su, H.-W. Identification of Sulfate and Hydroxyl Radicals in Thermally Activated Persulfate. Ind. Eng. Chem. Res. 2009, 48, 5558–5562. [Google Scholar] [CrossRef]
- Dogliotti, L.; Hayon, E. Flash Photolysis of per[Oxydi]Sulfate Ions in Aqueous Solutions. The Sulfate and Ozonide Radical Anions. J. Phys. Chem. 1967, 71, 2511–2516. [Google Scholar] [CrossRef]
- Huie, R.E.; Clifton, C.L. Rate Constants for Hydrogen Abstraction Reactions of the Sulfate Radical, SO4−. Alkanes and Ethers. Int. J. Chem. Kinet. 1989, 21, 611–619. [Google Scholar] [CrossRef]
- Buxton, G.V.; Barlow, S.; McGowan, S.; Salmon, G.A.; Williams, J.E. The Reaction of the SO3− Radical with Fe II in Acidic Aqueous Solution—A Pulse Radiolysis Study. Phys. Chem. Chem. Phys. 1999, 1, 3111–3115. [Google Scholar] [CrossRef]
- Chial, H.J.; Thompson, H.B.; Splittgerber, A.G. A Spectral Study of the Charge Forms of Coomassie Blue G. Anal. Biochem. 1993, 209, 258–266. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerabchi, N.; Djaballah, M.L.; Boutamine, Z.; Latreche, A.; Benalia, A.; Kerroum, D.; Pizzi, A.; Panico, A. Impact of pH and PS Concentration on the Thermal Degradation of Brilliant Coomassie Blue G-250: An Experimental and Modeling Approach. Water 2025, 17, 3008. https://doi.org/10.3390/w17203008
Kerabchi N, Djaballah ML, Boutamine Z, Latreche A, Benalia A, Kerroum D, Pizzi A, Panico A. Impact of pH and PS Concentration on the Thermal Degradation of Brilliant Coomassie Blue G-250: An Experimental and Modeling Approach. Water. 2025; 17(20):3008. https://doi.org/10.3390/w17203008
Chicago/Turabian StyleKerabchi, Nassim, Mohamed Larbi Djaballah, Zineb Boutamine, Amani Latreche, Abderrezzaq Benalia, Derbal Kerroum, Antonio Pizzi, and Antonio Panico. 2025. "Impact of pH and PS Concentration on the Thermal Degradation of Brilliant Coomassie Blue G-250: An Experimental and Modeling Approach" Water 17, no. 20: 3008. https://doi.org/10.3390/w17203008
APA StyleKerabchi, N., Djaballah, M. L., Boutamine, Z., Latreche, A., Benalia, A., Kerroum, D., Pizzi, A., & Panico, A. (2025). Impact of pH and PS Concentration on the Thermal Degradation of Brilliant Coomassie Blue G-250: An Experimental and Modeling Approach. Water, 17(20), 3008. https://doi.org/10.3390/w17203008