Advances in Remote Sensing and Sensor Technologies for Water-Quality Monitoring: A Review
Abstract
1. Introduction
2. Remote Data Acquisition and Treatment Systems
2.1. Composition of the System
2.2. Data Acquisition
2.2.1. RS
2.2.2. Sensors
2.3. Data Storage
2.4. Data Treatment
3. RS Technology
3.1. Fundamentals of RS Technology
3.2. Water-Quality Indicators of RS Technology
3.2.1. Chl-a
3.2.2. Turbidity and Total Suspended Matter/Solids (TSM/TSS)
3.2.3. Colored Dissolved Organic Matter (CDOM)
3.2.4. Non-Optically Active Constituents (NOACs)
3.3. Practical Applications of RS Technology
3.3.1. Surface Water-Quality Monitoring
3.3.2. Marine Water-Quality Monitoring
3.4. Benefits and Limitations of RS Technology
3.4.1. Benefits of RS Technology
3.4.2. Limitations of RS Technology
4. Sensors Technology
4.1. Fundamentals of Sensors
4.2. Water-Quality Indicators of Sensors
4.2.1. Value of pH
4.2.2. Temperature
4.2.3. Oxidation Reduction Potential (ORP)
4.2.4. DO
4.2.5. Turbidity
4.2.6. Electrical Conductivity (EC) and Salinity
4.2.7. Total Dissolved Solids (TDS)
4.3. Practical Applications of Sensors
4.3.1. Natural Water-Quality Monitoring
4.3.2. Water-Quality Monitoring in Wastewater Treatment
4.4. Benefits and Limitations of Sensors
4.4.1. Benefits of Sensors
4.4.2. Limitations of Sensors
4.4.3. Comparison of Sensors and RS Technology
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Okpara, E.C.; Sehularo, B.E.; Wojuola, O.B. On-line water quality inspection system: The role of the wireless sensory network. Environ. Res. Commun. 2022, 4, 102001. [Google Scholar] [CrossRef]
- Dong, J.; Wang, G.; Yan, H.; Xu, J.; Zhang, X. A survey of smart water quality monitoring system. Environ. Sci. Pollut. Res. 2015, 22, 4893–4906. [Google Scholar] [CrossRef]
- Navarro, J.M.; Aatik, A.E.; Pita, A.; Martinez, R.; Vela, N. Evaluation of the iot device for nitrate and nitrite long-term monitoring in wastewater treatment plants. IEEE Sens. J. 2025, 25, 7145–7153. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shults, R.; Tiwari, S.P.; Arshad, A.; Usman, M.; Raihan, A.; Ishraque, M.F. Review on sea water quality (SWQ) monitoring using satellite remote sensing techniques (SRST). Mar. Pollut. Bull. 2025, 217, 118108. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Thorburn, P.J. A deep surrogate model with spatio-temporal awareness for water quality sensor measurement. Expert Syst. Appl. 2022, 200, 116914. [Google Scholar] [CrossRef]
- Mohseni, F.; Saba, F.; Mirmazloumi, S.M.; Amani, M.; Mokhtarzade, M.; Jamali, S.; Mahdavi, S. Ocean water quality monitoring using remote sensing techniques: A review. Mar. Environ. Res. 2022, 180, 105701. [Google Scholar] [CrossRef]
- Thakur, A.; Devi, P. A Comprehensive Review on Water Quality Monitoring Devices: Materials Advances, Current Status, and Future Perspective. Crit. Rev. Anal. Chem. 2024, 54, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.K.; Lin, Y.C.; Jiang, Y.; Cao, Y.; Zhou, J.; Dong, H.; Liu, X.; Wang, Z.; Ye, X. Kohler-Polarization Sensor for glint removal in water-leaving radiance measurement. Remote Sens. 2025, 17, 1977. [Google Scholar] [CrossRef]
- Tao, H.; Song, K.S.; Wen, Z.D.; Liu, G.; Shang, Y.X.; Fang, C.; Wang, Q. Remote sensing of total suspended matter of inland waters: Past, current status, and future directions. Ecol. Inform. 2025, 86, 103062. [Google Scholar] [CrossRef]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Chen, S.; Li, D.; Wang, D.; Liu, J. The spatial and temporal variation of total suspended solid concentration in Pearl River Estuary during 1987–2015 based on remote sensing. Sci. Total Environ. 2018, 618, 1125–1138. [Google Scholar] [CrossRef]
- Cai, L.A.; Zhang, H.P.; Ye, X.M.; Yin, J.; Tang, R. Twin satellites HY-1C/D reveal the local details of astronomical tide flooding into the qiantang river, China. Remote Sens. 2024, 16, 1507. [Google Scholar] [CrossRef]
- Bu, J.; Cai, L.; Yan, X.; Xu, H.; Hu, H.; Jiang, J. Monitoring the Chl-a Distribution Details in the Yangtze River Mouth Using Satellite Remote Sensing. Water 2022, 14, 1295. [Google Scholar] [CrossRef]
- Jayaraman, P.; Nagarajan, K.K.; Partheeban, P. Integrating hybrid machine learning models with smart sensors for analyzing and predicting lake water quality index. J. Water Process Eng. 2025, 76, 108206. [Google Scholar] [CrossRef]
- Matos, T.; Faria, C.L.; Martins, M.S.; Henriques, R.; Gomes, P.A.; Goncalves, L.M. Development of a Cost-Effective Optical Sensor for Continuous Monitoring of Turbidity and Suspended Particulate Matter in Marine Environment. Sensors 2019, 19, 4439. [Google Scholar] [CrossRef] [PubMed]
- Lausch, A.; Bannehr, L.; Berger, S.A.; Borg, E.; Bumberger, J.; Hacker, J.M.; Heege, T.; Hupfer, M.; Jung, A.; Kuhwald, K.; et al. Monitoring water diversity and water quality with remote sensing and traits. Remote Sens. 2024, 16, 2425. [Google Scholar] [CrossRef]
- Jaywant, S.A.; Arif, K.M. Remote sensing techniques for water quality monitoring: A review. Sensors 2024, 24, 8041. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef]
- Chen, L.; Liu, L.Z.; Liu, S.S.; Shi, Z.Y.; Shi, C.H. The application of remote sensing technology in inland water quality monitoring and water environment science: Recent progress and perspectives. Remote Sens. 2025, 17, 667. [Google Scholar] [CrossRef]
- Ness, E.; Fatima, A.; Maktabdar-Oghaz, M.; Luca, C. An investigation into water quality monitoring models using remote sensing. Int. J. Remote Sens. 2025, 46, 1742–1772. [Google Scholar] [CrossRef]
- Liu, H.; Yu, T.; Hu, B.; Hou, X.; Zhang, Z.; Liu, X.; Liu, J.; Wang, X.; Zhong, J.; Tan, Z.; et al. UAV-Borne Hyperspectral Imaging Remote Sensing System Based on Acousto-Optic Tunable Filter for Water Quality Monitoring. Remote Sens. 2021, 13, 4069. [Google Scholar] [CrossRef]
- Isgró, M.A.; Basallote, M.D.; Barbero, L. Unmanned Aerial System-Based Multispectral Water Quality Monitoring in the Iberian Pyrite Belt (SW Spain). Mine Water Environ. 2022, 41, 30–41. [Google Scholar] [CrossRef]
- Jabbar, W.A.; Ting, T.M.; Hamidun, M.F.I.; Kamarudin, A.H.C.; Wu, W.; Sultan, J.; Alsewari, A.A.; Ali, M.A.H. Development of LoRaWAN-based IoT system for water quality monitoring in rural areas. Expert Syst. Appl. 2024, 242, 122862. [Google Scholar] [CrossRef]
- Perdana, D.; Naufal, J.; Alinursafa, I. Performance Evaluation of River Water Quality Monitoring Using Lora Connectivity with Fuzzy Algorithm. Int. J. Comput. Commun. Control 2021, 16, 4226. [Google Scholar] [CrossRef]
- Sendra, S.; Parra, L.; Jimenez, J.M.; Garcia, L.; Lloret, J. LoRa-based Network for Water Quality Monitoring in Coastal Areas. Mob. Netw. Appl. 2023, 28, 65–81. [Google Scholar] [CrossRef]
- Madeo, D.; Pozzebon, A.; Mocenni, C.; Bertoni, D. A Low Cost Unmanned Surface Vehicle for Pervasive Water Quality Monitoring. IEEE Trans. Instrum. Meas. 2020, 69, 1433–1444. [Google Scholar] [CrossRef]
- Tolentino, L.K.; Chua, E.J.; Añover, J.R.; Cabrera, C.; Hizon, C.A.; Mallari, J.G.; Mamenta, J.; Quijano, J.F.; Virrey, G.; Madrigal, G.A.; et al. IoT-Based Automated Water Monitoring and Correcting Modular Device via LoRaWAN for Aquaculture. Int. J. Comput. Digit. Syst. 2021, 10, 533–544. [Google Scholar] [CrossRef]
- Mamun, K.A.; Islam, F.R.; Haque, R.; Khan, M.G.M.; Prasad, A.N.; Haqva, H.; Mudliar, R.R.; Mani, F.S. Smart Water Quality Monitoring System Design and KPIs Analysis: Case Sites of Fiji Surface Water. Sustainability 2019, 11, 7110. [Google Scholar] [CrossRef]
- Esakki, B.; Ganesan, S.; Mathiyazhagan, S.; Ramasubramanian, K.; Gnanasekaran, B.; Son, B.; Park, S.W.; Choi, J.S. Design of Amphibious Vehicle for Unmanned Mission in Water Quality Monitoring Using Internet of Things. Sensors 2018, 18, 3318. [Google Scholar] [CrossRef]
- Xing, A.; Fang, J.; Gao, M.; Zhang, C. Design of an Unmanned Boat System for Floating Garbage Salvage and Water Quality Monitoring Based on OneNET. J. Phys. Conf. Ser. 2020, 1607, 012062. [Google Scholar] [CrossRef]
- Pranathi, B. Reconfigurable Smart Water Quality Monitoring System in IOT Environment. Int. J. Res. Appl. Sci. Eng. Technol. 2023, 11, 1922–1926. [Google Scholar] [CrossRef]
- Chang, H.-C.; Hsu, Y.-L.; Hung, S.-S.; Ou, G.-R.; Wu, J.-R.; Hsu, C. Autonomous Water Quality Monitoring and Water Surface Cleaning for Unmanned Surface Vehicle. Sensors 2021, 21, 1102. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Jain, P.C. Real-time water quality monitoring system using Internet of Things. In Proceedings of the 2017 International Conference on Computer, Communications and Electronics (Comptelix), Jaipur, India, 1–2 July 2017; pp. 78–82. [Google Scholar]
- Ghoto, S.M.; Abbasi, H.; Memon, S.A.; Brohi, K.M.; Chhachhar, R.; Ghanghlo, A.A. Mapping and assessing impacts of land use land cover and climate conditions on groundwater quality using RS & GIS. Appl. Water Sci. 2025, 15, 53. [Google Scholar] [CrossRef]
- Ansari, M.; Knudby, A.; Amani, M.; Sawada, M. Retrieving inland water quality parameters via satellite remote sensing: Sensor evaluation, atmospheric correction, and machine learning approaches. Remote Sens. 2025, 17, 1734. [Google Scholar] [CrossRef]
- Ngwenya, N.; Bangira, T.; Sibanda, M.; Gurmessa, S.K.; Mabhaudhi, T. UAV-based remote sensing of chlorophyll-a concentrations in inland water bodies: A systematic review. Geocarto Int. 2025, 40, 2452246. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, D.; Li, X.; Huang, Y.; Zhang, L.; Zhu, Z.; Sun, X.; Lan, Z.; Guo, W. Hyperspectral remote sensing technology for water quality monitoring: Knowledge graph analysis and Frontier trend. Front. Environ. Sci. 2023, 11, 1133325. [Google Scholar] [CrossRef]
- Sarigai; Yang, J.; Zhou, A.; Han, L.; Li, Y.; Xie, Y. Monitoring urban black-odorous water by using hyperspectral data and machine learning. Environ. Pollut. 2021, 269, 116166. [Google Scholar] [CrossRef]
- Pramana, R.; Suprapto, B.Y.; Nawawi, Z. Remote Water Quality Monitoring with Early–Warning System for Marine Aquaculture. E3S Web Conf. 2021, 324, 05007. [Google Scholar] [CrossRef]
- Shahmirnoori, A.; Saadatpour, M.; Rasekh, A. Using mobile and fixed sensors for optimal monitoring of water distribution network under dynamic water quality simulations. Sustain. Cities Soc. 2022, 82, 103875. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Ding, J. Evaluation of water quality based on a machine learning algorithm and water quality index for the Ebinur Lake Watershed, China. Sci. Rep. 2017, 7, 12858. [Google Scholar] [CrossRef]
- Manfreda, S.; McCabe, M.; Miller, P.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef]
- Razman, N.A.; Wan Ismail, W.Z.; Abd Razak, M.H.; Ismail, I.; Jamaludin, J. Design and analysis of water quality monitoring and filtration system for different types of water in Malaysia. Int. J. Environ. Sci. Technol. 2023, 20, 3789–3800. [Google Scholar] [CrossRef]
- Gunia, M.; Laine, M.; Malve, O.; Kallio, K.; Kervinen, M.; Anttila, S.; Kotamäki, N.; Siivola, E.; Kettunen, J.; Kauranne, T. Data fusion system for monitoring water quality: Application to chlorophyll-a in Baltic sea coast. Environ. Model. Softw. 2022, 155, 105465. [Google Scholar] [CrossRef]
- Kageyama, Y.; Takahashi, J.; Nishida, M.; Kobori, B.; Nagamoto, D. Analysis of water quality in Miharu dam reservoir, Japan, using UAV data. IEEJ Trans. Electr. Electron. Eng. 2016, 11 (Suppl. S1), S183–S185. [Google Scholar] [CrossRef]
- Sidike, P.; Sagan, V.; Maimaitijiang, M.; Maimaitiyiming, M.; Shakoor, N.; Burken, J.; Mockler, T.; Fritschi, F.B. dPEN: Deep Progressively Expanded Network for mapping heterogeneous agricultural landscape using WorldView-3 satellite imagery. Remote Sens. Environ. 2019, 221, 756–772. [Google Scholar] [CrossRef]
- Wei, L.; Huang, C.; Zhong, Y.; Wang, Z.; Hu, X.; Lin, L. Inland Waters Suspended Solids Concentration Retrieval Based on PSO-LSSVM for UAV-Borne Hyperspectral Remote Sensing Imagery. Remote Sens. 2019, 11, 1455. [Google Scholar] [CrossRef]
- Adjovu, G.E.; Stephen, H.; James, D.; Ahmad, S. Overview of the Application of Remote Sensing in Effective Monitoring of Water Quality Parameters. Remote Sens. 2023, 15, 1938. [Google Scholar] [CrossRef]
- Verrelst, J.; Muñoz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, J. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sens. Environ. 2012, 118, 127–139. [Google Scholar] [CrossRef]
- Chen, P.; Wang, B.; Wu, Y.; Wang, Q.; Huang, Z.; Wang, C. Urban river water quality monitoring based on self-optimizing machine learning method using multi-source remote sensing data. Ecol. Indic. 2023, 146, 109750. [Google Scholar] [CrossRef]
- Sun, W.; Peng, J.; Yang, G.; Du, Q. Fast and Latent Low-Rank Subspace Clustering for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3906–3915. [Google Scholar] [CrossRef]
- Escoto, J.E.; Blanco, A.C.; Argamosa, R.J.; Medina, J.M. Pasig river water quality estimation using an empirical ordinary least squares regression model of sentinel-2 satellite images. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Nice, France, 4–10 July 2021; pp. 161–168. [Google Scholar]
- Lai, L.; Liu, Y.; Zhang, Y.; Cao, Z.; Yin, Y.; Chen, X.; Jin, J.; Wu, S. Long-term spatiotemporal mapping in lacustrine environment by remote sensing: Review with case study, challenges, and future directions. Water Res. 2024, 267, 122457. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, D.; Li, L.; Ning, R.; Yu, S.; Gao, N. Application of remote sensing technology in water quality monitoring: From traditional approaches to artificial intelligence. Water Res. 2024, 267, 122546. [Google Scholar] [CrossRef]
- Saravani, M.J.; Noori, R.; Jun, C.; Kim, D.; Bateni, S.M.; Kianmehr, P.; Woolway, R.I. Predicting chlorophyll-a concentrations in the world’s largest lakes using kolmogorov-arnold networks. Environ. Sci. Technol. 2025, 59, 1801–1810. [Google Scholar] [CrossRef]
- Smith, W.K.; Biederman, J.A.; Scott, R.L.; Moore, D.J.P.; He, M.; Kimball, J.S.; Yan, D.; Hudson, A.; Barnes, M.L.; MacBean, N.; et al. Chlorophyll Fluorescence Better Captures Seasonal and Interannual Gross Primary Productivity Dynamics Across Dryland Ecosystems of Southwestern North America. Geophys. Res. Lett. 2018, 45, 748–757. [Google Scholar] [CrossRef]
- Kishino, M.; Tanaka, A.; Ishizaka, J. Retrieval of Chlorophyll a, suspended solids, and colored dissolved organic matter in Tokyo Bay using ASTER data. Remote Sens. Environ. 2005, 99, 66–74. [Google Scholar] [CrossRef]
- Malahlela, O.E.; Oliphant, T.; Tsoeleng, L.T.; Mhangara, P. Mapping chlorophyll-a concentrations in a cyanobacteria- and algae-impacted Vaal Dam using Landsat 8 OLI data. South Afr. J. Sci. 2018, 114, 64–72. [Google Scholar] [CrossRef]
- Gilerson, A.A.; Gitelson, A.A.; Zhou, J.; Gurlin, D.; Moses, W.; Ioannou, I.; Ahmed, S.A. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Opt Express 2010, 18, 24109–24125. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- El-Alem, A.; Chokmani, K.; Laurion, I.; El-Adlouni, S.E. Comparative analysis of four models to estimate chlorophyll-a concentration in case-2 waters using MODerate resolution imaging spectroradiometer (MODIS) imagery. Remote Sens. 2012, 4, 2373–2400. [Google Scholar] [CrossRef]
- Li, S.; Song, K.; Wang, S.; Liu, G.; Wen, Z.; Shang, Y.; Lyu, L.; Chen, F.; Xu, S.; Tao, H.; et al. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Sci. Total Environ. 2021, 778, 146271. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Song, C.; Wen, Z.; Liu, G.; Wang, X.; Li, S.; Shang, Y.; Tao, H.; Lyu, L.; Song, K. A novel chlorophyll-a retrieval model based on suspended particulate matter classification and different machine learning. Environ. Res. 2024, 240, 117430. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, J.; Xu, Y.; Guo, S.; Nie, X.; Guo, Y.; Li, X.; Hao, F.; Fu, Y.H. Monitoring of chlorophyll-a and suspended sediment concentrations in optically complex inland rivers using multisource remote sensing measurements. Ecol. Indic. 2023, 155, 111041. [Google Scholar] [CrossRef]
- Dörnhöfer, K.; Scholze, J.; Stelzer, K.; Oppelt, N. Water colour analysis of lake kummerow using time series of remote sensing and in situ data. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2018, 86, 103–120. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Zhu, G.; Liu, X.; Zhou, Y.; Xu, H.; Qin, B.; Liu, G.; Li, Y. Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data. Remote Sens. Environ. 2015, 164, 43–56. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, K.; Zhang, Y.; Moreno-Madrinan, M.J.; Li, Y.; Li, N. A semi-analytical model for estimating total suspended matter in highly turbid waters. Opt Express 2018, 26, 34094–34112. [Google Scholar] [CrossRef] [PubMed]
- Arias-Rodriguez, L.F.; Duan, Z.; Díaz-Torres, J.D.; Basilio Hazas, M.; Huang, J.; Kumar, B.U.; Tuo, Y.; Disse, M. Integration of remote sensing and mexican water quality monitoring system using an extreme learning machine. Sensors 2021, 21, 4118. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Jiang, T.; Li, X.; Li, Y. Evaluation of the effectiveness of multiple machine learning methods in remote sensing cuantitative retrieval of suspended matter concentrations: A case study of Nansi Lake in North China. J. Spectrosc. 2021, 2021, 5957376. [Google Scholar] [CrossRef]
- Guo, Q.; Wu, H.; Jin, H.; Yang, G.; Wu, X. Remote sensing inversion of suspended matter concentration using a neural network model optimized by the partial least squares and particle swarm optimization algorithms. Sustainability 2022, 14, 2221. [Google Scholar] [CrossRef]
- Lyu, L.; Liu, G.; Shang, Y.; Wen, Z.; Hou, J.; Song, K. Characterization of dissolved organic matter (DOM) in an urbanized watershed using spectroscopic analysis. Chemosphere 2021, 277, 130210. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, L.; Zhou, Y.; Zhang, L.; Yao, X.; Shi, K.; Jeppesen, E.; Yu, Q.; Zhu, W. Chromophoric dissolved organic matter in inland waters: Present knowledge and future challenges. Sci. Total Environ. 2021, 759, 143550. [Google Scholar] [CrossRef]
- Blough, N.V.; Del Vecchio, R. Chapter 10—Chromophoric DOM in the coastal environment. In Biogeochemistry of Marine Dissolved Organic Matter; Academic Press: Cambridge, MA, USA, 2002; pp. 509–546. [Google Scholar] [CrossRef]
- Griffin, C.G.; Frey, K.E.; Rogan, J.; Holmes, R.M. Spatial and interannual variability of dissolved organic matter in the Kolyma River, East Siberia, observed using satellite imagery. J. Geophys. Res. Biogeosciences 2011, 116, G03018. [Google Scholar] [CrossRef]
- Alcântara, E.; Bernardo, N.; Watanabe, F.; Rodrigues, T.; Rotta, L.; Carmo, A.; Shimabukuro, M.; Gonçalves, S.; Imai, N. Estimating the CDOM absorption coefficient in tropical inland waters using OLI/Landsat-8 images. Remote Sens. Lett. 2016, 7, 661–670. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, F.; Sokoletsky, L.; Sun, X. Validation and calibration of QAA algorithm for CDOM absorption retrieval in the changjiang (Yangtze) estuarine and coastal waters. Remote Sens. 2017, 9, 1192. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Zhang, Y.; Shi, K.; Zhou, Y.; Li, N. Machine learning algorithms for chromophoric dissolved organic matter (CDOM) estimation based on landsat 8 images. Remote Sens. 2021, 13, 3560. [Google Scholar] [CrossRef]
- Kim, J.; Jang, W.; Hwi Kim, J.; Lee, J.; Hwa Cho, K.; Lee, Y.-G.; Chon, K.; Park, S.; Pyo, J.; Park, Y.; et al. Application of airborne hyperspectral imagery to retrieve spatiotemporal CDOM distribution using machine learning in a reservoir. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103053. [Google Scholar] [CrossRef]
- Keller, S.; Maier, P.M.; Riese, F.M.; Norra, S.; Holbach, A.; Börsig, N.; Wilhelms, A.; Moldaenke, C.; Zaake, A.; Hinz, S. Hyperspectral data and machine learning for estimating CDOM, chlorophyll a, diatoms, green algae and turbidity. Int. J. Environ. Res. Public Health 2018, 15, 1881. [Google Scholar] [CrossRef]
- Toming, K.; Liu, H.; Soomets, T.; Uuemaa, E.; Nõges, T.; Kutser, T. Estimation of the biogeochemical and physical properties of lakes based on remote sensing and artificial intelligence applications. Remote Sens. 2024, 16, 464. [Google Scholar] [CrossRef]
- Cai, X.; Li, Y.; Lei, S.; Zeng, S.; Zhao, Z.; Lyu, H.; Dong, X.; Li, J.; Wang, H.; Xu, J.; et al. A hybrid remote sensing approach for estimating chemical oxygen demand concentration in optically complex waters: A case study in inland lake waters in eastern China. Sci. Total Environ. 2023, 856, 158869. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Quan, W. Using landsat/TM imagery to estimate nitrogen and phosphorus concentration in Taihu Lake, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 273–280. [Google Scholar] [CrossRef]
- Arias-Rodriguez, L.F.; Tüzün, U.F.; Duan, Z.; Huang, J.; Tuo, Y.; Disse, M. Global water quality of inland waters with harmonized landsat-8 and sentinel-2 using cloud-computed machine learning. Remote Sens. 2023, 15, 1390. [Google Scholar] [CrossRef]
- Niu, C.; Tan, K.; Jia, X.; Wang, X. Deep learning based regression for optically inactive inland water quality parameter estimation using airborne hyperspectral imagery. Environ. Pollut. 2021, 286, 117534. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yao, K.; Zhu, B.; Gao, Z.; Xu, J.; Li, Y.; Hu, Y.; Lin, F.; Zhang, X. Water quality inversion of a typical rural small river in southeastern China based on UAV multispectral imagery: A comparison of multiple machine learning algorithms. Water 2024, 16, 553. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, D.; Guo, Q.; Zhan, J. Inversion of water quality parameter Bod5 based on hyperspectral remotely sensed data in Qinghai Lake. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5036–5039. [Google Scholar]
- Van Vliet, M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global river discharge and water temperature under climate change. Glob. Environ. Change 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Arabi, B.; Salama, M.S.; Pitarch, J.; Verhoef, W. Integration of in-situ and multi-sensor satellite observations for long-term water quality monitoring in coastal areas. Remote Sens. Environ. 2020, 239, 111632. [Google Scholar] [CrossRef]
- Gohin, F.; Van der Zande, D.; Tilstone, G.; Eleveld, M.A.; Lefebvre, A.; Andrieux-Loyer, F.; Blauw, A.N.; Bryère, P.; Devreker, D.; Garnesson, P.; et al. Twenty years of satellite and in situ observations of surface chlorophyll-a from the northern Bay of Biscay to the eastern English Channel. Is the water quality improving? Remote Sens. Environ. 2019, 233, 111343. [Google Scholar] [CrossRef]
- Caballero, I.; Navarro, G. Monitoring cyanoHABs and water quality in Laguna Lake (Philippines) with Sentinel-2 satellites during the 2020 Pacific typhoon season. Sci. Total Environ. 2021, 788, 147700. [Google Scholar] [CrossRef]
- Li, H.; Somogyi, B.; Chen, X.; Luo, Z.; Blix, K.; Wu, S.; Duan, Z.; Tóth, V.R. Leveraging Landsat and Google Earth Engine for long-term chlorophyll-a monitoring: A case study of Lake Balaton’s water quality. Ecol. Inform. 2025, 90, 103245. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.; Tian, Y.Q.; Yu, Q. Monitoring dissolved organic carbon by combining Landsat-8 and Sentinel-2 satellites: Case study in Saginaw River estuary, Lake Huron. Sci. Total Environ. 2020, 718, 137374. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Wang, Z.; Huang, C.; Zhang, Y.; Wang, Z.; Xia, H.; Cao, L. Transparency Estimation of Narrow Rivers by UAV-Borne Hyperspectral Remote Sensing Imagery. IEEE Access 2020, 8, 168137–168153. [Google Scholar] [CrossRef]
- Peterson, K.T.; Sagan, V.; Sloan, J.J. Deep learning-based water quality estimation and anomaly detection using Landsat-8/Sentinel-2 virtual constellation and cloud computing. GIScience Remote Sens. 2020, 57, 510–525. [Google Scholar] [CrossRef]
- Quevedo-Castro, A.; Monjardín-Armenta, S.A.; Plata-Rocha, W.; Rangel-Peraza, J.G. Implementation of remote sensing algorithms to estimate TOC, Chl-a, and TDS in a tropical water body; Sanalona reservoir, Sinaloa, Mexico. Environ. Monit. Assess. 2024, 196, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Ouma, Y.O. Modelling Reservoir Turbidity from Medium Resolution Sentinel-2A/MSI and Landsat-8/OLI Satellite Imagery. In Proceedings of SPIE—The International Society for Optical Engineering; SPIE: Cergy-Pontoise Cedex, France, 2020. [Google Scholar]
- Tavares, M.H.; Cunha, A.H.F.; Motta-Marques, D.; Ruhoff, A.L.; Fragoso, C.R.; Munar, A.M.; Bonnet, M.-P. Derivation of consistent, continuous daily river temperature data series by combining remote sensing and water temperature models. Remote Sens. Environ. 2020, 241, 111721. [Google Scholar] [CrossRef]
- Iacobolli, M.; Orlandi, M.; Cimini, D.; Marzano, F.S. Remote Sensing of Coastal Water-quality Parameters from Sentinel-2 Satellite Data in the Tyrrhenian and Adriatic Seas. In Proceedings of the 2019 PhotonIcs & Electromagnetics Research Symposium—Spring (PIERS-Spring), Rome, Italy, 17–19 June 2019. [Google Scholar]
- McEliece, R.; Hinz, S.; Guarini, J.M.; Coston-Guarini, J. Evaluation of nearshore and offshore water quality assessment using UAV multispectral imagery. Remote Sens. 2020, 12, 2258. [Google Scholar] [CrossRef]
- Singh, K.A.; Ryu, D.; Arora, M.; Tiwari, M.K.; Sahoo, B. Improving the accuracy of remotely sensed TSS and turbidity using quality enhanced water reflectance by a statistical resampling technique. Int. J. Appl. Earth Obs. Geoinf. 2025, 142, 104681. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Liu, H.Z.; Wong, C.M.; Shen, F.; Yu, X.L.; Wang, Y.R.; Zhang, Y.; Zhang, Z.X.; Li, Q.Q.; Wu, G.F. Satellite retrieval of water quality indicators under high solar zenith zngles. IEEE Trans. Geosci. Remote Sens. 2025, 63, 1–16. [Google Scholar] [CrossRef]
- Lou, J.D.; Liu, B.Q.; Xiong, Y.H.; Zhang, X.D.; Yuan, X. Variational autoencoder framework for hyperspectral retrievals (Hyper-VAE) of phytoplankton absorption and chlorophyll a in coastal waters for NASA’s EMIT and PACE missions. IEEE Trans. Geosci. Remote Sens. 2025, 63, 1–16. [Google Scholar] [CrossRef]
- Shin, J.; Lee, G.; Kim, T.; Cho, K.H.; Hong, S.M.; Kwon, D.H.; Pyo, J.; Cha, Y. Deep learning-based efficient drone-borne sensing of cyanobacterial blooms using a clique-based feature extraction approach. Sci. Total Environ. 2024, 912, 169540. [Google Scholar] [CrossRef]
- Wu, J.Y.; Cao, Y.N.; Wu, S.Q.; Parajuli, S.; Zhao, K.G.; Lee, J.Y. Current capabilities and challenges of remote sensing in monitoring freshwater cyanobacterial blooms: A scoping review. Remote Sens. 2025, 17, 918. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, J.; Meng, H.; Lai, Y.; Xu, M. Remote sensing inversion of water quality parameters in the Yellow River Delta. Ecol. Indic. 2023, 155, 110914. [Google Scholar] [CrossRef]
- Wang, S.Q.; Meng, J.Y.; Sun, D.Y.; Zhang, X.; Li, Z.S.; Zhang, X.M.; Lang, S.Y.; Jia, Y.J. Correcting aquaculture facility-induced spectral distortions for improved satellite water quality retrieval in marine ranching areas. IEEE Trans. Geosci. Remote Sens. 2025, 63, 1–12. [Google Scholar] [CrossRef]
- Belhadj, C.; Rifi, M.; Mohamed, A.B.; Rebai, N.; Shili, A. An integrated GIS, remote sensing, geochemical, and ecological approach for correlating and identifying oil contamination sources of Tunisia’s northern coast. Reg. Stud. Mar. Sci. 2024, 69, 103320. [Google Scholar] [CrossRef]
- Ashikur, M.R.; Rupom, R.S.; Sazzad, M.H. A remote sensing approach to ascertain spatial and temporal variations of seawater quality parameters in the coastal area of Bay of Bengal, Bangladesh. Remote Sens. Appl. Soc. Environ. 2021, 23, 100593. [Google Scholar] [CrossRef]
- Safarkhani, E.; Yarahmadi, D.; Hamzeh, M.A.; Sharafi, S. Reconstruction of the Persian Gulf SST variability over the last five millennia. Quat. Int. 2022, 642, 93–102. [Google Scholar] [CrossRef]
- Tilstone, G.H.; Pardo, S.; Dall’Olmo, G.; Brewin, R.J.W.; Nencioli, F.; Dessailly, D.; Kwiatkowska, E.; Casal, T.; Donlon, C. Performance of Ocean Colour Chlorophyll a algorithms for Sentinel-3 OLCI, MODIS-Aqua and Suomi-VIIRS in open-ocean waters of the Atlantic. Remote Sens. Environ. 2021, 260, 112444. [Google Scholar] [CrossRef]
- Hassan, A.; Ilyas, S.Z.; Jalil, A.; Ullah, Z. Monetization of the environmental damage caused by fossil fuels. Environ. Sci. Pollut. Res. 2021, 28, 21204–21211. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, G.M.; Martins, D.A.; dos Santos, R.P.; de Santiago, I.S.; Nascimento, L.S.; Oliveira, A.H.B.; Yamamoto, F.Y.; Cavalcante, R.M. Levels, source appointment, and ecological risk of petroleum hydrocarbons in tropical coastal ecosystems (northeast Brazil): Baseline for future monitoring programmes of an oil spill area. Environ. Pollut. 2022, 296, 118709. [Google Scholar] [CrossRef]
- Mannino, A.; Novak, M.G.; Hooker, S.B.; Hyde, K.; Aurin, D. Algorithm development and validation of CDOM properties for estuarine and continental shelf waters along the northeastern U.S. coast. Remote Sens. Environ. 2014, 152, 576–602. [Google Scholar] [CrossRef]
- Shutler, J.D.; Gruber, N.; Findlay, H.S.; Land, P.E.; Gregor, L.; Holding, T.; Sims, R.P.; Green, H.; Piolle, J.-F.; Chapron, B.; et al. The increasing importance of satellite observations to assess the ocean carbon sink and ocean acidification. Earth-Sci. Rev. 2024, 250, 104682. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Song, K.; Zhao, C.; Wang, C.; Xiao, X.; Wang, Y. Mapping global distribution of mangrove forests at 10-m resolution. Sci. Bull. 2023, 68, 1306–1316. [Google Scholar] [CrossRef]
- Bangira, T.; Matongera, T.N.; Mabhaudhi, T.; Mutanga, O. Remote sensing-based water quality monitoring in African reservoirs, potential and limitations of sensors and algorithms: A systematic review. Phys. Chem. Earth Parts A/B/C 2024, 134, 103536. [Google Scholar] [CrossRef]
- Babin, M.; Bélanger, S.; Ellingsen, I.; Forest, A.; Le Fouest, V.; Lacour, T.; Ardyna, M.; Slagstad, D. Estimation of primary production in the Arctic Ocean using ocean colour remote sensing and coupled physical–biological models: Strengths, limitations and how they compare. Prog. Oceanogr. 2015, 139, 197–220. [Google Scholar] [CrossRef]
- Víctor, G.-M.; Miguel, P. Smart sensors in environmental/water quality monitoring using IoT and cloud services. Trends Environ. Anal. Chem. 2022, 35, e00173. [Google Scholar] [CrossRef]
- Zhanbing, S.; Caixia, T. Influence of the Athlete’s Training Physical State Test Based on the Principle of Artificial Intelligence Sensor. Mob. Inf. Syst. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Ryabov, V.T.; Djuzhev, N.A.; Novikov, D.V. Automation of the Measurement Process of the Parameters of the Sensitive Elements of the Gas Flow Rate Sensors. Russ. Microelectron. 2020, 48, 490–495. [Google Scholar] [CrossRef]
- Liu, X.; Liu, W.; Ren, Z.; Ma, Y.; Dong, B.; Zhou, G.; Lee, C. Progress of optomechanical micro/nano sensors: A review. Int. J. Optomechatronics 2021, 15, 120–159. [Google Scholar] [CrossRef]
- Jaya, B.; Brajesh, B.; Gianluca, G.; Gabriela, B.; Amit, K. Electrochemical Sensors and Their Applications: A Review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Yiqun, L.; Hailong, L.; Yue, C. A Review of Marine In Situ Sensors and Biosensors. J. Mar. Sci. Eng. 2023, 11, 1469. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, Q.; Shi, Z. Design of WSN node for water pollution remote monitoring. Telecommun. Syst. 2013, 53, 155–162. [Google Scholar] [CrossRef]
- Venkatesan, M.; Veeramuthu, L.; Liang, F.-C.; Chen, W.-C.; Cho, C.-J.; Chen, C.-W.; Chen, J.-Y.; Yan, Y.; Chang, S.-H.; Kuo, C.-C. Evolution of Electrospun Nanofibers Fluorescent and Colorimetric Sensors for Environmental Toxicants, pH, Temperature, and Cancer Cells—A Review with Insights on Applications. Chem. Eng. J. 2020, 397, 125431. [Google Scholar] [CrossRef]
- Shamsipur, M.; Barati, A.; Nematifar, Z. Fluorescent pH nanosensors: Design strategies and applications. J. Photochem. Photobiol. C Photochem. Rev. 2019, 39, 76–141. [Google Scholar] [CrossRef]
- Kilic, N.M.; Singh, S.; Keles, G.; Cinti, S.; Kurbanoglu, S.; Odaci, D. Novel Approaches to Enzyme-Based Electrochemical Nanobiosensors. Biosensors 2023, 39, 76–141. [Google Scholar] [CrossRef]
- Mohd Jais, N.A.; Abdullah, A.F.; Mohd Kassim, M.S.; Abd Karim, M.M.; Abdulsalam, M.; Muhadi, N.A. Improved accuracy in IoT-Based water quality monitoring for aquaculture tanks using low-cost sensors: Asian seabass fish farming. Heliyon 2024, 10, e29022. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Han, F.; Jiang, Z. Flexible Thermoelectric Type Temperature Sensors Based on Graphene Fibers. Micromachines 2023, 14, 1853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, C.H.; Yu, C.; Li, Y.; Guo, X.H.; Zhang, Y.; Chen, C.; Cao, L.Q. High-linearity graphene-based temperature sensor fabricated by laser writing. J. Mater. Sci.-Mater. Electron. 2024, 35, 109. [Google Scholar] [CrossRef]
- Talataisong, W.; Ismaeel, R.; Brambilla, G. A Review of Microfiber-Based Temperature Sensors. Sensors 2018, 18, 461. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Wang, J.; Zhang, L.; Liu, J.; Wang, S. Review of Optical Fiber Sensors for Temperature, Salinity, and Pressure Sensing and Measurement in Seawater. Sensors 2022, 22, 5363. [Google Scholar] [CrossRef]
- Shukla, K.; Datta, T.; Sen, M. MEMS based bimorph optical temperature sensor. J. Appl. Phys. 2022, 131, 214501. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.T.; Lee, W.H. Recent advances in information and communications technology (ICT) and sensor technology for monitoring water quality. Water 2020, 12, 510. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jang, A.; Bhadri, P.R.; Myers, R.R.; Timmons, W.; Beyette, F.R.; Bishop, P.L.; Papautsky, I. Fabrication of microelectrode arrays for in situ sensing of oxidation reduction potentials. Sens. Actuators B Chem. 2006, 115, 220–226. [Google Scholar] [CrossRef]
- Lin, W.-C.; Brondum, K.; Monroe, C.W.; Burns, M.A. Multifunctional Water Sensors for pH, ORP, and Conductivity Using Only Microfabricated Platinum Electrodes. Sensors 2017, 17, 1655. [Google Scholar] [CrossRef]
- Azis, K.; Ntougias, S.; Melidis, P. NH4+-N versus pH and ORP versus NO3−-N sensors during online monitoring of an intermittently aerated and fed membrane bioreactor. Environ. Sci. Pollut. Res. 2020, 28, 33837–33843. [Google Scholar] [CrossRef]
- Koppanen, M.; Kesti, T.; Kokko, M.; Rintala, J.; Palmroth, M. An online flow-imaging particle counter and conventional water quality sensors detect drinking water contamination in the presence of normal water quality fluctuations. Water Res. 2022, 213, 118149. [Google Scholar] [CrossRef]
- Zaidi Farouk, M.I.H.; Jamil, Z.; Abdul Latip, M.F. Towards online surface water quality monitoring technology: A review. Environ. Res. 2023, 238, 117147. [Google Scholar] [CrossRef]
- Reynaert, E.; Nagappa, D.; Sigrist, J.A.; Morgenroth, E. Ensuring microbial water quality for on-site water reuse: Importance of online sensors for reliable operation. Water Res. X 2024, 22, 100215. [Google Scholar] [CrossRef]
- Martinez Paz, E.F.; Raskin, L.; Wigginton, K.R.; Kerkez, B. Toward the autonomous flushing of building plumbing: Characterizing oxidation-reduction potential and temperature sensor dynamics. Water Res. 2024, 251, 121098. [Google Scholar] [CrossRef]
- Kassaw, G.M.; Sadhu, A.S.; Biring, S. Measuring dissolved oxygen in pond water with high-resolution by optical gas sensor. Sens. Actuators B Chem. 2025, 443, 138270. [Google Scholar] [CrossRef]
- Shaoqi, Z.; Tao, L.; Zhenyu, C.; Wanqin, J. Recent progress on nanomaterial-based electrochemical dissolved oxygen sensors. Chin. J. Chem. Eng. 2024, 68, 103–119. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H.; Jin, Q.; Jia, D.; Liu, T. Ratiometric Optical Fiber Dissolved Oxygen Sensor Based on Fluorescence Quenching Principle. Sensors 2022, 22, 4811. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, H.; Gao, W.; Wu, C. Research progress of optical dissolved oxygen sensors: A review. IEEE Sens. J. 2024, 24, 29564–29574. [Google Scholar] [CrossRef]
- Xu, X.; Wang, B.; Du, Z.; Bai, Z.; Wang, S.; Wang, C.; Li, D. A novel nonplanar multi-chamber flexible array dissolved oxygen sensor for aquaculture robotic fish. Comput. Electron. Agric. 2025, 230, 109903. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Li, C.; Duan, H.; Wang, W. Predicting dissolved oxygen in water areas using transfer learning and visual information from real-time surveillance videos. J. Clean. Prod. 2025, 507, 145547. [Google Scholar] [CrossRef]
- Shaghaghi, N.; Fazlollahi, F.; Shrivastav, T.; Graham, A.; Mayer, J.; Liu, B.; Jiang, G.; Govindaraju, N.; Garg, S.; Dunigan, K.; et al. DOxy: A dissolved oxygen monitoring system. Sensors 2024, 24, 3253. [Google Scholar] [CrossRef]
- Omar, A.F.B.; Matjafri, M.Z.B. Turbidimeter design and analysis: A review on optical fiber sensors for the measurement of water turbidity. Sensors 2009, 9, 8311–8335. [Google Scholar] [CrossRef] [PubMed]
- Vu, C.T.; Zahrani, A.A.; Duan, L.; Wu, T. A Glass-Fiber-Optic Turbidity Sensor for Real-Time In Situ Water Quality Monitoring. Sensors 2023, 23, 7271. [Google Scholar] [CrossRef]
- Tang, B.; Ruan, J.M.; Wang, J.; Yu, Z.; Xu, M.; Cheng, Y.B. Design and characterization of a novel turbidity sensor based on quadrature demodulation. Meas. Sci. Technol. 2024, 35, 125101. [Google Scholar] [CrossRef]
- Parra, L.; Ahmad, A.; Sendra, S.; Lloret, J.; Lorenz, P. Combination of machine learning and RGB sensors to quantify and classify water turbidity. Chemosensors 2024, 12, 34. [Google Scholar] [CrossRef]
- Yong Jie, W.; Rei, N.; Yoshihisa, S.; Akinori, K.; Shang, S.; Idlan Zarizi Muhammad, R.; Nik Meriam Nik, S. Toward industrial revolution 4.0: Development, validation, and application of 3D-printed IoT-based water quality monitoring system. J. Clean. Prod. 2021, 324, 129230. [Google Scholar] [CrossRef]
- Vatitsi, K.; Siachalou, S.; Latinopoulos, D.; Kagalou, I.; Akratos, C.S.; Mallinis, G. Monitoring water quality parameters in small rivers using SuperDove imagery. Water 2024, 16, 758. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Shi, A.; Liu, Y.; Li, F. Review of Seawater Fiber Optic Salinity Sensors Based on the Refractive Index Detection Principle. Sensors 2023, 23, 2187. [Google Scholar] [CrossRef]
- Ishtiak, K.M.; Imam, S.A.; Khosru, Q.D.M. Graphene-Based surface plasmon resonance sensor for water salinity concentration detection using multiple light source techniques. IEEE Access 2023, 11, 130601–130617. [Google Scholar] [CrossRef]
- Zaky, Z.A.; Aly, A.H. Highly sensitive salinity and temperature sensor using tamm resonance. Plasmonics 2021, 16, 2315–2325. [Google Scholar] [CrossRef]
- Wang, L.; Liao, J.; Yuan, D.; Xie, X. Colorimetric water hardness sensor optode containing neutral ionophore and chromoionophore. Sens. Actuators B Chem. 2025, 440, 137922. [Google Scholar] [CrossRef]
- Abdollahzadeh, M.; Zhu, Y.; Bayatsarmadi, B.; Vepsäläinen, M.; Razmjou, A.; Murugappan, K.; Rodopoulos, T.; Asadnia, M. Portable multiplexed ion-selective sensor for long-term and continuous irrigation water quality monitoring. Comput. Electron. Agric. 2024, 227, 109455. [Google Scholar] [CrossRef]
- Singh, M.; Ahmed, S. IoT based smart water management systems: A systematic review. Mater. Today Proc. 2020, 46, 5211–5218. [Google Scholar] [CrossRef]
- Makhdoumi Akram, M.; Ramezannezhad, M.; Nikfarjam, A.; Kabiri, S.; Ehyaei, S. A strip-based total dissolved solids sensor for water quality analysis. IET Sci. Meas. Technol. 2022, 16, 208–218. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, W.; Liang, D.; Lee, J. Total dissolved solids estimation with a fiber optic sensor of surface plasmon resonance. Optik 2014, 125, 3337–3343. [Google Scholar] [CrossRef]
- Godson Ebenezer, A.; Haroon, S.; David, J.; Sajjad, A. Measurement of Total Dissolved Solids and Total Suspended Solids in Water Systems: A Review of the Issues, Conventional, and Remote Sensing Techniques. Remote Sens. 2023, 15, 3534. [Google Scholar] [CrossRef]
- Das, B.; Adel, A.; Jan, T.; Wahiduzzaman, M.D. Water quality management using federated deep learning in developing Southeastern Asian Country. Water Resour. Manag. 2025, 39, 1893–1909. [Google Scholar] [CrossRef]
- Gao, J.; Chen, B.; Tang, S.-K. Water quality monitoring: A water quality dataset from an on-site study in Macao. Appl. Sci. 2025, 15, 4130. [Google Scholar] [CrossRef]
- Chu, C.H.; Lin, Y.X.; Liu, C.K.; Lai, M.C. Development of Innovative Online Modularized Device for Turbidity Monitoring. Sensors 2023, 23, 3073. [Google Scholar] [CrossRef] [PubMed]
- Reynaert, E.; Steiner, P.; Yu, Q.X.; D’Olif, L.; Joller, N.; Schneider, M.Y.; Morgenroth, E. Predicting microbial water quality in on-site water reuse systems with online sensors. Water Res. 2023, 240, 120075. [Google Scholar] [CrossRef]
- Duan, W.; del Campo, F.J.; Gich, M.; Fernández-Sánchez, C. In-field one-step measurement of dissolved chemical oxygen demand with an integrated screen-printed electrochemical sensor. Sens. Actuators B Chem. 2022, 369, 132304. [Google Scholar] [CrossRef]
- Cheng, Z.L.; Luo, F.Z.; Chen, Q.H.; Xiao, Z.W.; Shi, J.H.; Liu, L.J.; Wang, N. An Optofluidic Monitor with On-Chip Calibration for Online Analyzing Surface Water Quality. Arab. J. Sci. Eng. 2023, 48, 8629–8639. [Google Scholar] [CrossRef]
- Luo, L.C.; Lan, J.; Wang, Y.C.; Li, H.Y.; Wu, Z.X.; McBridge, C.; Zhou, H.; Liu, F.L.; Zhang, R.F.; Gong, F.L.; et al. A Novel Early Warning System (EWS) for Water Quality, Integrating a High-Frequency Monitoring Database with Efficient Data Quality Control Technology at a Large and Deep Lake (Lake Qiandao), China. Water 2022, 14, 602. [Google Scholar] [CrossRef]
- Bo, L.; Liu, Y.; Zhang, Z.H.; Zhu, D.X.; Wang, Y.Y. Research on an Online Monitoring System for Efficient and Accurate Monitoring of Mine Water. IEEE Access 2022, 10, 18743–18756. [Google Scholar] [CrossRef]
- Agir, I.; Yildirim, R.; Nigde, M.; Isildak, I. Internet of Things Implementation of Nitrate and Ammonium Sensors for Online Water Monitoring. Anal. Sci. 2021, 37, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Ookawa, N.; Ishida, M.; Kanamori, H.; Sasaki, H.; Katayose, Y.; Yokoyama, H. A novel open-type biosensor for the in-situ monitoring of biochemical oxygen demand in an aerobic environment. Sci. Rep. 2016, 6, 38552. [Google Scholar] [CrossRef]
- Wang, G. Environmental pollution monitoring system based on gas water quality sensors and visual recognition. Results Eng. 2025, 26, 105524. [Google Scholar] [CrossRef]



| Data Acquisition | Carrying Platform | Wireless Interface | Controller | Data Storage | Water Body | Battery Energy | References |
|---|---|---|---|---|---|---|---|
| RS | UVA | Yangtze River | [21] | ||||
| UAS | Tharsis mine site | [22] | |||||
| Sensors | USV | LoRa | Arduino | TTN | Gambang Lake | Solar | [23] |
| LoRa | Esp32 microcontroller | Antares | Citarum River | [24] | |||
| LoRa | Arduino | TTN | Canal de Burguera | [25] | |||
| LoRa | Arduino | MySQL | Arno River | [26] | |||
| LoRaWAN | Packetduino | Network Server | Fish pond | [27] | |||
| GPRS /GSM | Waspmote V1.2 | FLASH memory | Fiji surface water | Solar | [28] | ||
| Amphibious UAV | 4G | Raspberry Pi/Arduino pro | Google Firebase | A lake near Ambattur | [29] | ||
| Unmanned Boat | WiFi | Arduino | OneNET | Small-scale water area | [30] | ||
| UVA | WiFi | Raspberry Pi/Arduino | SD card | Simulated experimental water | [31] | ||
| HC-08 Bluetooth | Arduino MEGA 2560 | 264K bytes RAM | Chia-Ming Lake | [32] | |||
| GSM/ZigBee | LPC 2148 | Central server | Simulated experimental water | [33] |
| Area | Sensor | Monitoring Index | Parameter Concentration | Equation/Algorithm | R2 | RMSE | References |
|---|---|---|---|---|---|---|---|
| Laguna Lake | Sentinel-2 | Chl-a, TSM | Chl-a: 10–30 mg/L; TSM: 25–170 mg/L | Normalized difference chlorophyll index | _ | _ | [90] |
| Lake Balaton | Landsat 4/5, L7 ETM+, L8/9 OLI Level 2, Collection 2, Tier 1 | Chl-a | 5–260 μg/L | RF | 0.86 | 8.16 μg/L | [91] |
| Saginaw River | Landsat 8 OLI, Sentinel-2 MSI | CDOM | 3.29–17.86 mg/L | ; ; ; | Landsat-8: 0.86; Sentinel-2: 0.78 | Landsat-8: 1.13 mg/L; Sentinel-2: 1.41 mg/L | [92] |
| Urban rivers | Hyperspectral imagery | Transparency | _ | XGBoost | 0.97 | _ | [93] |
| Midwestern United States | Landsat-8, Sentinel-2 | Blue-green algae (BGA), Chl-a, fDOM, DO, and turbidity | BGA: 0.1–9.3 μg/L; Chl-a: 0.6–74.4 mg/L; DO: 0.1–19.7 mg/L; fDOM: 0.3–156.2 QSU; SC: 247.9–654.8 μs/cm; Turbidity: 2.0–131.1 FNU | Deep learning model (pDNN) | BGA: 0.91; Chl-a: 0.88; DO: 0.89; fDOM: 0.93 SC: 0.87; Turbidity: 0.84 | BGA: 0.863 μg/L; Chl-a: 7.561 mg/L; DO: 1.806 mg/L; fDOM: 14.496 QSU; SC: 448.463 μs/cm; Turbidity: 5.190 FNU | [94] |
| Sanalona Reservoir | Landsat-8, Box–Cox transformations | TOC, Chl-a, and TDS | TOC: 3.8–8.2 mg/L; Chl-a: 0.1–10.9; TDS: 131.5–227.5 mg/L | ; ; | TOC: 0.90; Chl-a: 0.96; TDS: 0.95 | TOC: 2.10; Chl-a: 5.67; TDS: 27.91 | [95] |
| Chebara Reservoir | Sentinel-2A MSI, Landsat-8/OLI | Turbidity | _ | Sentinel-2: 0.75; Landsat-8: 0.75 | Sentinel-2: 0.5 NTU; Landsat-8: 0.5 NTU | [96] | |
| White River | Landsat 7 ETM+, Landsat 8 TIRS | Temperature | _ | Air2stream | 0.97 | 1.58 °C | [97] |
| Tyrrhenian coasts in Italy | Sentinel-2 MSI | Chl-a, TSM | Chl-a: 0.1–7.37 μg/L; TSM: 1–20 mg/L | EmpReg algorithm | Chl-a: 0.85 μg/L; TSM: 0.5 mg/L | Chl-a: 0.33 μg/L; TSM: 1.95 mg/L | [98] |
| Area | Sensor | Monitoring Index | Algorithm | References |
|---|---|---|---|---|
| Dormitory secondary water supply system | Raspberry Pi-based multi-sensor system | pH, TDS, temperature, turbidity | RF | [165] |
| Irrigation systems | Portable multi-sensor device | pH, K+, NO3− | Nernst equation | [159] |
| Drinking water | Online turbidity monitoring module | Turbidity | Scattering/reference specific value model, Scattering/transmitting specific value model | [166] |
| Environmental water bodies | Online turbidity monitoring module | Turbidity | Transmitting/reference specific value model | [166] |
| In situ water reuse system | Online sensors | ORP, pH, EC, temperature, turbidity | Logistic regression | [167] |
| Urban sewage treatment plant | Integrated screen-printed electrochemical sensor | DO | _ | [168] |
| Salt water | New surface plasmon resonance biosensor | Salinity | Transfer matrix method | [156] |
| The Qazi Ahmed town canal in Sindh, Pakistan | IoT sensors | TDS, EC | Federated deep learning | [164] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Gao, X.; Yuan, R. Advances in Remote Sensing and Sensor Technologies for Water-Quality Monitoring: A Review. Water 2025, 17, 3000. https://doi.org/10.3390/w17203000
Chen H, Gao X, Yuan R. Advances in Remote Sensing and Sensor Technologies for Water-Quality Monitoring: A Review. Water. 2025; 17(20):3000. https://doi.org/10.3390/w17203000
Chicago/Turabian StyleChen, Huilun, Xilan Gao, and Rongfang Yuan. 2025. "Advances in Remote Sensing and Sensor Technologies for Water-Quality Monitoring: A Review" Water 17, no. 20: 3000. https://doi.org/10.3390/w17203000
APA StyleChen, H., Gao, X., & Yuan, R. (2025). Advances in Remote Sensing and Sensor Technologies for Water-Quality Monitoring: A Review. Water, 17(20), 3000. https://doi.org/10.3390/w17203000
