Performance Evaluation of Diverse Filter Media Combinations Under Different Pollution and Hydraulic Loads in Constructed Wetlands
Abstract
1. Introduction
2. Materials and Methods
2.1. The Physical Properties of the Filter Media
2.2. Laboratory Column Testing
2.3. High-Throughput Sequencing and Microbial Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Changes in Water Quality
3.2. SEM and BET Tests
3.3. Microbial Analysis
3.3.1. Microbial Community Structure
3.3.2. Microbial α-Diversity and PCoA
3.3.3. Tax4Fun Prediction
3.4. Synergistic Effects Between Filter Media
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CWs | constructed wetlands |
SEM | Scanning Electron Microscopy |
BET | Brunauer–Emmett–Teller |
VSSF | vertical subsurface flow |
HSSF | horizontal subsurface flow |
Appendix A
References
- Biswas, A.K.; Tortajada, C. Water quality management: A globally neglected issue. Int. J. Water Resour. Dev. 2019, 35, 913–916. [Google Scholar] [CrossRef]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A.C. Assessing water ecosystem services for water resource management. Environ. Sci. Policy 2016, 61, 194–203. [Google Scholar] [CrossRef]
- Chen, X.; Chao, L.; Wan, Y.; Wang, X.; Pu, X. Study of the characteristics of pollutants in rural domestic sewage and the optimal sewage treatment process: A Chengdu Plain case study. Water Sci. Technol. 2023, 87, 2373–2389. [Google Scholar] [CrossRef]
- Hou, F.; Tian, Z.; Peter, K.T.; Wu, C.; Gipe, A.D.; Zhao, H.; Alegria, E.A.; Liu, F.; Kolodziej, E.P. Quantification of organic contaminants in urban stormwater by isotope dilution and liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 7791–7806. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Zhao, M.; Zheng, X.; Wang, Z.; Fan, C. Application of Decentralized Wastewater Treatment Technology in Rural Domestic Wastewater Treatment. Sustainability 2024, 16, 8635. [Google Scholar] [CrossRef]
- Somma, S.; Reverchon, E.; Baldino, L. Water Purification of Classical and Emerging Organic Pollutants: An Extensive Review. ChemEngineering 2021, 5, 47. [Google Scholar] [CrossRef]
- Zekri, S.; Ahmed, M.; Chaieb, R.; Ghaffour, N. Managed aquifer recharge using quaternary-treated wastewater: An economic perspective. Int. J. Water Resour. Dev. 2013, 30, 246–261. [Google Scholar] [CrossRef]
- Deng, Y.; Wheatley, A. Wastewater Treatment in Chinese Rural Areas. Asian J. Water Environ. Pollut. 2016, 13, 1–11. [Google Scholar] [CrossRef]
- Massoud, M.A.; Tarhini, A.; Nasr, J.A. Decentralized approaches to wastewater treatment and management: Applicability in developing countries. J. Environ. Manag. 2009, 90, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Masi, F.; Rizzo, A.; Regelsberger, M. The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. J. Environ. Manag. 2018, 216, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Alufasi, R.; Parawira, W.; Zvidzai, C.J.; Stefanakis, A.I.; Musili, N.; Lebea, P.; Chakauya, E.; Chingwaru, W. Performance Evaluation of a Pilot-Scale Constructed Wetland with Typha latifolia for Remediation of Domestic Wastewater in Zimbabwe. Water 2024, 16, 8635. [Google Scholar] [CrossRef]
- García-Valero, A.; Acosta, J.A.; Faz, Á.; Gómez-López, M.D.; Carmona, D.M.; Terrero, M.A.; El Bied, O.; Martínez-Martínez, S. Swine Wastewater Treatment System Using Constructed Wetlands Connected in Series. Agronomy 2024, 14, 143. [Google Scholar] [CrossRef]
- Gorgoglione, A.; Torretta, V. Sustainable Management and Successful Application of Constructed Wetlands: A Critical Review. Sustainability 2018, 10, 3910. [Google Scholar] [CrossRef]
- Rahman, M.E.; Bin Halmi, M.I.E.; Samad, M.Y.B.A.; Uddin, M.K.; Mahmud, K.; Shukor, M.Y.A.; Abdullah, S.R.S.; Shamsuzzaman, S.M. Design, Operation and Optimization of Constructed Wetland for Removal of Pollutant. Int. J. Environ. Res. Public Health 2020, 17, 8339. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Q.; Jinadasa, K.B.; Gersberg, R.M.; Liu, Y.; Tan, S.K.; Ng, W.J. Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000–2013). J. Environ. Sci. 2015, 30, 30–46. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, L.E.F.; Zamora-Castro, S.A.; Sandoval-Herazo, L.C.; Herrera-May, A.L.; Salgado-Estrada, R.; De La Cruz-Dessavre, D.A. Technological Innovations in the Application of Constructed Wetlands: A Review. Processes 2023, 11, 3334. [Google Scholar] [CrossRef]
- Wang, S.; Teng, Y.; Cheng, F.; Lu, X. Application Potential of Constructed Wetlands on Different Operation Mode for Biologically Pre-Treatment of Rural Domestic Wastewater. Sustainability 2023, 15, 1799. [Google Scholar] [CrossRef]
- Hube, S.Z.; Zaqout, T.; Ögmundarson, Ó.; Andradóttir, H.Ó.; Wu, B. Constructed Wetlands with Recycled Concrete for Wastewater Treatment in Cold Climate: Performance and Life Cycle Assessment. Sci. Total Environ. 2023, 904, 166778. [Google Scholar] [CrossRef]
- Zamora, S.; Marín-Muñíz, J.L.; Nakase-Rodríguez, C.; Fernández-Lambert, G.; Sandoval, L. Wastewater Treatment by Constructed Wetland Eco-Technology: Influence of Mineral and Plastic Materials as Filter Media and Tropical Ornamental Plants. Water 2019, 11, 2344. [Google Scholar] [CrossRef]
- Bai, X.; Li, J.; Chang, S. Effects of Different Carbon and Nitrogen Ratios on Nitrogen Removal Efficiency and Microbial Communities in Constructed Wetlands. Water 2023, 15, 4272. [Google Scholar] [CrossRef]
- Gupta, P.; Ann, T.W.; Lee, S.M. Use of Biochar to Enhance Constructed Wetland Performance in Wastewater Reclamation. Environ.Eng. Res. 2016, 21, 36–44. [Google Scholar] [CrossRef]
- Jayabalan, J.B.; Amirthalingam, S.; Sekar, S.; Santhanam, N.K.; Manoharan, S. Treatment of Textile Effluent Using Sub Surface Flow Constructed Wetlands. AIP Conf. Proc. 2020, 2240, 130001. [Google Scholar] [CrossRef]
- Aylan, R.A.; Al-Abbawy, D.A.H.; Yaseen, D.A. Greywater treatment using constructed wetlands modified with biochar and ceramic media. Environ. Technol. 2025, 29, 1–25. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Aparna, V.L.; Shende, A.D.; Bhaskaran, K. Comparative evaluation of needle-felt coir fibre with conventional media in treatment wetlands. J. Water Process Eng. 2025, 72, 107525. [Google Scholar] [CrossRef]
- Vispo, C.; Geronimo, F.K.; Jeon, M.; Kim, L.-H. Performance Evaluation of Various Filter Media for Multi-Functional Purposes to Urban Constructed Wetlands. Sustainability 2024, 16, 287. [Google Scholar] [CrossRef]
- Wang, J.; Long, Y.; Yu, G.; Wang, G.; Zhou, Z.; Li, P.; Zhang, Y.; Yang, K.; Wang, S. A Review on Microorganisms in Constructed Wetlands for Typical Pollutant Removal: Species, Function, and Diversity. Front. Microbiol. 2022, 13, 845725. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Su, Y.; Wang, B.; Wang, Y.; Zhuang, L.; Zhu, G. Spatiotemporal shifts of ammonia-oxidizing archaea abundance and structure during the restoration of a multiple pond and plant-bed/ditch wetland. Sci. Total Environ. 2019, 684, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Yang, Y.-L.; Liu, Y.-W.; Li, X.; Zhu, W.-B. Quantitative ecology associations between heterotrophic nitrification-aerobic denitrification, nitrogen-metabolism genes, and key bacteria in a tidal flow constructed wetland. Bioresour. Technol. 2021, 337, 125449. [Google Scholar] [CrossRef]
- Si, Z.; Song, X.; Wang, Y.; Cao, X.; Zhao, Y.; Wang, B.; Chen, Y.; Arefe, A. Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources: Denitrification efficiency and bacterial community structure. Bioresour. Technol. 2018, 267, 416–425. [Google Scholar] [CrossRef]
- Huang, J.; Xiao, J.; Guo, Y.; Guan, W.; Cao, C.; Yan, C.; Wang, M. Long-term effects of silver nanoparticles on performance of phosphorus removal in a laboratory-scale vertical flow constructed wetland. J. Environ. Sci. 2020, 87, 319–330. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, J.; Xie, H.; Hao, D.; Du, Y.; Zhao, C.; Xu, F.; Kong, Q.; Wang, B. Phosphorus removal performance of microbial-enhanced constructed wetlands that treat saline wastewater. J. Clean. Prod. 2021, 288, 125119. [Google Scholar] [CrossRef]
- Metzger, Z.; Teperovich, E.; Cohen, R.; Zary, R.; Paque, F.; Hulsmann, M. The self-adjusting file (SAF). Part 3: Removal of debris and smear layer-A scanning electron microscope study. J. Endod. 2010, 36, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Gibson, N.; Kuchenbecker, P.; Rasmussen, K.; Hodoroaba, V.-D.; Rauscher, H. Volume-specific surface area by gas adsorption analysis with the BET method. In Characterization of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 265–294. [Google Scholar]
- Guerra, H.B.; Yuan, Q.; Kim, Y. Filter media washing prior to installation in stormwater treatment facilities. Desalination Water Treat. 2018, 109, 64–71. [Google Scholar] [CrossRef]
- Reddy, K.R.; Xie, T.; Dastgheibi, S. Evaluation of Biochar as a Potential Filter Media for the Removal of Mixed Contaminants from Urban Storm Water Runoff. J. Environ. Eng. 2014, 140, 04014043. [Google Scholar] [CrossRef]
- Technical Specifications for Wastewater Monitoring; China Standard Press: Beijing, China, 2002.
- Guerra, H.B.; Kim, Y. An Investigation into the Release of Chemical Oxygen Demand in Organic Filter Media. J. Wetl. Res. 2020, 22, 171–177. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, C.; Ren, L.; Tian, S.; Li, N.; An, S.; Leng, X. Research on Pollutants Removal Effect of Different Combined Substrate under Different Hydraulic Retention Time in Vertical Flow Constructed Wetlands. Ecol. Environ. Sci. 2016, 25, 292–299. [Google Scholar] [CrossRef]
- Zhao, L.; Fu, G.; Tang, J.; Wu, J.; Pang, W.; Guo, Z. Efficient nitrogen removal of mangrove constructed wetlands: Enhancing heterotrophic nitrification-aerobic denitrification microflora through quorum sensing. Chem. Eng. J. 2022, 430, 133048. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of Nutrients in Various Types of Constructed Wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Mohammed, S.; Shanshool, H. Phosphorus Removal from Water and Waste Water by Chemical Precipitation Using Alum and Calcium Chloride. Iraqi J. Chem. Pet. Eng. 2009, 10, 35–42. [Google Scholar] [CrossRef]
- Azreen, I.; Lija, Y.; Zahrim, A.Y. Ammonia nitrogen removal from aqueous solution by local agricultural wastes. IOP Conf. Ser. Mater. Sci. Eng. 2017, 206, 012077. [Google Scholar] [CrossRef]
- Ho, K.F.; Lee, S.; Louie, P.; Zou, S. Seasonal variation of carbonyl compound concentrations in urban area of Hong Kong. Atmos. Environ. 2002, 36, 1259–1265. [Google Scholar] [CrossRef]
- Chen, D.; Wang, H.Y.; Ji, B.; Yang, K.; Wei, L.; Jiang, Y. A high-throughput sequencing study of bacterial communities in an autohydrogenotrophic denitrifying bio-ceramsite reactor. Process Biochem. 2015, 50, 1904–1910. [Google Scholar] [CrossRef]
- Wei, X.L.; Zhang, Y.F.; Ma, B.; Li, D.Q.; Chen, W.W.; Cheng, H.W.; Wang, L.; Tao, Y.Q.; Lu, L.; Li, M.Y.; et al. An investigation of hollow NiCrAl metal fiber porous material for high-temperature sealing. J. Alloys Compd. 2023, 947, 169493. [Google Scholar] [CrossRef]
- Jiang, C.; Jia, L.Y.; Zhang, B.; He, Y.L.; Kirumba, G. Comparison of quartz sand, anthracite, shale and biological ceramsite for adsorptive removal of phosphorus from aqueous solution. J. Environ. Sci. 2014, 26, 466–477. [Google Scholar] [CrossRef]
- Agyei, N.M.; Strydom, C.A.; Potgieter, J.H. The removal of phosphate ions from aqueous solution by fly ash, slag, ordinary Portland cement and related blends. Cem. Concr. Res. 2002, 32, 1889–1897. [Google Scholar] [CrossRef]
- Zhang, M.P.; Wang, Z.J.; Huang, J.C.; Sun, S.S.; Cui, X.J.; Zhou, W.L.; He, S.B. Salinity-driven nitrogen removal and its quantitative molecular mechanisms in artificial tidal wetlands. Water Res. 2021, 202, 117446. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.; Chauhan, M.; Kumar Sharma, P.; Kumari, M.; Mitra, D.; Joshi, S. Microbiological dimensions and functions in constructed wetlands: A review. Curr. Res. Microb. Sci. 2024, 7, 100311. [Google Scholar] [CrossRef] [PubMed]
- Bååth, E.; Anderson, T.H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 2003, 35, 955–963. [Google Scholar] [CrossRef]
- Bi, J.; Zhang, L.R.; He, Y.P. Metabolomics and microbiome provide new insights into mechanisms of the variations between the larva and adult stages of the Model Beetle Tribolium castaneum (Herbst). J. ASIA-Pac. Entomol. 2024, 27, 102241. [Google Scholar] [CrossRef]
- Huang, L.J.; Tao, S.K.; Zhu, Y.; Pan, Y.G.; Zhang, Z.K.; Yu, Z.Q.; Chen, Y.Z. Regulation of Embden-Meyerhof-Parnas (EMP) Pathway and Tricarboxylic Acid (TCA) Cycle Concerning Aberrant Chilling Injury Behavior in Postharvest Papaya (Carica papaya L.). Int. J. Mol. Sci. 2023, 24, 13898. [Google Scholar] [CrossRef] [PubMed]
- Mateus, D.M.R.; Pinho, H.J.O. Evaluation of solid waste stratified mixtures as constructed wetland fillers under different operation modes. J. Clean. Prod. 2020, 253, 119986. [Google Scholar] [CrossRef]
- Wang, H.J.; Li, Y.Y.; Zhang, S.Q.; Li, D.; Liu, X.C.; Wang, W.J.; Liu, L.; Wang, Y.L.; Kang, L. Effect of influent feeding pattern on municipal tailwater treatment during a sulfur-based denitrification constructed wetland. Bioresour. Technol. 2020, 315, 123807. [Google Scholar] [CrossRef] [PubMed]
Components | Voidage | Bulk Density (g/cm3) | |
---|---|---|---|
quartz sand | 98.5% SiO2, 0.6% A12O3 0.4% Fe2O3 | 0.37 | 1.5 |
volcanic rock | 43% SiO2, 15% A12O3, 12% Fe2O3, 10% CaO | 0.48 | 0.8 |
bio-ceramsite | 69~88% SiO2, 10~15% A12O3, 1% Fe2O3, 3.5% CaO, 2% MgO, 3.2% K2O + Na2O | 0.39 | 0.8–1.0 |
Number of the Test Column | Filter Media Combination |
---|---|
A1 | 60 cm quartz sand |
A2 | 60 cm volcanic rock |
A3 | 60 cm bio-ceramsite |
B1 | 30 cm quartz sand + 30 cm volcanic rock |
B2 | 30 cm quartz sand + 30 cm bio-ceramsite |
B3 | 30 cm bio-ceramsite + 30 cm volcanic rock |
COD (mg/L) | TN (mg/L) | TP (mg/L) | |
---|---|---|---|
Low | 50 ± 2.5 | 15 ± 0.5 | 2 ± 0.1 |
Medium | 100 ± 5 | 30 ± 1 | 4 ± 0.2 |
High | 200 ± 10 | 60 ± 2 | 8 ± 0.4 |
Synthetic Constituents | |||
---|---|---|---|
Glucose (mg/L) | NH4Cl (mg/L) | KH2PO4 (mg/L) | |
Low | 46.9 | 57.3 | 8.8 |
Medium | 93.7 | 114.5 | 17.6 |
High | 187.4 | 229.1 | 35.2 |
Conditions | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
HRT | 1 d | 1 d | 1 d | 2 d | 2 d | 2 d | 3 d | 3 d | 3 d |
PL | Low | Medium | High | Low | Medium | High | Low | Medium | High |
Quartz Sand | Volcanic Rock | Bio-Ceramsite | |
---|---|---|---|
BET Surface Area (m2/g) | 0.0330 | 0.6510 | 1.3816 |
t-Plot Surface Area (m2/g) | 0.0402 | 0.3221 | 0.6118 |
t-Plot micropore volume (cm3/g) | 0.000015 | 0.000134 | 0.000253 |
BJH Desorption average pore diameter (4 V/A) (nm) | 23.5373 | 6.9111 | 23.0527 |
Sample | Shannon/Simpson | ||
---|---|---|---|
Condition 3 | Condition 5 | Condition 7 | |
A11 | 5.570/0.913 | 6.444/0.979 | 6.509/0.976 |
A12 | 4.851/0.892 | 5.836/0.963 | 6.065/0.966 |
A21 | 5.672/0.942 | 6.222/0.966 | 6.439/0.975 |
A22 | 5.834/0.944 | 5.230/0.900 | 5.890/0.954 |
A31 | 4.826/0.924 | 5.255/0.945 | 5.498/0.946 |
A32 | 3.436/0.791 | 3.049/0.740 | 4.136/0.892 |
B11 | 5.266/0.903 | 6.362/0.973 | 5.988/0.953 |
B12 | 4.956/0.890 | 6.095/0.967 | 6.215/0.970 |
B21 | 5.685/0.942 | 5.546/0.946 | 5.000/0.886 |
B22 | 4.156/0.847 | 5.097/0.943 | 4.536/0.912 |
B31 | 6.698/0.971 | 6.330/0.961 | 6.435/0.970 |
B32 | 6.787/0.980 | 6.914/0.983 | 6.449/0.974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Yao, H.; Yuan, J.; Ke, H.; Zhang, X.; Hu, A. Performance Evaluation of Diverse Filter Media Combinations Under Different Pollution and Hydraulic Loads in Constructed Wetlands. Water 2025, 17, 2969. https://doi.org/10.3390/w17202969
Chen H, Yao H, Yuan J, Ke H, Zhang X, Hu A. Performance Evaluation of Diverse Filter Media Combinations Under Different Pollution and Hydraulic Loads in Constructed Wetlands. Water. 2025; 17(20):2969. https://doi.org/10.3390/w17202969
Chicago/Turabian StyleChen, Huaiwei, Huaqi Yao, Jialei Yuan, Han Ke, Xuanqi Zhang, and Anfeng Hu. 2025. "Performance Evaluation of Diverse Filter Media Combinations Under Different Pollution and Hydraulic Loads in Constructed Wetlands" Water 17, no. 20: 2969. https://doi.org/10.3390/w17202969
APA StyleChen, H., Yao, H., Yuan, J., Ke, H., Zhang, X., & Hu, A. (2025). Performance Evaluation of Diverse Filter Media Combinations Under Different Pollution and Hydraulic Loads in Constructed Wetlands. Water, 17(20), 2969. https://doi.org/10.3390/w17202969