Hypothesis-Driven Conceptual Model for Groundwater–Surface Water Interaction at Aguieira Dam Reservoir (Central Portugal) Based on Principal Component Analysis and Hierarchical Clustering
Abstract
1. Introduction
2. Setting of the Study Area
3. Materials and Methods
3.1. Data Availability
3.2. Statistical Analysis
3.2.1. Principal Component Analysis
3.2.2. Hierarchical Clustering
4. Results
5. Discussion
5.1. Groundwater Endmember
5.2. Dimensionality Interpretation
5.3. Temporal Variation in the Water Column
5.4. Hypothesis-Driven Piston Effect Conceptual Model for Groundwater–Surface Water Interaction
5.5. Limitations and Future Research Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EC | Electrical conductivity |
LD | Limit of detection |
ORP | Redox potential |
RC | Radon concentration |
T | Temperature |
References
- Council of the European Union. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Communities 2000, 1–73. Available online: http://data.europa.eu/eli/dir/2000/60/2014-11-20 (accessed on 5 May 2025).
- Winter, T.C.; Harvey, J.W.; Judson, W.; Franke, O.L.; Alley, W.M. Ground Water and Surface Water: A Single Resource (Circular 1139); U.S. Geological Survey: Washington, DC, USA, 1998. [Google Scholar]
- Fleckenstein, J.H.; Krause, S.; Hannah, D.M.; Boano, F. Groundwater–Surface Water Interactions: New Methods and Models to Improve Understanding of Processes and Dynamics. Adv. Water Resour. 2010, 33, 1291–1295. [Google Scholar] [CrossRef]
- Irvine, D.J.; Singha, K.; Kurylyk, B.L.; Briggs, M.A.; Sebastian, Y.; Tait, D.R.; Helton, A.M. Groundwater–surface water interactions research: Past trends and future directions. J. Hydrol. 2024, 644, 132061. [Google Scholar] [CrossRef]
- Omar, P.J.; Shivhare, N.; Dwivedi, S.B.; Gaur, S.; Dikshit, P.K.S. Study of methods available for groundwater and surface water interaction: A case study on Varanasi, India. In The Ganga River Basin: A Hydrometeorological Approach; Chauhan, M.S., Ojha, C.S.P., Eds.; Society of Earth Scientists Series; Springer: Cham, Switzerland, 2021; pp. 79–95. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Davies, P.M. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Wada, Y.; van Beek, L.P.H.; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37, L20402. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Treidel, H. Ground water and climate change. Nat. Clim. Change 2013, 3, 322–329. [Google Scholar] [CrossRef]
- Lake, P.S.; Bond, N.; Reich, P. Linking ecological theory with stream restoration. Freshw. Biol. 2007, 52, 597–615. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Sullivan, C.A. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Norvatov, A.M.; Popov, O.V. Laws of the formation of minimum stream flow. Int. Assoc. Sci. Hydrol. 1961, 6, 20–28. [Google Scholar] [CrossRef]
- Tóth, J. A theory of groundwater motion in small drainage basins in Central Alberta, Canada. J. Geophys. Res. 1962, 67, 4375–4387. [Google Scholar] [CrossRef]
- Memon, B.A. Quantitative analysis of springs. Environ. Geol. 1995, 26, 111–120. [Google Scholar] [CrossRef]
- Winter, T.C. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol. J. 1999, 7, 28–45. [Google Scholar] [CrossRef]
- Gleeson, T.; Moosdorf, N.; Hartmann, J.; van Beek, L.P.H. A glimpse beneath Earth’s surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity. Geophys. Res. Lett. 2014, 41, 3891–3898. [Google Scholar] [CrossRef]
- Davie, T.; Quinn, N.W. Fundamentals of Hydrology, 3rd ed.; Routledge: London, UK, 2019. [Google Scholar]
- Weiler, M.; McDonnell, J.J.; Tromp-van Meerveld, I.; Uchida, T. Subsurface stormflow. In Encyclopedia of Hydrological Sciences; Anderson, M.G., McDonnell, J.J., Eds.; Wiley: Chichester, UK, 2006. [Google Scholar] [CrossRef]
- Cui, Z.; Tian, F. Delayed stormflow generation in a semi-humid forested watershed controlled by soil water storage and groundwater dynamics. Hydrol. Earth Syst. Sci. 2025, 29, 2275–2291. [Google Scholar] [CrossRef]
- Sarker, S.; Leta, O.T. Review of Watershed Hydrology and Mathematical Models. Eng 2025, 6, 129. [Google Scholar] [CrossRef]
- Cho, S.J.; Karwan, D.L.; Skalak, K.; Pizzuto, J.; Huffman, M.E. Sediment sources and connectivity linked to hydrologic pathways and geomorphic processes: A conceptual model to specify sediment sources and pathways through space and time. Front. Water 2023, 5, 1241622. [Google Scholar] [CrossRef]
- Yabusaki, S.; Asai, K. Estimation of Groundwater and Spring Water Residence Times near the Coast of Fukushima, Japan. Groundwater 2023, 61, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Solomon, D.K.; Genereux, D.P.; Plummer, L.N.; Busenberg, E. Testing Mixing Models of Old and Young Groundwater in a Tropical Lowland Rain Forest with Environmental Tracers. Water Resour. Res. 2010, 46, W04518. [Google Scholar] [CrossRef]
- Rogers, A.S. Physical behavior and geologic control of radon in mountain streams. In U.S. Geological Survey Bulletin 1052-E; Experimental and Theoretical Geophysics; U.S. Government Publishing Office: Washington, DC, USA, 1958. [Google Scholar]
- Hoehn, E.; von Gunten, H.R. Radon in Groundwater: A Tool to Assess Infiltration from Surface Waters to Aquifers. Water Resour. Res. 1989, 25, 1795–1803. [Google Scholar] [CrossRef]
- Bertin, C.; Bourg, A.C. Radon-222 and Chloride as Natural Tracers of the Infiltration of River Water into an Alluvial Aquifer in which there is Significant River/Groundwater Mixing. Environ. Sci. Technol. 1994, 28, 794–798. [Google Scholar] [CrossRef]
- Kies, A.; Hofmann, H.; Tosheva, Z.; Hoffman, L.; Pfister, L. Using 222Rn for hydrograph separation in a micro basin (Luxembourg). Ann. Geophys. 2005, 48, 101–107. [Google Scholar]
- Burnett, W.C.; Peterson, R.N.; Santos, I.R.; Hicks, R.W. Use of Automated Radon Measurements for Rapid Assessment of Groundwater Flow into Florida Streams. J. Hydrol. 2010, 380, 298–304. [Google Scholar] [CrossRef]
- Dimova, N.T.; Burnett, W.C.; Chanton, J.P.; Corbett, J.E. Application of Radon-222 to Investigate Groundwater Discharge into Small Shallow Lakes. J. Hydrol. 2013, 486, 112–122. [Google Scholar] [CrossRef]
- Stellato, L.; Terrasi, F.; Marzaioli, F.; Belli, M.; Sansone, U.; Celico, F. Is 222Rn a suitable tracer of stream-groundwater interactions? A case study in central Italy. Appl. Geochem. 2013, 32, 108–117. [Google Scholar] [CrossRef]
- Close, M.; Matthews, M.; Burbery, L.; Abraham, P.; Scott, D. Use of Radon to Characterise Surface Water Recharge to Groundwater. J. Hydrol. 2014, 53, 113–127. Available online: http://www.jstor.org/stable/43945059 (accessed on 5 May 2025).
- Sadat-Noori, M.; Santos, I.R.; Sanders, C.J.; Sanders, L.M.; Maher, D.T. Groundwater discharge into an estuary using spatially distributed radon time series and radium isotopes. J. Hydrol. 2015, 528, 703–719. [Google Scholar] [CrossRef]
- Martindale, H.; Morgenstern, U.; Singh, R.; Stewart, B. New Zealand Hydrological Society mapping groundwater-surface water interaction using Radon-222 in gravel-bed rivers. J. Hydrol. 2016, 55, 121–134. [Google Scholar]
- Coluccio, K.M.; Santos, I.R.; Jeffrey, L.C.; Morgan, L.K. Groundwater Discharge Rates and Uncertainties in a Coastal Lagoon Using a Radon Mass Balance. J. Hydrol. 2021, 598, 126436. [Google Scholar] [CrossRef]
- McKenzie, T.; Dulai, H.; Fuleky, P. Traditional and novel time-series approaches reveal submarine groundwater discharge dynamics under baseline and extreme event conditions. Sci. Rep. 2021, 11, 22570. [Google Scholar] [CrossRef]
- Wolfe, W.W.; Murgulet, D.; Gyawali, B.; Sterba-Boatwright, B. Modeling time series radon inventory and constraints on the submarine groundwater discharge mass balance of a well-mixed, highly dynamic estuary. J. Hydrol. 2023, 625, 130065. [Google Scholar] [CrossRef]
- Hagedorn, B.; Becker, M.W.; Silbiger, N.J.; Maine, B.; Justis, E.; Barnas, D.M.; Zeff, M. Refining submarine groundwater discharge analysis through nonlinear quantile regression of geochemical time series. J. Hydrol. 2024, 645, 132145. [Google Scholar] [CrossRef]
- Luís, G.P.S.; Pereira, A.J.S.C.; Sêco, S.L.R.; Filho, J.A.; Neves, L. Time and depth variability of radon concentration and its relationship with other physicochemical parameters in an artificial lake subject to strong anthropogenic control. Sci. Total Environ. 2025, 966, 178732. [Google Scholar] [CrossRef]
- Kluge, T.; von Rohden, C.; Sonntag, P.; Lorenz, S.; Wieser, M.; Aeschbach-Hertig, W.; Ilmberger, J. Localising and quantifying groundwater inflow into lakes using high-precision 222Rn profiles. J. Hydrol. 2012, 450–451, 70–81. [Google Scholar] [CrossRef]
- Arnoux, M.; Gibert-Brunet, E.; Barbecot, F.; Guillon, S.; Gibson, J.; Noret, A. Interactions between groundwater and seasonally ice-covered lakes: Using water stable isotopes and radon-222 multilayer mass balance models. Hydrol. Process. 2017, 31, 2566–2581. [Google Scholar] [CrossRef]
- Santos, I.R.; Dimova, N.; Peterson, R.N.; Mwashote, B.; Chanton, J.; Burnett, W.C. Extended time series measurements of submarine groundwater discharge tracers (222Rn and CH4) at a coastal site in Florida. Mar. Chem. 2009, 113, 137–147. [Google Scholar] [CrossRef]
- Sukanya, S.; Noble, J.; Joseph, S. Application of radon (222Rn) as an environmental tracer in hydrogeological and geological investigations: An overview. Chemosphere 2022, 303, 135141. [Google Scholar] [CrossRef] [PubMed]
- Cloutier, V.; Lefebvre, R.; Therrien, R.; Savard, M.M. Multivariate Statistical Analysis of Geochemical Data as Indicative of the Hydrogeochemical Evolution of Groundwater in a Sedimentary Rock Aquifer System. J. Hydrol. 2008, 353, 294–313. [Google Scholar] [CrossRef]
- El-Rawy, M.; Fathi, H.; Abdalla, F.; Alshehri, F.; Eldeeb, H. An Integrated Principal Component and Hierarchical Cluster Analysis Approach for Groundwater Quality Assessment in Jazan, Saudi Arabia. Water 2023, 15, 1466. [Google Scholar] [CrossRef]
- Alberto, W.D.; del Pilar, D.M.; Valeria, A.M.; Pardo, F.S.; Hadad, C.A.; de los Ángeles, B.M. Pattern Recognition Techniques for the Evaluation of Spatial and Temporal Variations in Water Quality. A Case Study: Suquía River Basin (Córdoba–Argentina). Water Res. 2001, 35, 2881–2894. [Google Scholar] [CrossRef]
- Benkov, I.; Varbanov, M.; Venelinov, T.; Tsakovski, S. Principal Component Analysis and the Water Quality Index—A Powerful Tool for Surface Water Quality Assessment: A Case Study on Struma River Catchment, Bulgaria. Water 2023, 15, 1961. [Google Scholar] [CrossRef]
- Balcerowska-Czerniak, G.; Gorczyca, B. Rapid Assessment of Surface Water Quality Using Statistical Multivariate Analysis Approach: Oder River System Case Study. Sci. Total Environ. 2024, 912, 168754. [Google Scholar] [CrossRef]
- Zheng, M.J.; Wan, C.W.; Du, M.D.; Zhou, X.D.; Yi, P.; Aldahan, A.; Gong, M. Application of Rn-222 isotope for the interaction between surface water and groundwater in the Source Area of the Yellow River. Hydrol. Res. 2016, 47, 1253–1262. [Google Scholar] [CrossRef]
- Sadat-Noori, M.; Anibas, C.; Andersen, M.S.; Glamore, W. A comparison of radon, heat tracer, and head gradient methods to quantify surface water–groundwater exchange in a tidal wetland (Kooragang Island, Newcastle, Australia). J. Hydrol. 2021, 598, 126281. [Google Scholar] [CrossRef]
- Menció, A.; Mas-Pla, J. Assessment by multivariate analysis of groundwater–surface water interactions in urbanized Mediterranean streams. J. Hydrol. 2008, 352, 355–366. [Google Scholar] [CrossRef]
- Guggenmos, M.R.; Daughney, C.J.; Jackson, B.M.; Morgenstern, U. Regional-Scale Identification of Groundwater–Surface Water Interaction Using Hydrochemistry and Multivariate Statistical Methods, Wairarapa Valley, New Zealand. Hydrol. Earth Syst. Sci. 2011, 15, 3383–3396. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, G.; Xu, Y.J.; Sun, G. Identifying the regional-scale groundwater-surface water interaction on the Sanjiang Plain, Northeast China. Environ. Sci. Pollut. Res. 2015, 22, 16951–16961. [Google Scholar] [CrossRef]
- Usunoff, E.J.; Guzmán-Guzmán, A. Multivariate Analysis in Hydrochemistry: An Example of the Use of Factor and Correspondence Analyses. Groundwater 1989, 27, 27–34. [Google Scholar] [CrossRef]
- Martins, L.; Pereira, A.; Oliveira, A.; Fernandes, A.; Sanches Fernandes, L.F.; Pacheco, F.A.L. An assessment of groundwater contamination risk with radon based on clustering and structural models. Water 2019, 11, 1107. [Google Scholar] [CrossRef]
- Sequeira, M.D.; Castilho, A.; Tavares, A.O.; Dinis, P. The Rural Fires of 2017 and Their Influences on Water Quality: An Assessment of Causes and Effects. Int. J. Environ. Res. Public Health 2023, 20, 32. [Google Scholar] [CrossRef]
- Cunha, L.; Santos, J.; Ramos, A. The Mondego River and Its Valley. In Landscapes and Landforms of Portugal; Vieira, G., Zêzere, J., Mora, C., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 175–184. [Google Scholar]
- Instituto Português do Mar e da Atmosfera (IPMA). Boletim Anual 2023 [Annual Report 2023]; IPMA: Lisbon, Portugal, 2024; Available online: https://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20240325/NJwiNVXlahTAVKioLFka/cli_20231201_20231231_pcl_aa_co_pt.pdf (accessed on 5 May 2025).
- Ferreira, N.; Iglesias, M.; Noronha, F.; Pereira, E.; Ribeiro, A.; Ribeiro, M. Granitóides da Zona Centro-Ibérica e seu Enquadramento Geodinâmico. In Geología de los Granitoides y Rocas Asociadas del Macizo Hespérico; Bea, F., Carnicero, A., Gonzalo, J.C., López Plaza, M., Rodríguez Alonso, J.C., Eds.; Rueda: Colombia, Spain, 1987; pp. 37–51. [Google Scholar]
- Pereira, A.J.S.C. Transferências de Calor e Ascensão Crustal no Segmento Tondela-Oliveira do Hospital (Portugal Central) Após a Implantação dos Granitos Hercínicos sin a Tardi-Orogénicos. Ph.D. Thesis, University of Coimbra, Coimbra, Portugal, 1991. [Google Scholar]
- Silva, M.M.V.G. Minerologia, Petrologia e Geoquímica de Encraves de Rochas Graníticas de Algumas Regiões Portuguesas [Minerology, Petrology and Geochemistry of Granitic Rocks’ Enclaves of Some Portuguese Regions]. Ph.D. Thesis, University of Coimbra, Coimbra, Portugal, 1995. [Google Scholar]
- Pereira, A.J.S.C.; Godinho, M.M.; Neves, L.J.P.F. On the influence of faulting on small-scale soil-gas radon variability: A case study in the Iberian Uranium Province. J. Environ. Radioact. 2010, 101, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.J.S.C.; Neves, L.J.P.F. Estimation of the radiological background and dose assessment in areas with naturally occurring uranium geochemical anomalies—A case study in the Iberian Massif (Central Portugal). J. Environ. Radioact. 2012, 112, 96–107. [Google Scholar] [CrossRef]
- Costa, H.; Benevides, P.; Moreira, F.D.; Moraes, D.; Caetano, M. Spatially Stratified and Multi-Stage Approach for National Land Cover Mapping Based on Sentinel-2 Data and Expert Knowledge. Remote Sens. 2022, 14, 1865. [Google Scholar] [CrossRef]
- Jabaloy, A.; Galindo-Zaldívar, J.; González-Lodeiro, F. Palaeostress Evolution of the Iberian Peninsula (Late Carboniferous to Present-Day). Tectonophysics 2002, 357, 159–186. [Google Scholar] [CrossRef]
- Luís, G.S.; Pereira, A.J.S.C.; Carvalho, J.; Neves, L.F. Validation of a new sampler for radon gas measurements in surface water. MethodsX 2024, 13, 102815. [Google Scholar] [CrossRef]
- Palarea-Albaladejo, J.; Martín-Fernandez, J.A. Values below detection limit in compositional chemical data. Anal. Chim. Acta 2013, 764, 32–43. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 5 May 2025).
- Schloerke, B.; Cook, D.; Larmarange, J.; Briatte, F.; Marbach, M.; Thoen, E.; Elberg, A.; Crowley, J. GGally: Extension to ‘ggplot2’, R package version 2.1.2. 2021. Available online: https://CRAN.R-project.org/package=GGally (accessed on 5 May 2025).
- Harrell, F.E. Hmisc: Harrell Miscellaneous, R package version 4.4-2. 2020. Available online: https://CRAN.R-project.org/package=Hmisc (accessed on 5 May 2025).
- Abdi, H.; Williams, L.J. Principal Component Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Kherif, F.; Latypova, A. Principal component analysis. In Machine Learning; Mechelli, A., Vieira, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 209–225. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 1986. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Vidal, R.; Ma, Y.; Sastry, S.S. Generalized Principal Component Analysis; Springer: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Bartlett, M. The Effect of Standardization on a Chi Square Approximation in Factor Analysis. Biometrika 1951, 38, 337–344. [Google Scholar]
- Kaiser, H.F. An Index of Factorial Simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research, R package version 2.4.1; Northwestern University: Evanston, IL, USA, 2024. Available online: https://CRAN.R-project.org/package=psych (accessed on 5 May 2025).
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses, R package version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 5 May 2025).
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Maechler, M.; Rousseeuw, P.J.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions, R package version 2.1.4; GESIS—Leibniz Institute for the Social Sciences: Mannheim, Germany, 2022.
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Cattell, R.B. The Scree Test for the Number of Factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef]
- Kyriazos, T.A. Applied psychometrics: Sample size and sample power considerations in factor analysis (EFA, CFA) and SEM in general. Psychology 2018, 9, 2207–2230. [Google Scholar] [CrossRef]
- Biamino, L.; Colombero, C.; Fiorucci, A.; Peano, G.; Vigna, B. Natural Radon Levels Act as Markers of Hydrodynamic Behavior in the Mountain Karst Aquifer of Bossea Cave, Italy. Sci. Rep. 2024, 14, 29178. [Google Scholar] [CrossRef]
- Banerji, P.; Chatterjee, S.D. Radon Content of Rainwater. Nature 1964, 204, 1185–1186. [Google Scholar] [CrossRef]
- Minato, S. Estimate of radon-222 concentrations in rainclouds from radioactivity of rainwater observed at ground level. J. Radioanal. Chem. 1983, 78, 199–207. [Google Scholar] [CrossRef]
- Anderson, M.P.; Woessner, W.W. Introduction. In Applied Groundwater Modeling; Anderson, M.P., Woessner, W.W., Eds.; Academic Press: Cambridge, MA, USA, 2002; pp. 1–11. [Google Scholar] [CrossRef]
- Daum, B. Conceptual Modeling. In Modeling Business Objects with XML Schema; Daum, B., Ed.; Morgan Kaufmann: Burlington, MA, USA, 2003; pp. 41–70. [Google Scholar] [CrossRef]
- Enemark, T.; Peeters, L.J.M.; Mallants, D.; Batelaan, O. Hydrogeological conceptual model building and testing: A review. J. Hydrol. 2019, 569, 310–329. [Google Scholar] [CrossRef]
- Gupta, H.V.; Clark, M.P.; Vrugt, J.A.; Abramowitz, G.; Ye, M. Towards a comprehensive assessment of model structural adequacy. Water Resour. Res. 2012, 48, W08301. [Google Scholar] [CrossRef]
Survey | Sampling Date | Water Level (m) | Number of Samples | Maximum Rn-222 (mBq/L) | Accumulated Precipitation (mm) | Median Water Temperature (°C) |
---|---|---|---|---|---|---|
S2 | 24 January 2023 | 120 | 9 | 1204 | 0.0 | 8.7 |
S3 | 9 February 2023 | 118 | 13 | 838 | 0.0 | 9.2 |
S4 | 21 March 2023 | 120 | 14 | 2146 | 0.1 | 14.3 |
S5 | 3 May 2023 | 122 | 17 | 1326 | 0.7 | 20.7 |
S6 | 24 May 2023 | 122 | 17 | 1878 | 1.0 | 17.7 |
S7 | 26 June 2023 | 123 | 19 | 1312 | 0.0 | 24.8 |
S8 | 1 August 2023 | 121 | 15 | 1571 | 0.0 | 26.0 |
S9 | 14 September 2023 | 117 | 7 | 2357 | 4.6 | 23.4 |
Variable Name | Dimension 1 | Dimension 2 | Dimension 3 |
---|---|---|---|
Rn-222 | −0.20 | −0.66 | 0.72 |
pH | 0.75 | 0.49 | 0.29 |
Electrical Conductivity | 0.66 | −0.66 | −0.16 |
Redox potential | −0.81 | −0.41 | −0.26 |
Temperature | 0.76 | −0.52 | −0.24 |
Eigenvalue | 2.27 | 1.56 | 0.75 |
% variance explained | 45.3 | 31.2 | 15.1 |
ID | Temperature (°C) | pH | EC (µS/cm) | Rn-222 (Bq/L) | Discharge (L/min) | ORP (mV) |
---|---|---|---|---|---|---|
Surface water | 20.7 (8.5–27.4) | 6.5 (5.7–9.6) | 77.5 (59–105) | 0.921 (0.194–2.357) | - | 172 (42–229) |
GW1 | 17.5 (16.2–22.2) | 4.9 (4.3–5.2) | 289 (278–328) | 777 (464–878) | 11.1 (1.5–28.3) | - |
GW2 | 16.6 (14.6–18.3) | 5.2 (4.4–5.4) | 149 (145–156) | 708.5 (576.6–796.1) | 13.7 (6.9–29.1) | - |
GW3 | 14.1 (11.5–21.2) | 5.4 (4.9–6.2) | 78 (74–95) | 275 (152.7–622.5) | 3.4 (0.8–7.6) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luís, G.; Pereira, A.; Neves, L. Hypothesis-Driven Conceptual Model for Groundwater–Surface Water Interaction at Aguieira Dam Reservoir (Central Portugal) Based on Principal Component Analysis and Hierarchical Clustering. Water 2025, 17, 2933. https://doi.org/10.3390/w17202933
Luís G, Pereira A, Neves L. Hypothesis-Driven Conceptual Model for Groundwater–Surface Water Interaction at Aguieira Dam Reservoir (Central Portugal) Based on Principal Component Analysis and Hierarchical Clustering. Water. 2025; 17(20):2933. https://doi.org/10.3390/w17202933
Chicago/Turabian StyleLuís, Gustavo, Alcides Pereira, and Luís Neves. 2025. "Hypothesis-Driven Conceptual Model for Groundwater–Surface Water Interaction at Aguieira Dam Reservoir (Central Portugal) Based on Principal Component Analysis and Hierarchical Clustering" Water 17, no. 20: 2933. https://doi.org/10.3390/w17202933
APA StyleLuís, G., Pereira, A., & Neves, L. (2025). Hypothesis-Driven Conceptual Model for Groundwater–Surface Water Interaction at Aguieira Dam Reservoir (Central Portugal) Based on Principal Component Analysis and Hierarchical Clustering. Water, 17(20), 2933. https://doi.org/10.3390/w17202933