Prediction of Three Sediment Phosphorus Indexes on Water Column Phosphorus Across Seasons in the Xiashan Reservoir, Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sediment and Water Sampling
2.3. Sediment and Water Analysis
2.4. Sediment P Risk Assessment
2.5. Statistical Analysis
3. Results
3.1. Basic Characteristics of Sediments
3.2. Characteristics of Sediment P and Risk Assessment
3.3. Relationship Between Sediment P and Water Column P Across Seasons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E. Controlling eutrophication: Nitrogen and phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.W.; Lazorchak, J.M.; Howard, M.D.; Johnson, M.V.; Morton, S.L.; Perkins, D.A.; Reavie, E.D.; Scott, G.I.; Smith, S.A.; Steevens, J.A. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ. Toxicol. Chem. 2016, 35, 6–13. [Google Scholar] [CrossRef]
- Jenny, J.-P.; Normandeau, A.; Francus, P.; Taranu, Z.E.; Gregory-Eaves, I.; Lapointe, F. Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes. Proc. Natl. Acad. Sci. USA 2016, 113, 12655–12660. [Google Scholar] [CrossRef]
- Le Moal, M.; Gascuel-Odoux, C.; Ménesguen, A.; Souchon, Y.; Étrillard, C.; Levain, A. Eutrophication: A new wine in an old bottle? Sci. Total. Environ. 2018, 651, 139. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, J.; Poulter, B.; Sardans, J.; Ciais, P.; van der Velde, M.; Bopp, L.; Boucher, O.; Godderis, Y.; Hinsinger, P.; Llusia, J.; et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 2013, 4, 2934. [Google Scholar] [CrossRef]
- Schindler, D.W.; Carpenter, S.R.; Chapra, S.C.; Hecky, R.E.; Orihel, D.M. Reducing phosphorus to curb Lake eutrophication is a success. Environ. Sci. Technol. 2016, 50, 8923–8929. [Google Scholar] [CrossRef] [PubMed]
- Schoumans, O.F.; Chardon, W.J.; Bechmann, M.E.; Gascuel-Odoux, C.; Hofman, G.; Kronvang, B. Overview of mitigation options to reduce phosphorus losses from rural areas and to improve surface water quality. Sci. Total Environ. 2014, 468–469, 1255–1266. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Zhang, W.; Wang, X.; Couture, R.-M.; Larssen, T.; Zhao, Y.; Li, J.; Liang, H.; Liu, X.; Bu, X.; et al. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006. Nat. Geosci. 2017, 10, 507–511. [Google Scholar] [CrossRef]
- Carpenter, S.R. Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. Proc. Natl. Acad. Sci. USA 2005, 102, 10002–10005. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, E.; Søndergaard, M.; Jensen, J.P.; Havens, K.E.; Anneville, O.; Carvalho, L.; Coveney, M.F.; Deneke, R.; Dokulil, M.T.; Foy, B.; et al. Lake responses to reduced nutrient loading—An analysis of contemporary long-term data from 35 case studies. Freshw. Biol. 2005, 50, 1747–1771. [Google Scholar] [CrossRef]
- Matisoff, G.; Kaltenberg, E.M.; Steely, R.L.; Hummel, S.K.; Seo, J.; Gibbons, K.J.; Bridgeman, T.B.; Seo, Y.; Behbahani, M.; James, W.F.; et al. Internal loading of phosphorus in western Lake Erie. J. Great Lakes Res. 2016, 42, 775–788. [Google Scholar] [CrossRef]
- Watson, S.B.; Miller, C.; Arhonditsis, G.; Boyer, G.L.; Carmichael, W.; Charlton, M.N.; Confesor, R.; Depew, D.; Höök, T.O.; Ludsin, S.A.; et al. The re-eutrophication of Lake Erie: Harmful algal blooms and hypoxia. Harmful Algae 2016, 56, 44–66. [Google Scholar] [CrossRef] [PubMed]
- Janssen, A.B.G.; de Jager, V.C.L.; Janse, J.H.; Kong, X.; Liu, S.; Ye, Q. Spatial identification of critical nutrient loads of large shallow lakes: Implications for Lake Taihu (China). Water Res. 2017, 119, 276–287. [Google Scholar] [CrossRef]
- Lepori, F.; Roberts, J.J. Effects of internal phosphorus loadings and food-web structure on the recovery of a deep lake from eutrophication. J. Great Lakes Res. 2017, 43, 255–264. [Google Scholar] [CrossRef]
- Bhadha, J.H.; Jawitz, J.W.; Min, J.-H. Phosphorus mass balance and internal load in an impacted subtropical isolated wetland. Water Air Soil. Pollut. 2011, 218, 619–632. [Google Scholar] [CrossRef]
- Koriyama, M.; Hayami, Y.; Koga, A.; Yamamoto, K.; Isnasetyo, A.; Hamada, T.; Yoshino, K.; Katano, T.; Yamaguchi, S. Seasonal variations of water column nutrients in the inner area of Ariake Bay, Japan: The role of muddy sediments. Environ. Monit. Assess. 2013, 185, 6831–6846. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Chen, M.; Gong, M.; Fan, X.; Qin, B.; Xu, H.; Gao, S.; Jin, Z.; Tsang, D.C.W.; Zhang, C. Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Sci. Total Environ. 2018, 625, 872–884. [Google Scholar] [CrossRef]
- Burger, D.F.; Hamilton, D.P.; Pilditch, C.A.; Gibbs, M.M. Benthic nutrient fluxes in a eutrophic, polymictic lake. Hydrobiologia 2007, 584, 13–25. [Google Scholar] [CrossRef]
- Li, B.; Ding, S.-M.; Fan, C.-X.; Zhong, J.-C.; Zhao, B.; Yin, H.-B.; Zhang, L. Estimation of releasing fluxes of sediment nitrogen and phosphorus in Fubao Bay in Dianchi Lake. Environ. Sci. 2008, 29, 114–120. [Google Scholar]
- Steinman, A.; Chu, X.; Ogdahl, M. Spatial and temporal variability of internal and external phosphorus loads in Mona Lake, Michigan. Aquat. Ecol. 2009, 43, 1–18. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, M.; Yin, P.; Li, J. Characterization of internal phosphorus loading in the sediment of a large eutrophic lake (Lake Taihu, China). Water Res. 2022, 225, 119125. [Google Scholar] [CrossRef]
- Ding, S.; Han, C.; Wang, Y.; Yao, L.; Wang, Y.; Xu, D.; Sun, Q.; Williams, P.N.; Zhang, C. In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake. Water Res. 2015, 74, 100–109. [Google Scholar] [CrossRef]
- Kelderman, P.; Wei, Z.; Maessen, M. Water and mass budgets for estimating phosphorus sediment–water exchange in Lake Taihu (China PR). Hydrobiologia 2005, 544, 167–175. [Google Scholar] [CrossRef]
- Nürnberg, G.K.; Tarvainen, M.; Ventelä, A.-M.; Sarvala, J. Internal phosphorus load estimation during biomanipulation in a large polymictic and mesotrophic lake. Inland Waters 2012, 2, 147–162. [Google Scholar] [CrossRef]
- Yin, H.; Kong, M. Reduction of sediment internal P-loading from eutrophic lakes using thermally modified calcium-rich attapulgite-based thin-layer cap. J. Environ. Manag. 2015, 151, 178–185. [Google Scholar] [CrossRef]
- Sun, C.; Zhong, J.; Pan, G.; Mortimer, R.J.; Yu, J.; Wen, S.; Zhang, L.; Yin, H.; Fan, C. Controlling internal nitrogen and phosphorus loading using Ca-poor soil capping in shallow eutrophic lakes: Long-term effects and mechanisms. Water Res. 2023, 233, 119797. [Google Scholar] [CrossRef] [PubMed]
- Ruttenberg, K.C. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr. 1992, 37, 1460–1482. [Google Scholar] [CrossRef]
- Sondergaard, M.; Jensen, J.P.; Jeppesen, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 2003, 506, 135–145. [Google Scholar] [CrossRef]
- Aydin, I.; Aydin, F.; Saydut, A.; Hamamci, C. A sequential extraction to determine the distribution of phosphorus in the seawater and marine surface sediment. J. Hazard. Mater. 2009, 168, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Jin, X.; Bu, Q.; Liao, H.; Wu, F. Evaluation of phosphorus bioavailability in sediments of the shallow lakes in the middle and lower reaches of the Yangtze River region, China. Environ. Earth Sci. 2010, 60, 1491–1498. [Google Scholar] [CrossRef]
- Bo, L.; Wang, D.; Zhang, G.; Wang, C. Evaluating the Relationship between Phosphorus Bioavailability and Phosphorus Speciation in Sediments from Rural Rivers in the Taihu Lake Area, China. Pol. J. Environ. Stud. 2014, 23, 1933–1940. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Deng, W.; Xu, X.; He, J.; Wang, S.; Jiao, L.; Zhang, Y. Phosphorus adsorption and release characteristics of surface sediments in Dianchi Lake, China. Environ. Earth Sci. 2015, 74, 3689–3700. [Google Scholar] [CrossRef]
- Huang, L.; Li, Z.; Li, R.; Wu, H. Comparative study of phosphorus adsorption behaviors in lake sediments over short and long periods of time: Implication for the prediction of the release of phosphorus by CaCl2 and NaHCO3 extraction. Environ. Sci. Pollut. Res. 2016, 23, 25145–25155. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Hong, Z.; Wei, J.; Liao, Y.; You, S.; Wang, Y.; Lv, J.; Feng, H.; Kolenčík, M.; Chang, X.; et al. Phosphorus fractionation and adsorption characteristics in drinking water reservoir inlet river sediments under human disturbance. J. Soil Sediment. 2022, 22, 2530–2547. [Google Scholar]
- Younis, A.M.; Soliman, N.F.; Elkady, E.M.; Mohamedein, L.I. Distribution and ecological risk evaluation of bioavailable phosphorus in sediments of El Temsah Lake, Suez Canal. Oceanologia 2022, 64, 287–298. [Google Scholar] [CrossRef]
- Zhou, Q.; Gibson, C.E.; Zhu, Y. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere 2001, 42, 221–225. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Q.; Zhang, D.; Tang, L. Variation in sediment available-phosphorus in Dianchi Lake and its impacts on algal growth. Int. J. Environ. Res. Public Health 2022, 19, 14689. [Google Scholar] [CrossRef] [PubMed]
- Kangur, M.; Puusepp, L.; Buhvestova, O.; Haldna, M.; Kangur, K. Spatio-temporal variability of surface sediment phosphorus fractions and water phosphorus concentration in Lake Peipsi (Estonia/Russia). Est. J. Earth Sci. 2013, 62, 171–180. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, H.; Zhang, T.; Zhou, Y.; Dong, A.; Huang, R. Seasonal variation regulate the endogenous phosphorus release in sediments of Shijiuhu Lake via water-level fluctuation. Environ. Res. 2023, 238, 117247. [Google Scholar] [CrossRef]
- Varol, M. Spatio-temporal changes in surface water quality and sediment phosphorus content of a large reservoir in Turkey. Environ. Pollut. 2020, 259, 113860. [Google Scholar] [CrossRef]
- Geng, M.; Wang, K.; Yang, N.; Li, F.; Zou, Y.; Chen, X.; Deng, Z.; Xie, Y. Evaluation and variation trends analysis of water quality in response to water regime changes in a typical river-connected lake (Dongting Lake), China. Environ. Pollut. 2021, 268, 115761. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Wang, Y.; Li, S.; Zhang, Q.; Liu, G.; Liu, B. A newly recorded species of freshwater blooming dinoflagellates from China and its ecological risks. J. Lake Sci. 2020, 32, 784–792. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- GB3838–2002; Environmental Quality Standard for Surface Water. Ministry of Ecology and Environment: Beijing, China, 2002.
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (No. 939); US Department of Agriculture: Washington, DC, USA, 1954.
- Li, Q.; Bao, X.; Chen, P.; Jiao, Y.; Gu, S. Available acid consumption capacity of sediments in six water bodies in the Yangtze River Basin in China. Water Res. 2021, 203, 117565. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Guerra, M.; Viguri, J.R.; Casado-Martínez, M.C.; DelValls, T.A. Sediment quality assessment and dredged material management in Spain: Part I, application of sediment quality guidelines in the Bay of Santander. Integr. Environ. Assess. Manag. 2007, 3, 529–538. [Google Scholar] [CrossRef]
- Gu, S.; Qian, Y.; Jiao, Y.; Li, Q.; Pinay, G.; Gruau, G. An innovative approach for sequential extraction of phosphorus in sediments: Ferrous iron P as an independent P fraction. Water Res. 2016, 103, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Ji, P.; Chen, J.; Chen, R.; Liu, J.; Yu, C.; Chen, F. Nitrogen and phosphorus trends in lake sediments of China may diverge. Nat. Commun. 2024, 15, 2644. [Google Scholar] [CrossRef]
- Qin, L.; Zeng, Q.; Zhang, W.; Li, X.; Steinman, A.D.; Du, X. Estimating internal P loading in a deep water reservoir of northern China using three different methods. Environ. Sci. Pollut. Res. 2016, 23, 18512–18523. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Z.; Wang, D.; Ma, M. Environmental soil phosphorus testing and phosphorus release in Taihu Lake, China. Pedosphere 2004, 14, 461–466. [Google Scholar]
- Hu, J.; Liu, Y.; Liu, J. The Comparison of Phosphorus Pools from the Sediment in Two Bays of Lake Dianchi for Cyanobacterial Bloom Assessment. Environ. Monit. Assess. 2006, 121, 1–14. [Google Scholar] [CrossRef]
- Zhou, C.; Zhou, Y.; Chen, X.; Li, Y.; Cao, X.; Song, C. Linkage between land use patterns and sediment phosphorus sorption behaviors along shoreline of a Chinese large shallow lake (Lake Chaohu). Knowl. Manag. Aquat. Ecosyst. 2011, 403, 06. [Google Scholar] [CrossRef]
- Yang, C.; Li, J.; Yin, H. Phosphorus internal loading and sediment diagenesis in a large eutrophic lake (Lake Chaohu, China). Environ. Pollut. 2022, 292, 118471. [Google Scholar] [CrossRef] [PubMed]
- Gérard, F. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils—A myth revisited. Geoderma 2016, 262, 213–226. [Google Scholar] [CrossRef]
- Chen, X.; Li, Z.; Fu, S.; Liang, L.; Liu, X.; Hu, F.; Zhang, W.; Bi, Y.; Jiao, Y.; Gu, S.; et al. Sequential oxidation procedures with KMnO4: Component characteristics of labile reducing capacity fractions in anaerobic sediments. Sci. Total Environ. 2024, 955, 177126. [Google Scholar] [CrossRef] [PubMed]
- Ellison, M.E.; Brett, M.T. Particulate phosphorus bioavailability as a function of stream flow and land cover. Water Res. 2006, 40, 1258–1268. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, W.; Chen, H.; Zhu, Y.; Wu, F.; Giesy, J.P.; He, Z.; Wang, H.; Sun, F. Characterization and sources of dissolved and particulate phosphorus in 10 freshwater lakes with different trophic statuses in China by solution 31P nuclear magnetic resonance spectroscopy. Ecol. Res. 2019, 34, 106–118. [Google Scholar] [CrossRef]
- Kong, M.; Chao, J.; Han, W.; Ye, C.; Li, C.; Tian, W. Degradation characteristics of phosphorus in phytoplankton-derived particulate organic matter and its effects on the growth of phosphorus-deficient microcystis aeruginosa in Lake Taihu. Int. J. Environ. Res. Public Health 2019, 16, 2155. [Google Scholar] [CrossRef]
February | May | August | |
---|---|---|---|
Clay g kg−1 | 46 ± 13 | ||
Silt g kg−1 | 279 ± 91 | ||
Sand g kg−1 | 675 ± 104 | ||
Eh mv | −185 ± 80 a | −148 ± 17 a | −160 ± 14 a |
pH | 7.5 ± 0.1 a | 7.2 ± 0.1 b | 7.0 ± 0.1 c |
LOI % | 6.6 ± 2.5 a | 6.6 ± 2.5 a | 7.5 ± 2.4 a |
TPS mg kg−1 | 531 ± 215 b | 540 ± 171 b | 650 ± 220 a |
Ex-P mg kg−1 | 20 ± 11 b | 19 ± 9 b | 35 ± 23 a |
Olsen-P mg kg−1 | 67 ± 40 b | 58 ± 31 b | 101 ± 72 a |
HCl-P mg kg−1 | 350 ± 125 b | 327 ± 98 b | 444 ± 158 a |
Site | STP Value | Mean by Site | Risk Level | ||
---|---|---|---|---|---|
February | May | August | |||
P1 | 1.4 | 0.6 | 1.8 | 1.3 | Moderate |
P2 | 0.8 | 1.5 | 1.4 | 1.2 | Moderate |
P3 | 0.9 | 1.5 | 1.2 | Moderate | |
P4 | 1.1 | 1.4 | 1.3 | Moderate | |
P5 | 1.2 | 0.7 | 1.1 | 1.0 | Moderate |
P6 | 0.8 | 0.7 | 0.9 | 0.8 | Slight |
P7 | 0.4 | 0.8 | 1.2 | 0.8 | Slight |
P8 | 0.5 | 1.4 | 1.3 | 1.1 | Moderate |
P9 | 1.4 | 1.5 | 1.4 | 1.4 | Moderate |
P10 | 0.4 | 0.6 | 0.6 | 0.5 | Slight |
P11 | 1.3 | 0.7 | 0.7 | 0.9 | Slight |
P12 | 1.4 | 0.8 | 1.4 | 1.2 | Moderate |
P13 | 0.8 | 0.7 | 0.6 | 0.7 | Slight |
P14 | 0.6 | 0.9 | 0.9 | 0.8 | Slight |
P15 | 0.4 | 0.8 | 0.7 | 0.6 | Slight |
P16 | 0.8 | 0.8 | 0.8 | 0.8 | Slight |
P17 | 1.0 | 1.0 | 0.6 | 0.9 | Slight |
P18 | 1.0 | 0.7 | 1.0 | 0.9 | Slight |
Mean by date | 0.9 | 0.9 | 1.1 |
Date | Feb_2022 | May_2022 | Aug_2022 |
---|---|---|---|
Depth m | 3.4 ± 2.4 b | 4.8 ± 2.0 ab | 5.6 ± 2.1 a |
Temperature °C | 2.8 ± 0.4 c | 22.1 ± 0.6 b | 26.4 ± 0.4 a |
Conductivity μS cm−1 | 571 ± 107 c | 936 ± 87 a | 744 ± 125 b |
TDS mg L−1 | 637 ± 112 a | 643 ± 57 a | 470 ± 78 b |
Salinity ppt | 0.48 ± 0.09 a | 0.49 ± 0.04 a | 0.35 ± 0.06 b |
pH | 8.6 ± 0.2 b | 8.4 ± 0.1 c | 8.7 ± 0.1 a |
TDN mg L−1 | 5.1 ± 3.5 a | 2.0 ± 0.4 b | 5.7 ± 2.4 a |
NH4+ mg L−1 | 0.33 ± 0.11 b | 0.55 ± 0.12 a | 0.48 ± 0.25 a |
TN mg L−1 | 5.4 ± 3.5 a | 2.3 ± 0.5 b | 6.0 ± 2.5 a |
COD mg L−1 | 43.8 ± 5.9 c | 81.2 ± 12.8 a | 66.5 ± 10.8 b |
TDP μg L−1 | 10.1 ± 9.1 b | 15.5 ± 7.5 b | 105.1 ± 71.0 a |
SRP μg L−1 | 4.6 ± 3.2 b | 11.2 ± 4.6 b | 99.8 ± 68.6 a |
TP μg L−1 | 44.5 ± 26.9 b | 79.8 ± 44.4 b | 179.3 ± 93.7 a |
PP μg L−1 | 34.4 ± 19.6 b | 64.3 ± 38.7 a | 74.2 ± 24.3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Hu, F.; Fu, S.; Liu, Z.; Yu, Y.; Jiang, S.; Liang, L.; Chen, X.; Jiao, Y.; Gu, S.; et al. Prediction of Three Sediment Phosphorus Indexes on Water Column Phosphorus Across Seasons in the Xiashan Reservoir, Northern China. Water 2025, 17, 218. https://doi.org/10.3390/w17020218
Liu W, Hu F, Fu S, Liu Z, Yu Y, Jiang S, Liang L, Chen X, Jiao Y, Gu S, et al. Prediction of Three Sediment Phosphorus Indexes on Water Column Phosphorus Across Seasons in the Xiashan Reservoir, Northern China. Water. 2025; 17(2):218. https://doi.org/10.3390/w17020218
Chicago/Turabian StyleLiu, Wei, Fang Hu, Songjie Fu, Zhenjun Liu, Yongchao Yu, Shan Jiang, Lanwei Liang, Xuemei Chen, Yang Jiao, Sen Gu, and et al. 2025. "Prediction of Three Sediment Phosphorus Indexes on Water Column Phosphorus Across Seasons in the Xiashan Reservoir, Northern China" Water 17, no. 2: 218. https://doi.org/10.3390/w17020218
APA StyleLiu, W., Hu, F., Fu, S., Liu, Z., Yu, Y., Jiang, S., Liang, L., Chen, X., Jiao, Y., Gu, S., & Li, Q. (2025). Prediction of Three Sediment Phosphorus Indexes on Water Column Phosphorus Across Seasons in the Xiashan Reservoir, Northern China. Water, 17(2), 218. https://doi.org/10.3390/w17020218