Risk Assessment of Debris Flow in the Kashgar-to-Khunjerab Section of the China–Pakistan Economic Corridor
Abstract
1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.1.1. Debris Flow Hazard Data
- (1)
- Topographic and geomorphological
- (2)
- Geological structure
- (3)
- Vegetation and soil
- (4)
- Climatic conditions
- (5)
- Human activities and others
3.1.2. Debris Flow Vulnerability Data
3.2. Methods
3.2.1. Hazard Assessment Method
- (1)
- Frequency Ratio Model
- (2)
- Frequency Ratio–Logistic Regression Model
- (3)
- ROC Curve
3.2.2. Vulnerability Assessment Method
3.2.3. Risk Assessment Method
4. Results
4.1. Debris Flow Hazard Assessment
4.2. Debris Flow Vulnerability Assessment
4.3. Debris Flow Risk Assessment
5. Conclusions
- (1)
- The frequency ratio–logistic regression coupled model (AUC = 0.867) is more suitable than the frequency ratio model (AUC = 0.85) for debris flow disasters hazard assessment. the debris flow hazard is largely distributed in a band along the Kashgar-to-Khunjerab section of the China–Pakistan Highway, with a small sporadic distribution in other areas; the area of medium hazard zones and above accounts for 68.6% of the total area.
- (2)
- The vulnerability in the study area is generally concentrated in the township regions along the Kashgar-to-Khunjerab section of the China–Pakistan Highway. The proportion of medium and above vulnerability zones areas reaches 55.6%.
- (3)
- The risk levels of the study area generally radiate outward from the Kashgar-to-Khunjerab section of the China–Pakistan Highway, exhibiting a decreasing trend of from high to low. The distribution areas of different risk zones initially increase and then decrease with the rise in risk levels, and the number of debris flow disaster points and disaster points density increase as the risk level increases. The area of medium risk zones and above accounts for 50.8% of the total area. Approximately 91.7% of debris flow disaster points are located in high and very high risk zones. This indicates that the study area has a high level of risk, with frequent occurrences of debris flow disasters.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ROC | Receiver Operating Characteristic Curve |
AUC | Area Under the Curve |
References
- Zou, Q.; Cui, P.; He, J.; Lei, Y.; Li, S. Regional risk assessment of debris flows in China-an HRU-based approach. Geomorphology 2019, 340, 84–102. [Google Scholar] [CrossRef]
- Jomelli, V.; Pavlova, I.; Giacona, F.; Zgheib, T.; Eckert, N. Respective influence of geomorphologic and climate conditions on debris-flow occurrence in the Northern French Alps. Landslides 2019, 16, 1871–1883. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván-Burbano, N.; Morante-Carballo, F.; Quesada-Román, A.; Apolo-Masache, B. Worldwide Research Trends in Landslide Science. Int. J. Environ. Res. Public Health 2021, 18, 9445. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.H.; Guo, Y.Q.; He, J.X. A dataset of distributions and characteristics of debris flows in the China-Pakistan Economic Corridor. Sci. Data Bank. 2021, 6, 1–10. [Google Scholar]
- Shu, H.P.; Qi, S.; Ning, N.; Ma, J.Z.; Zhang, P. Risk assessment of debris flow disaster: A case study of Wudu District in the south of Gansu Province, China. J. Nat. Disasters 2016, 25, 34–41. [Google Scholar]
- Liu, X.R.; Zhang, M.Y.; Zhou, Z.Q.; Su, X.; Ye, W.L.; Wen, T.; Zhang, G.X.; Liu, D. Nonlinear characteristics and disaster aggravation effects of debris flow evolution along the Chinese section of the China-Pakistan Highway. J. Lanzhou Univ. 2022, 58, 364–371. [Google Scholar]
- Zhou, Y.Y.; Yue, D.X.; Liang, G.; Li, S.Y.; Zhao, Y.; Chao, Z.Z.; Meng, X.X. Risk assessment of debris flow in a mountain-basin area, western China. Remote Sens. 2022, 14, 2942. [Google Scholar] [CrossRef]
- Varnes, D. Landslide Hazard Zonation: A Review of Principles and Practice. Nat. Hazards 1984, 3. [Google Scholar] [CrossRef]
- Shi, P.J. Theory and practice of disaster study. J. Nat. Disasters 1996, 5, 6–17. [Google Scholar]
- Lin, J.H.; Chen, W.H.; Qi, X.H.; Hou, H.R. Risk assessment and its influencing factors analysis of geological hazards in typical mountain environment. J. Clean. Prod. 2021, 309, 127077. [Google Scholar] [CrossRef]
- Huggel, C.; Kääb, A.; Haeberli, W.; Krummenacher, B. Regional-scale GIS- models for assessment of hazards from glacier lake outbursts: Evaluation and application in the Swiss Alps. Nat. Hazards Earth Syst. Sci. 2003, 3, 647–662. [Google Scholar] [CrossRef]
- Liu, X.L.; Lei, J.Z. A method for assessing regional debris flow risk: An application in Zhaotong of Yunnan province (SW China). Geomorphology 2003, 52, 181–191. [Google Scholar] [CrossRef]
- Chau, K.T.; Lo, K.H. Hazard assessment of debris flows for Leung King Estate of Hong Kong by incorporating GIS with numerical simulations. Nat. Hazards Earth Syst. Sci. 2004, 4, 103–116. [Google Scholar] [CrossRef]
- Bisson, M.; Favalli, M.; Fornaciai, A.; Mazzarini, F.; Isola, I.; Zanchetta, G.; Pareschi, M.T. A rapid method to assess fire-related debris flow hazard in the Mediterranean region: An example from Sicily (southern Italy). Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 217–231. [Google Scholar] [CrossRef]
- Shi, P.J.; Zou, M.; Li, B.J.; Zhou, J.H.; Wang, Y. Regional safety construction and risk management system: The actuality and trend of the study of disaster and risk based on the world congress on risk. Adv. Earth Sci. 2005, 20, 173–179. [Google Scholar]
- Blahut, J.; Glade, T.; Sterlacchini, S. Debris flows risk analysis and direct loss estimation: The case study of Valtellina di Tirano, Italy. J. Mt. Sci. 2014, 11, 288–307. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, J.; Wan, S.Y.; Zhou, C.H. Loss Evaluation of Urban Debris Flow Hazard Using High Spatial Resolution Satellite Imagery. Sci. Geogr. Sin. 2006, 26, 358–363. [Google Scholar]
- Lin, J.-Y.; Yang, M.-D.; Lin, B.-R.; Lin, P.-S. Risk assessment of debris flows in Songhe Stream, Taiwan. Eng. Geol. 2011, 123, 100–112. [Google Scholar] [CrossRef]
- Liang, W.-J.; Zhuang, D.-F.; Jiang, D.; Pan, J.-J.; Ren, H.-Y. Assessment of debris flow hazards using a bayesian network. Geomorphology 2012, 171, 94–100. [Google Scholar] [CrossRef]
- Zhao, Y.; Meng, X.; Qi, T.; Chen, G.; Li, Y.; Yue, D.; Qing, F. Modeling the Spatial Distribution of Debris Flows and Analysis of the Controlling Factors: A Machine Learning Approach. Remote Sens. 2021, 13, 4813. [Google Scholar] [CrossRef]
- Asghar, M.; Pasha, G.A.; Ghani, U.; Iqbal, S.; Jameel, M.S. Investigating multiple debris impact load and role of vegetation in protection of house model during floods. In Proceedings of the 2nd Conference on Sustainability in Civil Engineering, Islamabad, Pakistan, 12 August 2020; Volume 7. [Google Scholar]
- Liu, F.Z.; Cui, C.; Wang, J.C.; Cao, Y.F.; Li, W. Hazard assessment of debris flow based on the certainty factor rate and the logistic regression model. J. Saf. Environ. 2021, 21, 1693–1703. [Google Scholar]
- Ouyang, C.J.; Wang, Z.W.; An, H.C.; Liu, X.R.; Wang, D.P. An example of a hazard and risk assessment for debris flows—A case study of Niwan Gully, Wudu, China. Eng. Geol. 2019, 263, 105351. [Google Scholar] [CrossRef]
- Chu, H.B.; Mu, H.D.; Wang, J.Z. Application of analytic hierarchy process on zoning hazard degree of geologic disaster in Taihang Mountain region. Chin. J. Geol. Hazard Control 2003, 14, 125–129. [Google Scholar]
- Liu, Y.; Tang, C.; Feng, Y. Geological Disaster Risk Assessment Based on AHP Information Method. Earth Environ. 2013, 41, 173–179. [Google Scholar]
- Jena, R.; Pradhan, B.; Beydoun, G.; Nizamuddin; Ardiansyah; Sofyan, H.; Affan, M. Integrated model for earthquake risk assessment using neural network and analytic hierarchy process: Aceh Province, Indonesia. Geosci. Front. 2020, 11, 613–634. [Google Scholar] [CrossRef]
- Wang, Z.F.; Zhang, T.S.; Wang, L.; Tang, Z.Y. The integrated assessment system of ecogeological environmental carrying capacity for Dujiangyan-Wenchuan Highway. Surv. Mapp. 2016, 41, 77–81. [Google Scholar]
- Sujatha, E.R.; Sridhar, V. Mapping debris flow susceptibility using analytical network process in Kodaikkanal Hills, Tamil Nadu (India). J. Earth Syst. Sci. 2017, 126, 116. [Google Scholar] [CrossRef]
- Xu, W.B.; Yu, W.J.; Jing, S.C.; Zhang, G.P.; Huang, J.X. Debris flow susceptibility assessment by GIS and information value model in a large-scale region, Sichuan Province (China). Nat. Hazards 2013, 65, 1379–1392. [Google Scholar] [CrossRef]
- Wu, C.R.; Jiao, Y.M.; Wang, J.L.; Xu, H.H.; Zhang, H.; Xu, Q.E. Frequency ratio and logistic regression models based coupling analysis for susceptibility of landslide in Shuangbai County. J. Nat. Disasters 2021, 30, 213–224. [Google Scholar]
- Gu, C.J.; Sun, S.; Ning, N.; Ma, J.Z. Research on Debris Flow Disaster Vulnerability Based on the Production. Mt. Res. Dev. 2015, 33, 303–310. [Google Scholar]
- Gu, C.J.; Sun, S.; Ma, J.Z. Debris flow vulnerability assessment based on DEA model and production function. J. Lanzhou Univ. 2014, 50, 751–756. [Google Scholar]
- Li, L.F.; Wang, J.F.; Leung, H.; Zhao, S.S. A Bayesian Method to Mine Spatial Data Sets to Evaluate the Vulnerability of Human Beings to Catastrophic Risk. Risk Anal. 2012, 32, 1072–1092. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Chen, X.L. Summary on Research of Coupled Human-Environment System Vulnerability under Global Environmental Change. Prog. Geogr. 2010, 29, 454–462. [Google Scholar]
- Ding, M.T.; Heiser, M.; Hübl, J.; Fuchs, S. Regional vulnerability assessment for debris flows in China-a CWS approach. Landslides 2016, 13, 537–550. [Google Scholar] [CrossRef]
- Cui, P.; Xang, L.-Z.; Zou, Q. Risk assessment of highways affected by debris flows in Wenchuan earthquake area. J. Mt. Sci. 2013, 10, 173–189. [Google Scholar] [CrossRef]
- Gao, Z.M.; Ding, M.T.; Huang, T.; Hu, X.W. Geohazard vulnerability assessment in Qiaojia seismic zones, SW China. Int. J. Disaster Risk Reduct. 2021, 52, 101928. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Yang, Z.Q.; Liao, L.P.; Steve, Z.; Muhammad, W.; Ye, C.Y.; Chen, H.P.; Pang, M. Glacialized geomorphologcial geohazard along China-Pakistan International Karakoram Highway. J. Catastrophol. 2014, 29, 81–90. [Google Scholar]
- Wei, X.L.; Chen, B.C.; Chen, R.K.; Li, B.; Yang, X.L.; Yang, L.H. Rainfall pattern and critical threshold of rainfall type debris flow in Gezi river section of China Pakistan Highway. J. Catastrophol. 2018, 33, 75–80. [Google Scholar]
- Wei, X.L.; Chen, B.C.; Li, B.; Luo, W.G. Hazard assessment and prevention analysis of debris flows along Aoyitage-Blulunkou section of Sino-Pakisstan highway. Highway 2018, 11, 14–20. [Google Scholar]
- Han, R.; Feng, C.-C.; Xu, N.; Guo, L. Spatial heterogeneous relationship between ecosystem services and human disturbances: A case study in Chuandong, China. Sci. Total Environ. 2020, 721, 137818. [Google Scholar] [CrossRef]
- Gao, J.P.; Shi, X.Y.; Li, L.H.; Zhou, Z.Q.; Wang, J.F. Assessment of landslide susceptibility using different machine learning methods in Longnan City, China. Sustainability 2022, 14, 16716. [Google Scholar] [CrossRef]
- Chang, M.; Tang, C.; Van Asch, T.W.; Cai, F. Hazard assessment of debris flows in the Wenchuan earthquake-stricken area, South West China. Landslides 2017, 14, 1783–1792. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Ge, T.T.; Tian, W.; Liou, Y.A. Debris Flow Susceptibility Mapping Using Machine-Learning Techniques in Shigatse Area, China. Remote Sens. 2019, 11, 2801. [Google Scholar] [CrossRef]
- Du, S.X.; Wu, R.Y.; Sun, H.W.; Yan, D.; Xue, J.; Liao, W.H.; Chen, H.R. Analysis of extreme precipitation events along the China-Pakistan Economic Corridor. Trans. Chin. Soc. Agric. Eng. 2022, 38, 152–160. [Google Scholar]
- Li, Z.T.; Wang, T.; Zhou, Y.; Liu, J.M.; Xin, P. Landslide Susceptibility Assessment Based on Information Value Model, Logistic Regression Model and Their Integrated Model: A Case in Shatang River Basin, Qinghai Province. Geoscience 2019, 33, 235–245. [Google Scholar]
- Liu, X.L.; Miao, C.; Tian, C.S.; Qiu, J.A. Comparative Analysis of Risk Assessment of Landslides and Debris Flows of China in 2000 and 2010. Adv. Earth Sci. 2016, 31, 926–936. [Google Scholar]
- Liu, X.L.; Chen, Y.J. Application of Debris Flow Risk Zonation: An Example of West Sichuan. Sci. Geogr. Sin. 2010, 30, 558–565. [Google Scholar]
- Zou, Q.; Guo, X.J.; Luo, Y.; Jiang, Y.J.; Cui, P.; Su, L.J.; OU, G.Q.; Pan, H.L.; Liu, W.M. Spatial Pattern and Response of Landslide and Debris Flow Risks in China-Pakistan Economic Corridor. Bull. Chin. Acad. Sci. 2021, 36, 160–169. [Google Scholar]
- Baig, S.U.; Khan, H.; Din, A. Spatio-temporal Analysis of Glacial Ice Area Distribution of Hunza River Basin, Karakoram region of Pakistan. Hydrol. Process. 2018, 32, 1491–1501. [Google Scholar] [CrossRef]
- Kaab, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting Patterns of Early Twenty-first-century Glacier Mass Change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
Category | Indicators | Unit | Scale/Resolution | Source |
Topography | Elevation | m | 30 m | Geospatial Data Cloud 30 May 2024 (http://www.gscloud.cn/search) |
elevation difference | m | |||
Slope | ° | |||
Aspect | / | |||
Geological structure | Lithology | / | 1:250,000 | National Geological Data Museum 30 May 2024 (https://www.ngac.cn/125cms/c/qggnew/index.htm) |
Distance to faults | m | 1:250,000 | ||
Surface vegetation and soil | NDVI | / | 1:250,000 | Modis/terra Data 30 May 2024 (https://ladsweb.nascom.nasa.gov/search) |
Soil type | / | 1:1,000,000 | National Cryosphere Desert Data Center 30 May 2024 (http://www.ncdc.ac.cn) | |
Climatic conditions | Annual mean precipitation | mm | 1000 m | Resource and Environmental Science Data Platform 30 May 2024 (https://www.resdc.cn/) |
Annual mean temperature | °C | 1000 m | ||
Human activities and others | Land use | / | 30 m | National Catalogue Service For Geographic Information 30 May 2024 (https://www.webmap.cn/commres.do?method=globeDetails&type=EasyAccess) |
Distance to rivers | m | 1:250,000 | National Catalogue Service For Geographic Information 30 May 2024 (https://www.webmap.cn/main.do?method=index) |
Category | Indicators | Unit | Scale/Resolution | Source |
---|---|---|---|---|
Exposure | relative spatial position of debris flow | m | 30 m | Institute of Geological Natural Disaster Prevention and Control, Gansu Academy of Sciences |
density of debris flow disaster points | m | 30 m | ||
Sensitivity | density of road network | / | 30 m | National Catalogue Service For Geographic Information 30 May 2024 (https://www.webmap.cn/main.do?method=index) |
density of population | People/km2 | 1000 m | ||
Resilience | GDP | 10,000 CNY/km2 | 1000 m | National Catalogue Service For Geographic Information 30 May 2024 (https://www.webmap.cn/main.do?method=index) |
distance to town | m | 30 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Huang, Y.; Zhou, Z.; Shi, X.; Li, F.; Zhang, X.; Li, X. Risk Assessment of Debris Flow in the Kashgar-to-Khunjerab Section of the China–Pakistan Economic Corridor. Water 2025, 17, 2841. https://doi.org/10.3390/w17192841
Tang J, Huang Y, Zhou Z, Shi X, Li F, Zhang X, Li X. Risk Assessment of Debris Flow in the Kashgar-to-Khunjerab Section of the China–Pakistan Economic Corridor. Water. 2025; 17(19):2841. https://doi.org/10.3390/w17192841
Chicago/Turabian StyleTang, Jiakai, Yongting Huang, Ziqiang Zhou, Xiangyang Shi, Fei Li, Xueyan Zhang, and Xia Li. 2025. "Risk Assessment of Debris Flow in the Kashgar-to-Khunjerab Section of the China–Pakistan Economic Corridor" Water 17, no. 19: 2841. https://doi.org/10.3390/w17192841
APA StyleTang, J., Huang, Y., Zhou, Z., Shi, X., Li, F., Zhang, X., & Li, X. (2025). Risk Assessment of Debris Flow in the Kashgar-to-Khunjerab Section of the China–Pakistan Economic Corridor. Water, 17(19), 2841. https://doi.org/10.3390/w17192841