Monitoring Surface Water Dynamics in Mining Areas Using Remote Sensing Indices: A Review and Cross-Case Analysis
Abstract
1. Introduction
- Provide an extensive overview of water in the mining industry, including monitoring methods for surface water using RS techniques.
- Assess and compare the performance and usefulness of selected spectral water indices in different mining areas and analyze the change dynamics of surface water in both the time and space domains.
- Propose a monitoring workflow based on case studies presenting various mining environments.
2. Remote Sensing for Surface Water Monitoring
2.1. Airborne LiDAR and RGB
2.2. Radar—SAR Satellites
2.3. Multispectral and Hyperspectral Satellite Data
2.4. Summary
3. Application in Mining and Post-Mining Case Studies
3.1. Olkusz—Hutki—Region Impacted by Underground Mine Closure
3.2. Babina Post-Mining Area
3.3. Kosakowo—Underground Gas Storage Site
3.4. Materials and Methods
3.4.1. Input—Multispectral Satellite Imagery
3.4.2. Preprocessing and Calculating Spectral Indices
3.4.3. Surface Water Detection and Statistical Analysis
4. Results
4.1. Hutki
4.2. Babina
4.3. Kosakowo
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ALS | Airborne Laser Scanning |
AMD | Acid Mine Drainage |
AMWI | Acid Mine Water Index |
AOI | Area Of Interest |
a.s.l. | Above Sea Level |
AWEInsh | Automated Water Extraction Index No Shadow |
AWEIsh | Automated Water Extraction Index Shadow |
b.g.l. | Below Ground Level |
CCS | Carbon Capture and Storage |
CIR | Color Infra-Red |
CNN | Convolutional Neural Network |
EVI | Enhanced Vegetation Index |
GEE | Google Earth Engine |
GIS | Geographic Information System |
GRWI | Green Red Water Index |
GSD | Ground Sampling Distance |
HS | Hyperspectral |
InSAR | Interferometric Synthetic Aperture Radar |
LiDAR | Light Detection And Ranging |
MNDWI | Modified Normalized Difference Water Index |
MRSEI | Modified Remote Sensing Ecological Index |
MS | Multispectral |
MSI | Moisture Stress Index |
NDBBI | Normalized Differential Built-Up And Bare Soil Index |
NIR | Near-Infrared |
NDMI | Normalized Difference Moisture Index |
NDVI | Normalized Difference Vegetation Index |
NDWI | Normalized Difference Water Index |
NMDI | Normalized Multiband Drought Index |
RGB | Red, Green, Blue Composition |
RS | Remote Sensing |
SAR | Synthetic Aperture Radar |
SDG | Sustainable Development Goal |
SDWI | Dual-Polarized Water Index |
SLC | Single-Look Complex |
SWIR | Short-Wave Infrared |
UAV | Unmanned Aerial Vehicle |
UGS | Underground Gas Storage |
VH | Vertical-Horizontal |
VV | Vertical-Vertical |
Appendix A
Appendix A.1
Index and Formula | Benefits | Limitations |
---|---|---|
Normalized Difference Water Index [73] | ||
Modified Normalized Difference Water Index [115] | ||
Water Index [129] | ||
Enhanced Water Index Where PC1—Principal Component no 1 PC2—Principal Component no 2 [131] | ||
Water Ratio Index [134] | ||
Augmented Normalized Difference Water Index [93] | ||
Automated Water Extraction Index (shadow and no shadow) [76] | ||
Sentinel-2 Water Index [124] | ||
Simple Water Index [139] | ||
Normalized Difference Moisture Index [77] |
|
|
Normalized Difference Vegetation Index [114] |
Appendix A.2
Light Detection and Ranging and Optic Imagery | Multispectral | Hyperspectral | Synthetic Aperture Radar | |
---|---|---|---|---|
Product, data geometry | Point cloud, 3D (x, y, z) | Raster, 2D (x, y) | Raster, 2D (x, y) | Point/raster, 2D (x, y) |
Spatial resolution, precision | High Centimeter level | Moderate/high Depending on the sensor, the GSD varies from submeter level to tens of meters | Moderate/high Depending on the sensor, the GSD varies from submeter level to tens of meters | Depending on the sensor, the GSD varies from submeter level to tens of meters |
Temporal coverage, Acquisition frequency | Varying, depends on scheduled measurement campaign | Satellite imagery: high (every few days) Airborne: Varying, depends on scheduled measurement campaign | Satellite imagery: high (every few days) Airborne: Varying, depends on scheduled measurement campaign | Satellite: high (every few days) |
Data availability | Not global or regularly updated, on demand, limited (shared by regional portals) | Satellite: Globally available recent and archival data Airborne: depends on scheduled measurement campaign | Satellite: globally available recent and archival data Airborne: depends on scheduled measurement campaign | Satellite: Globally available recent and archival data |
Cost | Depends on custom acquisition Open access in some countries (e.g., Poland) | Satellite: commercial or open access (depending on the satellite mission) Airborne: depends on custom acquisition | Satellite: commercial or open access (depending on the satellite mission) Airborne: depends on custom acquisition | Paid access or available free of charge (from particular satellites) |
Processing requirements | Software capable of processing point cloud data | Software or cloud platforms capable of processing imagery data | Software or cloud platforms capable of processing imagery data | Software capable of processing imagery data |
Field of use, usability in surface water monitoring | Surface water extent | Surface water detection, extent, quantitative analyses, flood mapping, water indices, multitemporal analysis | Surface water detection, extent, quantitative analyses, flood mapping, water indices, multitemporal analysis, complex qualitative analysis | Surface water detection, water extent time series analysis, flood mapping, wetland mapping, reservoir extent |
Appendix B
Case Study | Dates of Used Satellite Data | Comment | ||
---|---|---|---|---|
Hutki | 2022/04/14 2022/10/06 2023/04/22 2023/10/14 2024/03/29 2024/09/18 2025/04/16 | The timeframe of the study was chosen with regard to the season and the date of the first appearance of water on the surface in the selected area [101]. The first acquired image shows the study area before the appearance of water. | ||
Babina | 2015/08/10 2018/08/07 2021/08/13 2024/08/07 | Water bodies in the region formed in subsidence basins over 50 years ago. The dates were chosen to monitor changes in water masses in 3-year periods for a period of approximately 10 years. | ||
Kosakowo | 2015/08/20 2015/09/19 2016/05/06 2016/06/05 2016/06/15 2016/06/25 2016/09/13 2017/05/01 2017/05/06 2017/05/11 2017/05/16 2017/05/21 2017/05/26 2017/07/30 2017/08/09 2017/09/28 2018/05/06 2018/05/16 2018/05/21 2018/05/31 2018/06/05 2018/06/10 2018/06/20 2018/07/20 2018/09/18 | 2019/06/05 2019/06/20 2019/06/30 2019/07/15 2019/07/20 2019/08/24 2019/08/29 2019/09/28 2020/06/04 2020/06/09 2020/06/14 2020/06/19 2020/07/19 2020/08/13 2020/08/18 2020/09/12 2021/05/10 2021/05/30 2021/06/09 2021/06/14 2021/06/29 2021/07/14 2021/09/27 2022/06/04 2022/06/24 | 2022/07/19 2022/07/29 2022/08/03 2022/08/13 2022/08/28 2022/09/07 2023/05/05 2023/05/10 2023/05/30 2023/06/09 2023/06/29 2023/09/02 2023/09/07 2023/09/12 2023/09/17 2023/09/22 2023/09/27 2024/05/09 2024/05/14 2024/05/19 2024/08/07 2024/09/06 2024/09/16 2024/09/21 | The collection includes imagery acquired since the launch of the Sentinel-2 mission. Images with cloud coverage of less than 30%, covering the vegetation period from May to September, were filtered. Images without clouds or shadows above the area of interest were selected. |
References
- Islam, K.; Vilaysouk, X.; Murakami, S. Integrating Remote Sensing and Life Cycle Assessment to Quantify the Environmental Impacts of Copper-Silver-Gold Mining: A Case Study from Laos. Resour. Conserv. Recycl. 2020, 154, 104630. [Google Scholar] [CrossRef]
- Northey, S.A.; Mudd, G.M.; Werner, T.T.; Haque, N.; Yellishetty, M. Sustainable Water Management and Improved Corporate Reporting in Mining. Water Resour. Ind. 2019, 21, 100104. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, Y.; Misa, R.; Gao, J.; Xia, M.; Preusse, A.; Sroka, A.; Jiang, Y. Ecological Environment Changes of Mining Areas around Nansi Lake with Remote Sensing Monitoring. Environ. Sci. Pollut. Res. 2021, 28, 44152–44164. [Google Scholar] [CrossRef]
- Northey, S.A.; Mudd, G.M.; Saarivuori, E.; Wessman-Jääskeläinen, H.; Haque, N. Water Footprinting and Mining: Where Are the Limitations and Opportunities? J. Clean. Prod. 2016, 135, 1098–1116. [Google Scholar] [CrossRef]
- Wolkersdorfer, C.; Mugova, E. Effects of Mining on Surface Water. In Encyclopedia of Inland Waters, 2nd ed.; Mehner, T., Tockner, K., Eds.; Elsevier: Oxford, UK, 2022; pp. 170–188. ISBN 978-0-12-822041-2. [Google Scholar]
- Krutskikh, N. Detection of Water Stress Due to the Mining of Ferruginous Quartzite in a Subarctic Region. Environ. Earth Sci. 2024, 83, 324. [Google Scholar] [CrossRef]
- Lupa, M.; Pełka, A.; Młynarczuk, M.; Staszel, J.; Adamek, K. Why Rivers Disappear—Remote Sensing Analysis of Postmining Factors Using the Example of the Sztoła River, Poland. Remote Sens. 2024, 16, 111. [Google Scholar] [CrossRef]
- Dogramaci, S.; Firmani, G.; Hedley, P.; Skrzypek, G.; Grierson, P.F. Evaluating Recharge to an Ephemeral Dryland Stream Using a Hydraulic Model and Water, Chloride and Isotope Mass Balance. J. Hydrol. 2015, 521, 520–532. [Google Scholar] [CrossRef]
- Kuang, X.; Liu, J.; Scanlon, B.R.; Jiao, J.J.; Jasechko, S.; Lancia, M.; Biskaborn, B.K.; Wada, Y.; Li, H.; Zeng, Z.; et al. The Changing Nature of Groundwater in the Global Water Cycle. Science 2024, 383, eadf0630. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Cano, D. Spatial and Temporal Study of Supernatant Process Water Pond in Tailings Storage Facilities: Use of Remote Sensing Techniques for Preventing Mine Tailings Dam Failures. Sustainability 2023, 15, 4984. [Google Scholar] [CrossRef]
- Yu, H.; Zahidi, I. Tailings Pond Classification Based on Satellite Images and Machine Learning: An Exploration of Microsoft ML.Net. Mathematics 2023, 11, 517. [Google Scholar] [CrossRef]
- Baspineiro, C.F.; Franco, J.; Flexer, V. Potential Water Recovery during Lithium Mining from High Salinity Brines. Sci. Total Environ. 2020, 720, 137523. [Google Scholar] [CrossRef]
- Williams, G.D.Z.; Vengosh, A. Quality of Wastewater from Lithium-Brine Mining. Environ. Sci. Technol. Lett. 2025, 12, 151–157. [Google Scholar] [CrossRef]
- Hendrychová, M.; Svobodova, K.; Kabrna, M. Mine Reclamation Planning and Management: Integrating Natural Habitats into Post-Mining Land Use. Resour. Policy 2020, 69, 101882. [Google Scholar] [CrossRef]
- Malinowska, A.A.; Witkowski, W.T.; Guzy, A.; Hejmanowski, R. Satellite-Based Monitoring and Modeling of Ground Movements Caused by Water Rebound. Remote Sens. 2020, 12, 1786. [Google Scholar] [CrossRef]
- Declercq, P.-Y.; Dusar, M.; Pirard, E.; Verbeurgt, J.; Choopani, A.; Devleeschouwer, X. Post Mining Ground Deformations Transition Related to Coal Mines Closure in the Campine Coal Basin, Belgium, Evidenced by Three Decades of MT-InSAR Data. Remote Sens. 2023, 15, 725. [Google Scholar] [CrossRef]
- Vervoort, A.; Declercq, P.-Y. Upward Surface Movement above Deep Coal Mines after Closure and Flooding of Underground Workings. Int. J. Min. Sci. Technol. 2018, 28, 53–59. [Google Scholar] [CrossRef]
- Misa, R.; Sroka, A.; Mrocheń, D. Evaluating Surface Stability for Sustainable Development Following Cessation of Mining Exploitation. Sustainability 2025, 17, 878. [Google Scholar] [CrossRef]
- Machowski, R.; Rzętała, M.; Rzętała, M. Transformation of Lakes in Subsidence Basins in the Silesian Upland (Southern Poland). In Proceedings of the 12th International Multidiscyplinary Scientific Geoconference SGEM, Albena, Bulgaria, 17–23 June 2012; Volume 3, pp. 895–901. [Google Scholar]
- Gąsiorowski, M.; Stienss, J.; Sienkiewicz, E.; Sekudewicz, I. Geochemical Variability of Surface Sediment in Post-Mining Lakes Located in the Muskau Arch (Poland) and Its Relation to Water Chemistry. Water Air Soil Pollut. 2021, 232, 108. [Google Scholar] [CrossRef]
- Wita, P.; Szafraniec, J.E.; Absalon, D.; Woźnica, A. Lake Bottom Relief Reconstruction and Water Volume Estimation Based on the Subsidence Rate of the Post-Mining Area (Bytom, Southern Poland). Sci. Rep. 2024, 14, 5230. [Google Scholar] [CrossRef]
- He, T.; Xiao, W.; Zhao, Y.; Chen, W.; Deng, X.; Zhang, J. Continues Monitoring of Subsidence Water in Mining Area from the Eastern Plain in China from 1986 to 2018 Using Landsat Imagery and Google Earth Engine. J. Clean. Prod. 2021, 279, 123610. [Google Scholar] [CrossRef]
- McCullough, C.D.; Schultze, M.; Vandenberg, J.; Castendyk, D.; Fourie, A.B.; Tibbett, M.; Boggs, G. Mine Waste Disposal in Pit Lakes: A Good Practice Guide; Australian Centre for Geomechanics: Crawley, Australia, 2024; pp. 1063–1076. [Google Scholar]
- Blanchette, M.L.; Lund, M.A. Pit Lakes Are a Global Legacy of Mining: An Integrated Approach to Achieving Sustainable Ecosystems and Value for Communities. Curr. Opin. Environ. Sustain. 2016, 23, 28–34. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, D.; Li, L.; Ning, R.; Yu, S.; Gao, N. Application of Remote Sensing Technology in Water Quality Monitoring: From Traditional Approaches to Artificial Intelligence. Water Res. 2024, 267, 122546. [Google Scholar] [CrossRef] [PubMed]
- Abegeja, D. The Application of Satellite Sensors, Current State of Utilization, and Sources of Remote Sensing Dataset in Hydrology for Water Resource Management. J. Water Health 2024, 22, 1162–1179. [Google Scholar] [CrossRef]
- Charou, E.; Stefouli, M.; Dimitrakopoulos, D.; Vasiliou, E.; Mavrantza, O.D. Using Remote Sensing to Assess Impact of Mining Activities on Land and Water Resources. Mine Water Environ. 2010, 29, 45–52. [Google Scholar] [CrossRef]
- Głowienka, E.; Michałowska, K. Analyzing the Impact of Simulated Multispectral Images on Water Classification Accuracy by Means of Spectral Characteristics. Geomat. Environ. Eng. 2020, 14, 47–58. [Google Scholar] [CrossRef]
- Kujawa, P.; Wajs, J.; Kasza, D.; Remondino, F. Monitoring a Flooded Open-Cast Mine with Combining Remote Sensing Techniques. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2025, XLVIII-2/W10-2025, 155–161. [Google Scholar] [CrossRef]
- Barroso, A.; Henriques, R.; Cerqueira, Â.; Gomes, P.; Ribeiro Antunes, I.M.H.; Reis, A.P.M.; Valente, T.M. Acid Mine Drainage and Waste Dispersion in Legacy Mining Sites: An Integrated Approach Using UAV Photogrammetry and Geospatial Analysis. J. Hazard. Mater. 2025, 495, 138827. [Google Scholar] [CrossRef]
- Pawlik, M.; Rudolph, T.; Bernsdorf, B.; Benndorf, J. Proposal for a New Green Red Water Index for Geo-Environmental Surface Water Monitoring. IOP Conf. Ser. Earth Environ. Sci. 2024, 1295, 012013. [Google Scholar] [CrossRef]
- Holzbauer-Schweitzer, B.K.; Nairn, R.W. Using sUAS for the Development and Validation of Surface Water Quality Models in Optically Deep Mine Waters. Mine Water Environ. 2022, 41, 237–251. [Google Scholar] [CrossRef]
- Isgró, M.A.; Basallote, M.D.; Barbero, L. Unmanned Aerial System-Based Multispectral Water Quality Monitoring in the Iberian Pyrite Belt (SW Spain). Mine Water Environ. 2022, 41, 30–41. [Google Scholar] [CrossRef]
- Worstell, B.B.; Poppenga, S.K.; Evans, G.A.; Prince, S. Lidar Point Density Analysis: Implications for Identifying Water Bodies; U.S. Geological Survey: Reston, VA, USA, 2014.
- Pirotti, F.; Guarnieri, A.; Vettore, A. State of the Art of Ground and Aerial Laser Scanning Technologies for High-Resolution Topography of the Earth Surface. Eur. J. Remote Sens. 2013, 46, 66–78. [Google Scholar] [CrossRef]
- Szafarczyk, A.; Toś, C. The Use of Green Laser in LiDAR Bathymetry: State of the Art and Recent Advancements. Sensors 2023, 23, 292. [Google Scholar] [CrossRef]
- Jawecki, B.; Dąbek, P.B.; Pawęska, K.; Wei, X. Estimating Water Retention in Post-Mining Excavations Using LiDAR ALS Data for the Strzelin Quarry, in Lower Silesia. Mine Water Environ. 2018, 37, 744–753. [Google Scholar] [CrossRef]
- Kerfoot, W.C.; Swain, G.; Regis, R.; Raman, V.K.; Brooks, C.N.; Cook, C.; Reif, M. Coastal Environments: LiDAR Mapping of Copper Tailings Impacts, Particle Retention of Copper, Leaching, and Toxicity. Remote Sens. 2025, 17, 922. [Google Scholar] [CrossRef]
- dos Santos, E.E.; Francelino, M.R.; Siqueiraa, R.G.; Schaefer, C.E.G.R.; Santana, F.C.; Filho, E.I.F. Laser Scanner Technology in the Assessment of Mining Tailings Surface Changes and Rehabilitation Interventions after the Fundão Dam Rupture, Brazil. Environ. Earth Sci. 2024, 83, 308. [Google Scholar] [CrossRef]
- Martín-Crespo, T.; Gomez-Ortiz, D.; Pryimak, V.; Martín-Velázquez, S.; Rodríguez-Santalla, I.; Ropero-Szymañska, N.; José, C.d.I.-S. Quantification of Pollutants in Mining Ponds Using a Combination of LiDAR and Geochemical Methods—Mining District of Hiendelaencina, Guadalajara (Spain). Remote Sens. 2023, 15, 1423. [Google Scholar] [CrossRef]
- Debnath, S.; Paul, M.; Debnath, T. Applications of LiDAR in Agriculture and Future Research Directions. J. Imaging 2023, 9, 57. [Google Scholar] [CrossRef]
- Ma, T.; Tang, F.; Tang, J.; Wang, F.; Li, P.; Yang, Q.; Wang, S.; Jia, X. Effect of Coal Mining on Soil Moisture in the Semi-Arid Area Based on an Improved Remote Sensing Estimation Approach. Environ. Earth Sci. 2023, 82, 545. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, B.; Brown, G.S. Automatic Surface Water Mapping Using Polarimetric SAR Data for Long-Term Change Detection. Water 2020, 12, 872. [Google Scholar] [CrossRef]
- Tran, K.H.; Menenti, M.; Jia, L. Surface Water Mapping and Flood Monitoring in the Mekong Delta Using Sentinel-1 SAR Time Series and Otsu Threshold. Remote Sens. 2022, 14, 5721. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, F.; Ling, F.; Du, Y. Monitoring Surface Water Inundation of Poyang Lake and Dongting Lake in China Using Sentinel-1 SAR Images. Remote Sens. 2022, 14, 3473. [Google Scholar] [CrossRef]
- Pham-Duc, B. Comparison of Multi-Source Satellite Remote Sensing Observations for Monitoring the Variations of Small Lakes: A Case Study of Dai Lai Lake (Vietnam). J. Water Clim. Change 2023, 15, 157–170. [Google Scholar] [CrossRef]
- Kseňak, Ľ.; Pukanská, K.; Bartoš, K.; Blišťan, P. Assessment of the Usability of SAR and Optical Satellite Data for Monitoring Spatio-Temporal Changes in Surface Water: Bodrog River Case Study. Water 2022, 14, 299. [Google Scholar] [CrossRef]
- Zhang, B.; Wdowinski, S.; Gann, D.; Hong, S.-H.; Sah, J. Spatiotemporal Variations of Wetland Backscatter: The Role of Water Depth and Vegetation Characteristics in Sentinel-1 Dual-Polarization SAR Observations. Remote Sens. Environ. 2022, 270, 112864. [Google Scholar] [CrossRef]
- Kim, S.; Ouellette, J.D.; van Zyl, J.J.; Johnson, J.T. Detection of Inland Open Water Surfaces Using Dual Polarization L-Band Radar for the Soil Moisture Active Passive Mission. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3388–3399. [Google Scholar] [CrossRef]
- Ruolong, H.; Qian, S.; Bolin, F.; Yue, Y.; Yuting, Z.; Qianyu, D. A Water Extraction Method for Multiple Terrains Area Based on Multisource Fused Images: A Case Study of the Yangtze River Basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 4964–4978. [Google Scholar] [CrossRef]
- Ma, K.; Zhuang, D.; Argilaga, A.; Yu, S.; Zhang, J. A New Approach to Identifying Preferential Seepage Channels for Underground Water-Sealed Oil Storage Cavern During Construction. Rock Mech. Rock Eng. 2023, 56, 6395–6410. [Google Scholar] [CrossRef]
- Chen, Y.; Suo, Z.; Lu, H.; Cheng, H.; Li, Q. Active–Passive Remote Sensing Evaluation of Ecological Environment Quality in Juye Mining Area, China. Remote Sens. 2023, 15, 5750. [Google Scholar] [CrossRef]
- Chen, L.; Cai, X.; Xing, J.; Li, Z.; Zhu, W.; Yuan, Z.; Fang, Z. Towards Transparent Deep Learning for Surface Water Detection from SAR Imagery. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103287. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, L.; Huang, Y.; Guo, Z.; Zhao, J.; Li, N. Water-Body Segmentation for SAR Images: Past, Current, and Future. Remote Sens. 2022, 14, 1752. [Google Scholar] [CrossRef]
- Borengasser, M.; Hungate, W.S.; Watkins, R. Hyperspectral Remote Sensing: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-0-429-13838-6. [Google Scholar]
- Hyperspectral Imaging—eoPortal. Available online: https://www.eoportal.org/other-space-activities/hyperspectral-imaging (accessed on 14 July 2025).
- Lu, B.; He, Y.; Dao, P.D. Comparing the Performance of Multispectral and Hyperspectral Images for Estimating Vegetation Properties. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1784–1797. [Google Scholar] [CrossRef]
- Kopačková, V.; Hladíková, L. Applying Spectral Unmixing to Determine Surface Water Parameters in a Mining Environment. Remote Sens. 2014, 6, 11204–11224. [Google Scholar] [CrossRef]
- Riaza, A.; Buzzi, J.; García-Meléndez, E.; Vázquez, I.; Bellido, E.; Carrère, V.; Müller, A. Pyrite Mine Waste and Water Mapping Using Hymap and Hyperion Hyperspectral Data. Environ. Earth Sci. 2012, 66, 1957–1971. [Google Scholar] [CrossRef]
- Riaza, A.; Buzzi, J.; García-Meléndez, E.; Carrère, V.; Sarmiento, A.; Müller, A. Monitoring Acidic Water in a Polluted River with Hyperspectral Remote Sensing (HyMap). Hydrol. Sci. J. 2015, 60, 1064–1077. [Google Scholar] [CrossRef]
- Riaza, A.; Buzzi, J.; García-Meléndez, E.; Carrère, V.; Müller, A. Monitoring the Extent of Contamination from Acid Mine Drainage in the Iberian Pyrite Belt (SW Spain) Using Hyperspectral Imagery. Remote Sens. 2011, 3, 2166–2186. [Google Scholar] [CrossRef]
- Riaza, A.; Buzzi, J.; García-Meléndez, E.; Carrère, V.; Sarmiento, A.; Müller, A. River Acid Mine Drainage: Sediment and Water Mapping through Hyperspectral Hymap Data. Int. J. Remote Sens. 2012, 33, 6163–6185. [Google Scholar] [CrossRef]
- Flores, H.; Lorenz, S.; Jackisch, R.; Tusa, L.; Contreras, I.C.; Zimmermann, R.; Gloaguen, R. UAS-Based Hyperspectral Environmental Monitoring of Acid Mine Drainage Affected Waters. Minerals 2021, 11, 182. [Google Scholar] [CrossRef]
- Multispectral, vs. Hyperspectral Imaging: Differences and Uses. Available online: https://eos.com/blog/multispectral-vs-hyperspectral-imaging/ (accessed on 14 July 2025).
- Sara, D.; Mandava, A.K.; Kumar, A.; Duela, S.; Jude, A. Hyperspectral and Multispectral Image Fusion Techniques for High Resolution Applications: A Review. Earth Sci. Inform. 2021, 14, 1685–1705. [Google Scholar] [CrossRef]
- Şebnem Düzgün, H.; Demirel, N. Remote Sensing of the Mine Environment, 1st ed.; CRC Press: Boca Raton, FL, USA, 2011; ISBN 978-1-138-11605-4. [Google Scholar]
- Sentinel-2. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2 (accessed on 14 July 2025).
- Landsat Missions | U.S. Geological Survey. Available online: https://www.usgs.gov/landsat-missions (accessed on 14 July 2025).
- WorldView Series—Earth Online. Available online: https://earth.esa.int/eogateway/missions/worldview (accessed on 14 July 2025).
- PlanetScope | Planet Documentation. Available online: https://docs.planet.com/data/imagery/planetscope/ (accessed on 14 July 2025).
- RapidEye® Constellation and Sensor Overview. Available online: https://www.planet.com/products/rapideye/ (accessed on 14 July 2025).
- Tayer, T.C.; Douglas, M.M.; Cordeiro, M.C.R.; Tayer, A.D.N.; Callow, J.N.; Beesley, L.; McFarlane, D. Improving the Accuracy of the Water Detect Algorithm Using Sentinel-2, Planetscope and Sharpened Imagery: A Case Study in an Intermittent River. GIScience Remote Sens. 2023, 60, 2168676. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, Y.; Gowda, P.H.; Dong, J.; Zhang, G.; Kakani, V.G.; Wagle, P.; Chen, L.; Flynn, K.C.; Jiang, W. Application of the Water-Related Spectral Reflectance Indices: A Review. Ecol. Indic. 2019, 98, 68–79. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Yi, Z.; Liu, M.; Liu, X.; Wang, Y.; Wu, L.; Wang, Z.; Zhu, L. Long-Term Landsat Monitoring of Mining Subsidence Based on Spatiotemporal Variations in Soil Moisture: A Case Study of Shanxi Province, China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102447. [Google Scholar] [CrossRef]
- Zhu, Z.; Cao, H.; Yang, J.; Shang, H.; Ma, J. Ecological Environment Quality Assessment and Spatial Autocorrelation of Northern Shaanxi Mining Area in China Based-on Improved Remote Sensing Ecological Index. Front. Environ. Sci. 2024, 12, 1325516. [Google Scholar] [CrossRef]
- Yarlanki, V.K.; Muppala, P.R.; Yasam, P.K.; Gollapudi, B.; Moddu, S.; Besta, A. Spatiotemporal Variation of Vegetation Cover in Mining Areas of YSR Kadapa District, Andhra Pradesh Using Remote Sensing and GIS. J. Sustain. Min. 2025, 24, 102–116. [Google Scholar] [CrossRef]
- Xiao, W.; Chen, W.; He, T.; Zhao, Y.; Hu, Z. Remote sensing monitoring and impact assessment of mining disturbance in mining area with high undergroundwater level. J. China Coal Soc. 2022, 47, 922–933. [Google Scholar]
- Liu, H.; Li, Y. Dynamic Prediction Method of 3D Spatial Information of Coal Mining Subsidence Water Area Integrated with Landsat Remote Sensing and Knothe Time Function. Geofluids 2022, 2022, 1568050. [Google Scholar] [CrossRef]
- Hanelli, D.; Barth, A.; Volkmer, G.; Köhler, M. Modelling of Acid Mine Drainage in Open Pit Lakes Using Sentinel-2 Time-Series: A Case Study from Lusatia, Germany. Minerals 2023, 13, 271. [Google Scholar] [CrossRef]
- Louloudis, G.; Roumpos, C.; Mertiri, E.; Pavloudakis, F.; Karalidis, K. Remote Sensing Data and Indices to Support Water Management: A Holistic Post-Mining Approach for Lignite Mining in Greece. Mine Water Environ. 2023, 42, 618–638. [Google Scholar] [CrossRef]
- García Millán, V.E.; Faude, U.; Bicsan, A.; Klink, A.; Teuwsen, S.; Pakzad, K.; Müterthies, A. Monitoring Flooding Damages in Vegetation Caused by Mining Activities Using Optical Remote Sensing. PFG 2018, 86, 1–13. [Google Scholar] [CrossRef]
- Ma, B.; Chen, Y.; Zhang, S.; Li, X. Remote Sensing Extraction Method of Tailings Ponds in Ultra-Low-Grade Iron Mining Area Based on Spectral Characteristics and Texture Entropy. Entropy 2018, 20, 345. [Google Scholar] [CrossRef]
- Stringari, C.E.; Engelbrecht, J.; Eaton, B. Measuring Tailings Storage Facility Bathymetry Using Sentinel-2 and Landsat-8/9 Multispectral Imagery and Machine Learning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, XLVIII-M-4–2024, 63–69. [Google Scholar] [CrossRef]
- Rudorff, N.; Rudorff, C.M.; Kampel, M.; Ortiz, G. Remote Sensing Monitoring of the Impact of a Major Mining Wastewater Disaster on the Turbidity of the Doce River Plume off the Eastern Brazilian Coast. ISPRS J. Photogramm. Remote Sens. 2018, 145, 349–361. [Google Scholar] [CrossRef]
- Crioni, P.L.B.; Teramoto, E.H.; Chang, H.K. Monitoring River Turbidity after a Mine Tailing Dam Failure Using an Empirical Model Derived from Sentinel-2 Imagery. An. Acad. Bras. Ciênc. 2023, 95, e20220177. [Google Scholar] [CrossRef]
- Modiegi, M.; Rampedi, I.T.; Tesfamichael, S.G. Comparison of Multi-Source Satellite Data for Quantifying Water Quality Parameters in a Mining Environment. J. Hydrol. 2020, 591, 125322. [Google Scholar] [CrossRef]
- Pyankov, S.V.; Maximovich, N.G.; Khayrulina, E.A.; Berezina, O.A.; Shikhov, A.N.; Abdullin, R.K. Monitoring Acid Mine Drainage’s Effects on Surface Water in the Kizel Coal Basin with Sentinel-2 Satellite Images. Mine Water Environ. 2021, 40, 606–621. [Google Scholar] [CrossRef]
- Bijeesh, T.V.; Narasimhamurthy, K.N. Surface Water Detection and Delineation Using Remote Sensing Images: A Review of Methods and Algorithms. Sustain. Water Resour. Manag. 2020, 6, 68. [Google Scholar] [CrossRef]
- Rad, A.M.; Kreitler, J.; Sadegh, M. Augmented Normalized Difference Water Index for Improved Surface Water Monitoring. Environ. Model. Softw. 2021, 140, 105030. [Google Scholar] [CrossRef]
- Koźma, J.; Kupetz, M. The Transboundary Geopark Muskau Arch (Geopark Łuk Mużakowa, Geopark Muskauer Faltenbogen). Przegląd Geol. 2008, 56, 692–698. [Google Scholar]
- Greinert, A. Wydobycie Węgla Brunatnego i Rekultywacja Terenów Pokopalnianych w Regionie Lubuskim, 1st ed.; Instytut Inżynierii Środowiska Uniwersytetu Zielonogórskiego: Zielona Góra, Poland, 2015; ISBN 978-83-937619-2-0. [Google Scholar]
- Niewdana, J.; Świć, E. Żywioły w Świecie Podziemnych Skarbów Olkuskich Kopalń rud; Zakłady Górniczo-Hutnicze BOLESŁAW S.A. w Bukownie: Bukowno, Poland, 2011; ISBN 978-83-913252-6-1. [Google Scholar]
- Lankof, L.; Luboń, K.; Le Gallo, Y.; Tarkowski, R. The Ranking of Geological Structures in Deep Aquifers of the Polish Lowlands for Underground Hydrogen Storage. Int. J. Hydrogen Energy 2024, 62, 1089–1102. [Google Scholar] [CrossRef]
- Tarkowski, R.; Lankof, L.; Luboń, K.; Michalski, J. Hydrogen Storage Capacity of Salt Caverns and Deep Aquifers versus Demand for Hydrogen Storage: A Case Study of Poland. Appl. Energy 2024, 355, 122268. [Google Scholar] [CrossRef]
- Smentek, A.; Blachowski, J. Remote Sensing Analysis of Environmental Changes in a Post-Mining Area: A Case Study of the Olkusz Region—Preliminary Results. Civ. Environ. Eng. Rep. 2025, 35, 1–18. [Google Scholar] [CrossRef]
- Sawicki, J. Zmiany Naturalnej Infiltracji Opadów do Warstw Wodonośnych pod Wpływem Głębokiego, Górniczego Drenażu; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2000; ISBN 83-7085-475-3. [Google Scholar]
- Kos, J.; Wojciechowski, T.; Wójcik, A.; Zając, M.; Kamieniarz, S.; Przyłucka, M.; Perski, Z.; Karwacki, K.; Wódka, M.; Warmuz, B.; et al. Raport z prac Analitycznych o Deformacjach Terenu dla Rejonu Oddziaływania Eksploatacji rud Cynku i Ołowiu w Rejonie Olkuskim; Państwowy Instytut Geologiczny, Państwowy Instytut Badawczy: Warszawa, Poland, 2025; p. 119. [Google Scholar]
- Bank Danych o Lasach. Available online: https://www.bdl.lasy.gov.pl/portal (accessed on 14 July 2025).
- Kupetz, M. Geologischer Bau Und Genese Der Stauchendmoräne Muskauer Faltenbogen. Brand. Geowiss. Beitr. 1997, 4, 1–20. (In German) [Google Scholar]
- Badura, J.; Gawlikowska, E.; Kasiński, J.R.; Koźma, J.; Kupetz, M.; Piwocki, M.; Raschner, J. Geopark “Łuk Mużakowa”—Proponowany transgraniczny obszar ochrony georóznorodności. Przegląd Geol. 2003, 51, 54–58. (In Polsih) [Google Scholar]
- Dyjor, S. The Poznań Series in West Poland (in Polish with English Summary). Kwart. Geol. 1970, 14, 819–835. [Google Scholar]
- Oberc, J. Tektonika. Cz. 2, Sudety i Obszary Przyległe; Budowa geologiczna Polski; t. 4; Wydaw; Geologiczne: Warszawa, Poland, 1972. [Google Scholar]
- Kasiński, J.R.; Słodkowska, B. Lignite Seams in the Muskau Arch—Sedimentation Conditions, Stratigraphic Position, Deposits Importance. Górnictwo Odkryw. 2017, 58, 20–31. (In Polish) [Google Scholar]
- Koźma, J. Anthropogenic Landscape Changes Connected with the Old Brown Coalmining Based on the Example of the Polish Part of the Muskau Arch Area. Górnictwo Odkryw. 2016, 57, 5–13. (In Polish) [Google Scholar]
- Gontaszewska, A. Podziemna Eksploatacja Węgla Brunatnego Na Ziemi Lubuskiej—Dawne Górnictwo, Współczesny Problem. Przegląd Górniczy 2015, 71, 1–8. [Google Scholar]
- Kaczmarek, A.; Blachowski, J. Remote Sensing Perspective on Monitoring and Predicting Underground Energy Sources Storage Environmental Impacts: Literature Review. Remote Sens. 2025, 17, 2628. [Google Scholar] [CrossRef]
- Marcinkowska, A.; Ochtyra, A.; Olędzki, J.R.; Wołk-Musiał, E.; Zagajewski, B. Mapa geomorfologiczna województw pomorskiego i warmińsko-mazurskiego z wykorzystaniem metod geoinformatycznych. Teledetekcja Sr. 2013, 49, 43–79. [Google Scholar]
- Cała, M.; Cyran, K.; Kowalski, M.; Wilkosz, P. Influence of the Anhydrite Interbeds on a Stability of the Storage Caverns in the Mechelinki Salt Deposit (Northern Poland). Arch. Min. Sci. 2018, 63, 1007–1025. [Google Scholar] [CrossRef]
- Ecosystem, C.D.S. Copernicus Data Space Ecosystem | Europe’s Eyes on Earth. Available online: https://dataspace.copernicus.eu/ (accessed on 22 July 2025).
- Rouse, J.; Haas, R.H.; Schell, J.A.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA: Washington, DC, USA, 1973.
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Lesa Chundu, M.; Banda, K.; Sichingabula, H.M.; Nyambe, I.A. Integrated Water Quality Assessment of Open Water Bodies Using Empirical Equations and Remote Sensing Techniques in Bangweulu Wetland Lakes, Zambia. J. Great Lakes Res. 2024, 50, 102451. [Google Scholar] [CrossRef]
- Tokarczyk, T.; Szalińska, W. Susze w Polsce—Czy to normalne? Obserwator 2020, Wydanie specjalne-Susza 2020, 6–16. [Google Scholar]
- IMGW. Climate of Poland 2022; IMGW: Warsaw, Poland, 2023; p. 48. [Google Scholar]
- Marosz, M.; Biernacik, D.; Chilińska, A.; Kusek, K.; Wasielewska, K.; Kitowski, M.; Kępińska-Kasprzak, M.; Łaszyca, E. Charakterystyka wybranych elementów klimatu w Polsce w 2023 roku—Podsumowanie; Komunikat Biura Prasowego IMGW-PIB; Biuro Prasowe IMGW-PIB: Warsaw, Poland, 2024; pp. 1–9. [Google Scholar]
- Blachowski, J.; Dynowski, A.; Buczyńska, A.; Ellefmo, S.L.; Walerysiak, N. Integrated Spatiotemporal Analysis of Vegetation Condition in a Complex Post-Mining Area: Lignite Mine Case Study. Remote Sens. 2023, 15, 3067. [Google Scholar] [CrossRef]
- Adjovu, G.E.; Stephen, H.; James, D.; Ahmad, S. Overview of the Application of Remote Sensing in Effective Monitoring of Water Quality Parameters. Remote Sens. 2023, 15, 1938. [Google Scholar] [CrossRef]
- Kathirvelu, K.; Yesudhas, A.V.P.; Ramanathan, S. Spectral Unmixing Based Random Forest Classifier for Detecting Surface Water Changes in Multitemporal Pansharpened Landsat Image. Expert Syst. Appl. 2023, 224, 120072. [Google Scholar] [CrossRef]
- Haibo, Y.; Zongmin, W.; Hongling, Z.; Yu, G. Water Body Extraction Methods Study Based on RS and GIS. Procedia Environ. Sci. 2011, 10, 2619–2624. [Google Scholar] [CrossRef]
- Jiang, W.; Ni, Y.; Pang, Z.; Li, X.; Ju, H.; He, G.; Lv, J.; Yang, K.; Fu, J.; Qin, X. An Effective Water Body Extraction Method with New Water Index for Sentinel-2 Imagery. Water 2021, 13, 1647. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Wang, J.; Zhang, Y.; Xu, Y.; Yang, O.; Zhang, R.; Wang, J.; Wang, Z.; Lu, F.; et al. The Performance of Landsat-8 and Landsat-9 Data for Water Body Extraction Based on Various Water Indices: A Comparative Analysis. Remote Sens. 2024, 16, 1984. [Google Scholar] [CrossRef]
- Tesfaye, M.; Breuer, L. Performance of Water Indices for Large-Scale Water Resources Monitoring Using Sentinel-2 Data in Ethiopia. Environ. Monit. Assess. 2024, 196, 467. [Google Scholar] [CrossRef]
- Fang-fang, Z.; Bing, Z.; Jun-sheng, L.; Qian, S.; Yuanfeng, W.; Yang, S. Comparative Analysis of Automatic Water Identification Method Based on Multispectral Remote Sensing. Procedia Environ. Sci. 2011, 11, 1482–1487. [Google Scholar] [CrossRef]
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors 2018, 18, 2580. [Google Scholar] [CrossRef] [PubMed]
- Danaher, T.; Collett, L. Development, Optimisation and Multi-Temporal Application of a Simple Landsat Based Water Index. In Proceedings of the 13th Australasian Remote Sensing and Photogrammetry Conference, Canberra, Australia, 20 November 2006. [Google Scholar]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat Water Index Methods for Automated Water Classification in Eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Yang, J.; Du, X. An Enhanced Water Index in Extracting Water Bodies from Landsat TM Imagery. Ann. GIS 2017, 23, 141–148. [Google Scholar] [CrossRef]
- Liu, S.; Wu, Y.; Zhang, G.; Lin, N.; Liu, Z. Comparing Water Indices for Landsat Data for Automated Surface Water Body Extraction under Complex Ground Background: A Case Study in Jilin Province. Remote Sens. 2023, 15, 1678. [Google Scholar] [CrossRef]
- Wang, S.; Baig, M.H.A.; Zhang, L.; Jiang, H.; Ji, Y.; Zhao, H.; Tian, J. A Simple Enhanced Water Index (EWI) for Percent Surface Water Estimation Using Landsat Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 90–97. [Google Scholar] [CrossRef]
- Shen, L.; Li, C. Water Body Extraction from Landsat ETM+ Imagery Using Adaboost Algorithm. In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–4. [Google Scholar]
- Kareem, H.H.; Attaee, M.H.; Omran, Z.A. Estimation the Water Ratio Index (WRI) and Automated Water Extraction Index (AWEI) of Bath in the United Kingdom Using Remote Sensing Technology of the Multispectral Data of Landsat 8-OLI. Water Conserv. Manag. 2024, 8, 171–178. [Google Scholar] [CrossRef]
- Zhao, C.; Wei, H.; Feyisa, G.L.; de Castro Tayer, T.; Ma, G.; Wu, H.; Pan, Y. Evaluating Spectral Indices for Water Extraction: Limitations and Contextual Usage Recommendations. Int. J. Appl. Earth Obs. Geoinf. 2025, 139, 104510. [Google Scholar] [CrossRef]
- Laonamsai, J.; Julphunthong, P.; Saprathet, T.; Kimmany, B.; Ganchanasuragit, T.; Chomcheawchan, P.; Tomun, N. Utilizing NDWI, MNDWI, SAVI, WRI, and AWEI for Estimating Erosion and Deposition in Ping River in Thailand. Hydrology 2023, 10, 70. [Google Scholar] [CrossRef]
- Sabzi, A.; Ahmadi, M. Mapping Flood-Prone Areas at Large Scales: Harnessing the Power of Global Datasets and Temporal Remote Sensing Analysis. SSRN 2025. [Google Scholar] [CrossRef]
- Malahlela, O.E. Inland Waterbody Mapping: Towards Improving Discrimination and Extraction of Inland Surface Water Features. Int. J. Remote Sens. 2016, 37, 4574–4589. [Google Scholar] [CrossRef]
- Acharya, T.D.; Subedi, A.; Huang, H.; Lee, D.H. Application of Water Indices in Surface Water Change Detection Using Landsat Imagery in Nepal. Sens. Mater. 2019, 31, 1429–1447. [Google Scholar] [CrossRef]
- Herndon, K.; Muench, R.; Cherrington, E.; Griffin, R. An Assessment of Surface Water Detection Methods for Water Resource Management in the Nigerien Sahel. Sensors 2020, 20, 431. [Google Scholar] [CrossRef]
- Koohikeradeh, E.; Jose Gumiere, S.; Bonakdari, H. NDMI-Derived Field-Scale Soil Moisture Prediction Using ERA5 and LSTM for Precision Agriculture. Sustainability 2025, 17, 2399. [Google Scholar] [CrossRef]
- Zhai, K.; Wu, X.; Qin, Y.; Du, P. Comparison of Surface Water Extraction Performances of Different Classic Water Indices Using OLI and TM Imageries in Different Situations. Geo-Spat. Inf. Sci. 2015, 18, 32–42. [Google Scholar] [CrossRef]
- Xu, P.; Niu, Z.; Tang, P. Comparison and Assessment of NDVI Time Series for Seasonal Wetland Classification. Int. J. Digit. Earth 2018, 11, 1103–1131. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
Hutki | Babina | Kosakowo | |
---|---|---|---|
Area [km2] | 3.5 | 2.2 | 3.9—mining concession area 26.2—study area |
Status of the area | Post-mining (closed 5 years ago) | Post-mining (closed 50 years ago) | Active |
Type of mining | Underground and open pit | Underground and open pit | Underground gas storage (UGS) |
Ore and deposit geology | Underground zinc and lead ore, open pit sand mines (70–190 m below ground level/b.g.l.) | Underground brown coal (5–100 m b.g.l.) | Mechelinki salt deposit Depth 970 m b.g.l. (top) Deposit thickness 170–200 m |
Mining system | Room and pillar | System of shallow underground workings | Leaching (development of storage caverns) |
Topography and land cover type | Gently undulating terrain, mostly forested. Mean elevation of 312.05 m above sea level (a.s.l.) | Mostly forest, surface waters, and hiking trails. Anthropogenic lakes (elevation 133 m–155 m a.s.l.), mining-related ground deformations, and other artificial landforms. | Plain; mean elevation of 11.4 m a.s.l.; upland reaching over 70 m a.s.l. south to the UGS permit area; rural areas with agricultural land. |
Index | Pixel Classification | Case Study Area | ||
---|---|---|---|---|
Hutki | Babina | Kosakowo | ||
Normalized Difference Vegetation Index (NDVI) | Water | [−1.0; 0.0) | [−1.0; 0.09) | [−1.0; 0.2) |
Non-water | [0.0; 1.0] | [0.09; 1.0] | [0.2; 1.0] | |
Normalized Difference Water Index (NDWI) | Water | [0.0; 1.0] | [0.0; 1.0] | [−0.25; 1.0] |
Non-water | [−1.0; 0.0) | [−1.0; 0.0) | [−1.0; −0.25) | |
Modified Normalized Difference Water Index (MNDWI) | Water | [0.0; 1.0] | [0.0; 1.0] | [−0.1; 1.0] |
Non-water | [−1.0; 0.0) | [−1.0; 0.0) | [−1.0; −0.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smentek, A.; Kaczmarek, A.; Eksert, P.; Blachowski, J. Monitoring Surface Water Dynamics in Mining Areas Using Remote Sensing Indices: A Review and Cross-Case Analysis. Water 2025, 17, 2826. https://doi.org/10.3390/w17192826
Smentek A, Kaczmarek A, Eksert P, Blachowski J. Monitoring Surface Water Dynamics in Mining Areas Using Remote Sensing Indices: A Review and Cross-Case Analysis. Water. 2025; 17(19):2826. https://doi.org/10.3390/w17192826
Chicago/Turabian StyleSmentek, Aleksandra, Aleksandra Kaczmarek, Pinar Eksert, and Jan Blachowski. 2025. "Monitoring Surface Water Dynamics in Mining Areas Using Remote Sensing Indices: A Review and Cross-Case Analysis" Water 17, no. 19: 2826. https://doi.org/10.3390/w17192826
APA StyleSmentek, A., Kaczmarek, A., Eksert, P., & Blachowski, J. (2025). Monitoring Surface Water Dynamics in Mining Areas Using Remote Sensing Indices: A Review and Cross-Case Analysis. Water, 17(19), 2826. https://doi.org/10.3390/w17192826