The Application of Baseflow Separation and Master Recession Curves Methods in the Middle Yellow River Basins
Abstract
1. Introduction
2. Principles and Methods
2.1. Study Area
2.2. Method of Baseflow Separation
2.3. Method of Construction of MRC
2.4. Recession Analysis
2.5. Data
3. Results
3.1. Situation of Baseflow in MYRB Temporal and Spatial Variations
3.2. Situation of Application to the Basins of the MRC
3.3. Situation of Application to Hydrologic Stations of MRC
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
MYRB | Middle Yellow River Basins |
References
- Jachens, E.R.; Roques, C.; Rupp, D.E.; Selker, J.S. Streamflow Recession Analysis Using Water Height. Water Resour. Res. 2020, 56, e2020WR027091. [Google Scholar] [CrossRef]
- Sun, W.Y.; Song, X.Y.; Zhang, Y.Q.; Chiew, F.; Post, D.; Zheng, H.X.; Song, S.B. Coal Mining Impacts on Baseflow Detected Using Paired Catchments. Water Resour. Res. 2020, 56, e2019WR025770. [Google Scholar] [CrossRef]
- Lu, Q.S.; Jing, K.K.; Li, X.P.; Song, X.Z.; Zhao, C.; Du, S.X. Effects of Yellow River Water Management Policies on Annual Irrigation Water Usage from Canals and Groundwater in Yucheng City, China. Sustainability 2023, 15, 2885. [Google Scholar] [CrossRef]
- He, S.J.; Yan, Y.; Yu, K.; Xin, X.P.; Guzman, S.M.; Lu, J.; He, Z.L. Baseflow estimation based on a self-adaptive non-linear reservoir algorithm in a rainy watershed of eastern China. J. Environ. Manag. 2023, 332, 117379. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Song, J.X.; Cheng, L.; Zheng, H.X.; Wang, Y.T.; Huai, B.J.; Sun, W.J.; Qi, S.Z.; Zhao, P.P.; Wang, Y.Q.; et al. Baseflow estimation for catchments in the Loess Plateau, China. J. Environ. Manag. 2019, 233, 264–270. [Google Scholar] [CrossRef]
- McMahon, T.A.; Nathan, R.J. Baseflow and transmission loss: A review. Wires Water 2021, 8, e1527. [Google Scholar] [CrossRef]
- Brutsaert, W. Long-term groundwater storage trends estimated from streamflow records: Climatic perspective. Water Resour. Res. 2008, 44, W02409. [Google Scholar] [CrossRef]
- VoF6roF6smarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef]
- Aksoy, H.; Kurt, I.; Eris, E. Filtered smoothed minima baseflow separation method. J. Hydrol. 2009, 372, 94–101. [Google Scholar] [CrossRef]
- Dukic, V. Modelling of base flow of the basin of Kolubara river in Serbia. J. Hydrol. 2006, 327, 1–12. [Google Scholar] [CrossRef]
- Arnold, J.G.; Allen, P.M.; Muttiah, R.; Bernhardt, G. Automated Base-Flow Separation and Recession Analysis Techniques. Ground Water 1995, 33, 1010–1018. [Google Scholar] [CrossRef]
- Nathan, R.J.; Mcmahon, T.A. Evaluation of Automated Techniques for Base-Flow and Recession Analyses. Water Resour. Res. 1990, 26, 1465–1473. [Google Scholar] [CrossRef]
- Horton, J.L.; Kolb, T.E.; Hart, S.C. Physiological response to groundwater depth varies among species and with river flow regulation. Ecol. Appl. 2001, 11, 1046–1059. [Google Scholar] [CrossRef]
- Omer, A.; Zhuguo, M.G.; Zheng, Z.Y.; Saleem, F. Natural and anthropogenic influences on the recent droughts in Yellow River Basin, China. Sci. Total Environ. 2020, 704, 135428. [Google Scholar] [CrossRef]
- Luan, J.K.; Zhang, Y.Q.; Tian, J.; Meresa, H.; Liu, D.F. Coal mining impacts on catchment runoff. J. Hydrol. 2020, 589, 125101. [Google Scholar] [CrossRef]
- Tang, Q. Global change hydrology: Terrestrial water cycle and global change. Sci. China Earth Sci. 2019, 63, 459–462. [Google Scholar] [CrossRef]
- Yuan, R.Q.; Wang, M.; Wang, S.Q.; Song, X.F. Water transfer imposes hydrochemical impacts on groundwater by altering the interaction of groundwater and surface water. J. Hydrol. 2020, 583, 124617. [Google Scholar] [CrossRef]
- Liu, W.; Shi, C.X.; Zhou, Y.Y. Trends and attribution of runoff changes in the upper and middle reaches of the Yellow River in China. J. Hydro Environ. Res. 2021, 37, 57–66. [Google Scholar] [CrossRef]
- Eng, K.; Wolock, D.M.; Wieczorek, M. Predicting baseflow recession characteristics at ungauged stream locations using a physical and machine learning approach. Adv. Water Resour. 2023, 175, 104440. [Google Scholar] [CrossRef]
- Svobodova, K.; Yellishetty, M.; Vojar, J. Coal mining in Australia: Understanding stakeholder knowledge of mining and mine rehabilitation. Energy Policy 2019, 126, 421–430. [Google Scholar] [CrossRef]
- Wang, M.L.; Du, L.J.; Ke, Y.H.; Huang, M.Y.; Zhang, J.; Zhao, Y.; Li, X.J.; Gong, H.L. Impact of Climate Variabilities and Human Activities on Surface Water Extents in Reservoirs of Yongding River Basin, China, from 1985 to 2016 Based on Landsat Observations and Time Series Analysis. Remote Sens. 2019, 11, 560. [Google Scholar] [CrossRef]
- Zhao, G.Z.; Kong, L.Y.; Li, Y.L.; Xu, Y.Z.; Li, Z.P. Investigating Historical Baseflow Characteristics and Variations in the Upper Yellow River Basin, China. Int. J. Environ. Res. Public Health 2022, 19, 9267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Pang, X.; Xia, J.; Shao, Q.X.; Yu, E.T.; Zhao, T.T.G.; She, D.X.; Sun, J.Q.; Yu, J.J.; Pan, X.Y.; et al. Regional Patterns of Extreme Precipitation and Urban Signatures in Metropolitan Areas. J. Geophys. Res. Atmos. 2019, 124, 641–663. [Google Scholar] [CrossRef]
- Yan, H.; Hu, H.C.; Liu, Y.P.; Tudaji, M.; Yang, T.; Wei, Z.W.; Chen, L.J.; Khan, M.Y.A.; Chen, Z.H. Characterizing the groundwater storage-discharge relationship of small catchments in China. Hydrol. Res. 2022, 53, 782–794. [Google Scholar] [CrossRef]
- Yu, D.L.; Yu, J.Q.; Wu, D.; Han, Y.; Sun, B.; Zheng, L.S.; Chen, H.L.; Liu, R. Isotopic and Hydrochemical Characteristics of the Changqing-Xiaolipu Water Resource, Jinan, Eastern China: Implications for Water Resources in the Yellow River Basin. Sustainability 2023, 15, 2439. [Google Scholar] [CrossRef]
- Hall, F.R. Base-Flow Recessions—A Review. Water Resour. Res. 2010, 4, 973–983. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wang, W.H.; Yan, C.; Gao, J.J. Driving effects of spatiotemporal evolution of the water resources carrying capacity in the Yellow River Basin (Henan section). Sci. Rep. 2024, 14, 29340. [Google Scholar] [CrossRef]
- Stewart, M.K.; Morgenstern, U.; McDonnell, J.J. Truncation of stream residence time: How the use of stable isotopes has skewed our concept of streamwater age and origin. Hydrol. Process. 2010, 24, 1646–1659. [Google Scholar] [CrossRef]
- van Dijk, A.I.J.M. Climate and terrain factors explaining streamflow response and recession in Australian catchments. Hydrol. Earth Syst. Sci. 2010, 14, 159–169. [Google Scholar] [CrossRef]
- Yang, D.W.; Shao, W.W.; Yeh, P.J.F.; Yang, H.B.; Kanae, S.; Oki, T. Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water Resour. Res. 2009, 45, W00A14. [Google Scholar] [CrossRef]
- Zheng, H.X.; Zhang, L.; Zhu, R.R.; Liu, C.M.; Sato, Y.; Fukushima, Y. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resour. Res. 2009, 45, W00a19. [Google Scholar] [CrossRef]
- Biswal, B.; Nagesh Kumar, D. What mainly controls recession flows in river basins? Adv. Water Resour. 2014, 65, 25–33. [Google Scholar] [CrossRef]
- Wang, D.B.; Cai, X.M. Detecting human interferences to low flows through base flow recession analysis. Water Resour. Res. 2009, 45, W07426. [Google Scholar] [CrossRef]
- Chen, B.; Li, W.; Lu, H.; Fu, H.; Zhou, S.; Huang, W. Deformation Analysis of Jungong Ancient Landslide Based on SBAS-InSAR Technology in the Yellow River Mainstream. Geomat. Inf. Sci. Wuhan Univ. 2024, 49, 1407–1421. [Google Scholar]
- Dai, W.-T.; Zhang, H.; Wu, X.; Zhong, M.; Duan, G.-L.; Dong, J.-H.; Zhang, P.-P.; Fan, H.-M. Pollution Characteristics and Source Analysis of Soil Heavy Metal in Coal Mine Area near the Yellow River in Shandong. Huan Jing Ke Xue/Huanjing Kexue 2024, 45, 2952–2961. [Google Scholar] [CrossRef]
- Li, X.M.; Yan, B.Z.; Wang, Y.Q.; Wang, X.Z.; Li, Y.; Gai, J.B. Study of the Interaction between Yellow River Water and Groundwater in Henan Province, China. Sustainability 2022, 14, 8301. [Google Scholar] [CrossRef]
- Tong, X.X.; Tang, H.; Gan, R.; Li, Z.T.; He, X.L.; Gu, S.Q. Characteristics and Causes of Changing Groundwater Quality in the Boundary Line of the Middle and Lower Yellow River (Right Bank). Water 2022, 14, 1846. [Google Scholar] [CrossRef]
- Zhi, C.S.; Cao, W.G.; Wang, Z.; Li, Z.Y. High-Arsenic Groundwater in Paleochannels of the Lower Yellow River, China: Distribution and Genesis Mechanisms. Water 2021, 13, 338. [Google Scholar] [CrossRef]
- Ma, M.H.; Wen, L.; Hao, S.J.; Zhao, G.; Zhou, M.P.; Liu, C.J.; Wang, H.X.; Wang, Z.L. A grid-based distributed hydrological model for coal mined-out area. J. Hydrol. 2020, 588, 124990. [Google Scholar] [CrossRef]
- Lyne, V.; Hollick, M. Stochastic Time-Variable Rainfall-Runoff Modelling. Inst. Enst. Eng. Aust. 1979, 79, 89–93. [Google Scholar]
- Chapman, T.G.; Maxwell, A.I. Baseflow separation—Comparison of numerical methods with tracer experiments. In Hydrology and Water Resources Symposium; Institution of Engineers: Barton, Australia, 1996; pp. 539–545. [Google Scholar]
- Arnold, J.G.; Allen, P.M. Automated methods for estimating baseflow and ground water recharge from streamflow records. J. Am. Water Resour. Assoc. 1999, 35, 411–424. [Google Scholar] [CrossRef]
- Eckhardt, K. How to construct recursive digital filters for baseflow separation. Hydrol. Process. 2005, 19, 507–515. [Google Scholar] [CrossRef]
- Vogel, R.M.; Kroll, C.N. Regional Geohydrologic-Geomorphic Relationships for the Estimation of Low-Flow Statistics. Water Resour. Res. 1992, 28, 2451–2458. [Google Scholar] [CrossRef]
- Carlotto, T.; Chaffe, P.L.B. Master Recession Curve Parameterization Tool (MRCPtool): Different approaches to recession curve analysis. Comput. Geosci. 2019, 132, 1–8. [Google Scholar] [CrossRef]
- Brutsaert, W.; Nieber, J.L. Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour. Res. 2010, 13, 637–643. [Google Scholar] [CrossRef]
- Boussinesq, J. Recherches théoriques sur l’écoulement des nappes d’eau infiltrées dans le sol et sur le débit des sources. J. Math. Pures Appl. 1904, 10, 5–78. [Google Scholar]
- Maillet, E. Essais d’Hydraulique souterraine et fluviale. Nature 1905, 72, 25–26. [Google Scholar] [CrossRef]
- Chapman, T. A comparison of algorithms for stream flow recession and baseflow separation. Hydrol. Process. 1999, 13, 701–714. [Google Scholar] [CrossRef]
Name | Functions | Source |
---|---|---|
Digital Filtering Method 1(DF1) | [12,41] | |
Digital Filtering Method 2(DF2) | [42] | |
Digital Filtering Method 4(DF4) | [44] |
Conditions | Results | Source |
---|---|---|
Depuit–Boussinesq Aquifer model | [48] | |
[49] | ||
Depuit–Boussinesq Aquifer model | [47] | |
Existing leakage situation | [50] | |
[34] |
Category | Dataset | Properties | Source |
---|---|---|---|
streamflow | Hydrological Data of the Yellow River Basin | Measured streamflow data during the period of 1934–2020 | http://www.geodata.cn/ (accessed on 21 June 2024) |
meteorological | (1) 1951–2010 China 2474 National Ground Station Data Corrected Monthly Report Data File Basic Data Set (2) Ground monthly report data files reported by each province to the National Meteorological Information Center (3) Real-time database data of the National Meteorological Information Center | January 1951 to December 2010 January 2011 to December 2014 January 2015 to February 2015 | http://www.resdc.cn/ (accessed on 23 June 2024) |
DEM | Shuttle Radar Topography Mission (SRTM) products | 90-m resolution digital elevation | https://www.gscloud.cn/ (accessed on 25 June 2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, H.; Wan, L. The Application of Baseflow Separation and Master Recession Curves Methods in the Middle Yellow River Basins. Water 2025, 17, 2824. https://doi.org/10.3390/w17192824
Tong H, Wan L. The Application of Baseflow Separation and Master Recession Curves Methods in the Middle Yellow River Basins. Water. 2025; 17(19):2824. https://doi.org/10.3390/w17192824
Chicago/Turabian StyleTong, Haoxu, and Li Wan. 2025. "The Application of Baseflow Separation and Master Recession Curves Methods in the Middle Yellow River Basins" Water 17, no. 19: 2824. https://doi.org/10.3390/w17192824
APA StyleTong, H., & Wan, L. (2025). The Application of Baseflow Separation and Master Recession Curves Methods in the Middle Yellow River Basins. Water, 17(19), 2824. https://doi.org/10.3390/w17192824