Next Article in Journal
A Sustainability Evaluation of Large-Scale Water Network Projects: A Case Study of the Jiaodong Water Network Project, China
Previous Article in Journal
Optimizing Shrimp Culture Through Environmental Monitoring: Effects of Water Quality and Metal Ion Profile on Whiteleg Shrimp (Litopenaeus vannamei) Performance in a Semi-Intensive Culture Pond
Previous Article in Special Issue
Predictive Flood Uncertainty Associated with the Overtopping Rates of Vertical Seawall on Coral Reef Topography
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Potential Applications of Light Absorption Coefficients in Assessing Water Optical Quality: Insights from Varadero Reef, an Extreme Coral Ecosystem

by
Stella Patricia Betancur-Turizo
1,*,
Adán Mejía-Trejo
2,
Eduardo Santamaria-del-Angel
3,
Yerinelys Santos-Barrera
1,
Gisela Mayo-Mancebo
1 and
Joaquín Pablo Rivero-Hernández
1
1
Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe (CIOH), Cartagena 130001, Colombia
2
Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Km. 103 Carretera Tijuana-Ensenada, Ensenada 22860, Baja California, Mexico
3
Coordinación del Sistema de Información y Análisis Marino Costero (SIMAR), Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Ciudad de México 14010, Mexico
*
Author to whom correspondence should be addressed.
Water 2025, 17(19), 2820; https://doi.org/10.3390/w17192820
Submission received: 1 July 2025 / Revised: 1 August 2025 / Accepted: 8 August 2025 / Published: 26 September 2025

Abstract

Coral reefs exposed to chronically turbid conditions challenge conventional assumptions about the optical environments required for reef persistence and productivity. This study investigates the utility of light absorption coefficients as indicators of optical water quality in Varadero Reef, an extreme coral ecosystem located in Cartagena Bay, Colombia. Field campaigns were conducted across three seasons (rainy, dry, and transitional) along a transect from fluvial to marine influence. Absorption coefficients at 440 nm were derived for particulate (ap(440)) and chromophoric dissolved organic matter (aCDOM(440)) to assess their contribution to underwater light attenuation. Average values across seasons show that ap(440) reached 0.466 m−1 in the rainy season (September 2021), 0.285 m−1 in the dry season (February 2022), and 0.944 m−1 in the transitional rainy season (June 2022). Meanwhile, mean aCDOM(440) values were 0.368, 0.111, and 0.552 m−1, respectively. These coefficients reflect the dominant influence of particulate absorption under turbid conditions and increasing aCDOM(440) relevance during lower turbidity periods. Mean Secchi Disk Depth (ZSD) ranged from 0.6 m in the rainy season to 3.0 m in the dry season, aligning with variations in Kd PAR, which averaged 2.63 m−1, 1.13 m−1, and 1.08 m−1 for the three campaigns. Chlorophyll-a concentrations at 1 m depth also varied significantly, with average values of 2.3, 2.7, and 6.2 μg L−1, indicating phytoplankton biomass peaks associated with seasonal freshwater inputs. While particulate absorption limits light penetration, CDOM plays a potentially photoprotective role by attenuating UV radiation. The observed variability in these optical constituents reflects complex hydrodynamic and environmental gradients, providing insight into the mechanisms that sustain coral functionality under suboptimal light conditions. The absorption-based approach applied here, using standardized spectrophotometric methods, proved to be a reliable and reproducible tool for characterizing the spatial and temporal variability of IOPs. We propose integrating these indicators into monitoring frameworks as cost-effective, component-resolving tool for evaluating light regimes and ecological resilience in optically dynamic coastal systems.

1. Introduction

Reef-forming corals (Scleractinians) are typically found in environments with low sedimentation, limited nutrient input, clear waters, and stable salinities between 33 and 36 PSS. Nevertheless, some coral reefs persist under extreme environmental conditions that deviate markedly from these norms, challenging traditional ecological assumptions. In the Cartagena Bay for example, according to Davis et al. [1], the most extreme mixed turbid environment in the Caribbean and western Atlantic region, named Varadero reef, is characterized by its high turbidity, largely related to coastal development, industrial and sewage wastewater, and sediment discharge from the Magdalen River [2,3,4].
Previous studies at Varadero Reef indicate that this ecosystem is mainly constituted of large colonies of Orbicella spp., which represent 80% of its cover and are predominantly located towards the shallower portions of the reef [5,6]. Despite an adverse environmental condition described by the authors, interesting ecological aspects have been studied in this extreme coral reef. For example, the reef structure and species composition demonstrate that Varadero Reef is a functional ecosystem [6], with high fish species richness [4], high species richness of Scleractinian coral, and the presence of other groups (hydrocorals, sponges, lobsters and sea urchins), distributed in a very similar way to the typical zonation of a Caribbean fringing reef [6]. The structure and species composition of Varadero closely resemble those of a typical Caribbean fringing reef. This raises a critical question: how can a reef exposed to chronic turbidity maintain high ecological integrity and functional resilience?
A plausible explanation lies in the distinct optical properties of the water column. Reefs in turbid environments such Varadero may exhibit adaptations to low-light conditions, likely mediated by interactions between light and suspended or dissolved constituents—mechanisms that remain insufficiently understood [7]. For instance, suspended sediments can mitigate ultraviolet (UV) radiation stress, as noted by López-Londoño et al. [3]. These interactions shape the underwater light field, influencing critical processes such as photosynthesis, primary production, and visual perception for reef organisms. Understanding how different optical constituents contribute to light attenuation is therefore essential not only for evaluating water quality but also for interpreting the ecological functionality and resilience of coral ecosystems exposed to high turbidity.
However, traditional water quality assessments in marine-coastal systems often rely on general metrics such as Secchi disk depth, turbidity, chlorophyll-a concentration, and multisonde-derived variables like pH, dissolved oxygen, and temperature. In some cases, nutrient concentrations—particularly phosphates originating from domestic wastewater and detergents—are also included. These conventional metrics are typically aimed at detecting nutrient pollution, algal blooms, and general suspended material, without distinguishing the specific contributions of the particulate and dissolved fractions that govern underwater light fields [8,9]. As a result, inherent optical properties (IOPs)—such as light absorption coefficients—remain underutilized in the evaluation of water quality in coastal ecosystems, despite their capacity to provide detailed information on the distribution and interactions of these optical components.
Light absorption coefficients provide a robust framework to understand how different water constituents influence underwater light availability. The particulate fraction—encompassing both organic and inorganic particles—can signal sediment inputs, resuspension processes, and biological activity, thereby modulating light penetration in the water column. In contrast, the dissolved fraction, particularly chromophoric dissolved organic matter (CDOM), reflects contributions from riverine discharge and anthropogenic sources and can alter both light attenuation and photochemical processes [10]. Incorporating inherent optical property (IOP) measurements into coastal water studies is thus essential for improving our understanding of optical and ecological variability in systems such as Varadero Reef, where light availability is both critical and highly dynamic.
A key aspect of this study is the role of dissolved and particulate fractions in modulating the underwater light climate. The dissolved component, particularly chromophoric dissolved organic matter (CDOM), plays a crucial role in attenuating ultraviolet (UV) radiation, potentially serving as a photoprotective mechanism in turbid coral reef environments. CDOM acts as a natural spectral filter, selectively absorbing short wavelengths and thereby reducing photochemical stress on photosynthetic organisms [11,12]. At the same time, elevated concentrations of suspended particulate matter can significantly limit light penetration but may also stabilize the surface light environment by buffering daily or seasonal fluctuations in irradiance [7].
By investigating these properties, this study aims to demonstrate the utility of light absorption coefficients in assessing optical water quality under extreme conditions. We propose a methodological framework that emphasizes IOPs as key indicators, particularly suited for dynamic environments influenced by a mix of fluvial, marine, and human activities. This approach seeks to improve both ecological monitoring and management strategies for vulnerable coastal systems, including turbid coral reefs.

2. Materials and Methods

This section describes the study area and sampling strategy, followed by an overview of conventional water quality metrics. It then introduces the proposed optical methods for quantifying the contributions of light-absorbing constituents—grouped as particulate matter and dissolved matter (CDOM). Lastly, we describe the environmental and sedimentary variables used to contextualize the seasonal variability in optical properties.

2.1. Study Area: Cartagena Bay and Varadero Reef

Cartagena Bay (10°16′–10°26′ N, 75°30′–75°37′ W) is a semi-enclosed coastal system in northern Colombia, covering approximately 82 km2 and reaching maximum depths of 30.3 m. It is connected to the Caribbean Sea through two inlets—Bocagrande to the north and Bocachica to the south. The Varadero Reef is located near the southern inlet, adjacent to the main navigation channel (Figure 1).
Cartagena Bay receives significant freshwater and sediment inputs from the Canal del Dique (Figure 1a), contributing to pronounced spatial and temporal variability in physical and chemical conditions. Varadero Reef lies near the mouth of the canal, embedded in a sediment-rich deltaic environment with a seafloor characterized by calcareous pinnacles, mud volcanoes, and scattered coral formations (Figure 1b). These unique conditions provide an ideal setting for evaluating the utility of IOPs in coastal water quality assessments.
To provide a comprehensive overview of the methodological approach, a schematic diagram is presented in Figure 2. This flowchart outlines the major components of the study, including the water sampling design, the assessment of conventional and optical water quality metrics, the characterization of the environmental and sedimentary context, and the subsequent statistical analyses. The framework highlights the integration of multiple data sources—ranging from satellite-derived products and in situ measurements to sediment samples and laboratory analyses—used to evaluate the optical quality of coastal waters in the Varadero Reef region.

2.2. Water Sampling Design

Field sampling was conducted during three seasonal campaigns representing distinct hydrological periods: the rainy season (September 2021), the dry season (February 2022), and the transitional period (June 2022). Seven stations (S01–S07) were sampled across a gradient of fluvial to oceanic influence (Figure 1b). At each station, surface (1 m) and bottom (10–30 m) water samples were collected using 5-L Niskin bottles for the determination of chlorophyll-a (Chl) and absorption coefficients of particulate matter and chromophoric dissolved organic matter (CDOM). A water sample was extracted directly from the Niskin bottle using previously washed amber glass bottles for the determination of the CDOM absorption coefficient according to the protocol of Mitchell et al. [13]. They were stored under refrigeration (4 to 8 °C) until laboratory analysis. From the remaining volume, water samples were taken in 2000 mL plastic bottles for particulate absorption and Chlorophyll-a determination. The detailed methodology for these variables is provided in Betancur-Turizo et al. [14] and Eljaiek-Urzola et al. [15] and the complete database is available through the CECOLDO Metadata Catalog (https://doi.org/10.26640/cecoldo.dataset_00585 accessed on 11 August 2025). However, a quick description of these is given below.

2.3. Conventional Water Quality Metrics

The following conventional indicators were measured to provide baseline water quality information:
  • Secchi Disk Depth (ZSD): Water transparency was measured using a Secchi disk oceanographic version (white disk of 30 cm diameter), following the recommendations of Santamaría-del-Angel et al. [16]. The procedure applied for measuring this variable considered that the measurement can be affected by the human eye and therefore one person was assigned as responsible for this measurement. The differences associated with the angle were also considered, so the reading was made during the same time interval (between 9 a.m. and 3 p.m.) mainly on sunny days, when it is assumed that there is more indirect light than diffuse light penetrating the water column [16]. When considering these aspects, it was assumed that errors were consistent throughout the sampling process.
  • Chlorophyll-a Concentration: Was estimated according to Method 10200 H.2.b. defined by Baird et al. [17] for which 100 mL to 1000 mL of water through a negative filtration system, using Whatman GF/F filter (nominal pore size 0.7 µm and 47 mm diameter). Each filter was carefully placed in aluminum foil, folded in half for packing, and preserved in liquid nitrogen until analysis in the laboratory.
  • Turbidity: Determined in nephelometric turbidity units (NTU) using an EZDO GONDO TUB-430 turbidimeter (https://www.gondo.com.tw/products_detail/23.htm accessed on 11 August 2025) according to Method 2130 B defined by Baird et al. [17].

2.4. Proposed Optical Assessment Framework

To better characterize underwater light conditions in optically complex coastal waters, this study incorporated specific inherent optical properties (IOPs) as part of the assessment framework. The methodology focused on the quantification of absorption by particulate matter and chromophoric dissolved organic matter (CDOM), the two main constituents affecting underwater light attenuation.

2.4.1. Determination of Light Absorption Coefficients

  • Particulate Matter (ap(λ)): Was determined from spectrophotometric measurements of optical density on filter pads (Whatman GF/F filter, 25 mm diameter) following the corrections proposed by Roesler et al. [18] for measurements performed without an integrating sphere. For the analysis, between 100 mL and 1000 mL of water were filtered using a low-pressure (<5 PSI) vacuum filtration system with Whatman GF/F filter (nominal pore size 0.7 µm and diameter of 25 mm). Each filter was carefully placed in a tissue processing capsule and stored in liquid nitrogen until analysis. Spectrophotometric readings were conducted according to the protocol of Roesler et al. [18], which involves measuring optical density in the UV-Vis range (350–850 nm) using a spectrophotometer without an integrating sphere. For this analysis, each filter was placed directly into a Varian Cary 100 Spectrophotometer to obtain the particulate absorption coefficient ap(λ), using the following equation from Roesler et al. [18]:
    a p λ = l n   10 0.679 ( O D f ( λ ) ) 1.2804 V / A
    where, V is the volume of water filtered (in m3), A is the effective filtration area (in m2), and the subscript p denotes particulate matter. The term 0.679 ( O D f ( λ ) ) 1.2804 represents the sample’s optical density (ODs (λ)) corrected by the amplification factor β, specific to T-mode measurements (Transmittance mode) performed without an integrating sphere.
  • CDOM (aCDOM(λ)): CDOM samples were analyzed following the methodology described by Mitchell et al. [13]. This procedure involved filtering the water sample through a 0.2 µm pore-size membrane filter that had been pre-cleaned with 10% HCl and rinsed thoroughly with ultrapure water. The cleaned filter was placed into a filtration apparatus, which was then purged using both ultrapure water and the sample itself to minimize contamination.
The total absorption coefficient (at(λ)) was calculated as the sum of absorption by water, particulate matter, and CDOM, providing an integrated view of light absorption at each station. The water absorption coefficient values (aw(λ)) were obtained from the dataset provided by Morel and Prieur [19], which includes temperature- and salinity-independent values for the absorption spectrum of pure seawater and is publicly available at https://omlc.org/spectra/water/data/morel77.txt (accessed on 11 August 2025).
Although at(440) was calculated as the sum of ap(440), aCDOM(440), and aw(440), the bar plots representing relative contributions focus exclusively on the non-water components (ap(λ) and aCDOM(λ)), as aw(440) remains constant and does not reflect biogeochemical or anthropogenic variability.
It is important to note that while particulate matter is concentrated onto the filter surface for spectrophotometric measurement in T-mode, the resulting absorption coefficients ap(λ) are widely used as proxies for the optical effect of particles dispersed throughout the water column. This approach, supported by empirical correction factors and standardized protocols (e.g., [18]), allows for reliable inter-sample comparisons of particle absorption despite the physical differences in measurement geometry. For clarity and transparency, the theoretical background, assumptions, and associated uncertainties of this method are detailed in Appendix A.

2.4.2. Estimation of Diffuse Attenuation Coefficient for Downward Photosynthetically Active Radiation (Kd PAR)

Diffuse Attenuation Coefficient for Downward Photosynthetically Active Radiation (Kd PAR) was estimated using Secchi Disk Depth (ZSD) and the empirical model proposed by Castillo-Ramírez et al. [20]. This approach allows for standardized estimates of light attenuation according to the optical variability of different water types.

2.5. Environmental and Sedimentary Context

To contextualize the spatial and temporal variability in optical absorption, a set of environmental and sedimentary descriptors was included:
  • Meteorological and oceanographic conditions: Physical parameters were measured throughout the water column at all sampling stations. This was conducted using an RBRconcerto3 C.T.D, following the manufacturer’s recommended protocols. Sea surface temperature and wind speed were obtained from the ERA5 reanalysis dataset, while sea level data were retrieved from the CIOH-EMAR tide gauge station located in Cartagena Bay. These variables offer insights into seasonal hydrodynamics and water column stratification.
  • Rainfall patterns: Daily rainfall data from ERA5 were extracted for a defined region along the Canal del Dique, covering the period from 2013 to 2022. These records enabled the characterization of freshwater inputs and their influence on sediment plumes and CDOM.
  • Sediment characteristics: Grain size distribution and calcium carbonate content were analyzed from 86 surface sediment samples collected across the bay (Figure 1b). These parameters help assess the potential for sediment resuspension and its role in modulating light scattering and absorption.
By integrating these descriptors, we aim to clarify how environmental forcing mechanisms shape the observed variability in particulate and dissolved light-absorbing components throughout the year.
All datasets used in this study are summarized in Supplementary Table S1. These include discrete in situ measurements collected during three oceanographic campaigns of Project ARC No. 75916 (8 September 2021; 18 February 2022; and 23 June 2022), some of which are publicly available through the CECOLDO Metadata Catalog. The table also includes a sediment dataset based on samples collected across Cartagena Bay between February and March 2020, meteorological and sea level data from the CIOH-EMAR tide gauge and weather station, and satellite-based reanalysis products (e.g., ERA5 sea surface temperature, wind speed, and rainfall). Supplementary Table S1 provides a comprehensive overview of the source, spatial and temporal resolution, coverage period, data format, and availability of each dataset used in the study.

2.6. Statistical Analyses

In order to assess the association between all the reported variables, a multiple contrast analysis was performed by organizing pairs of variables and using the Spearman’s correlation coefficients (rs) following the criteria of Santamaria-del-Angel et al. [21]. The statistical significance of the indices was evaluated [22], and the results were interpreted following the criteria of Mu et al. [23]. Critical values tables were taken from [24] for Spearman’s correlation coefficient.

3. Results and Discussions

3.1. Seasonal and Spatial Patterns in Light Absorption Components

The relative contribution of coefficients of particulate matter (ap(440)) and Chromophoric dissolved organic matter (aCDOM(440)) (Figure 3) indicates a predominance of particulate matter, with ap(440) values exceeding 50% of the total non-water absorption, both at the surface (Figure 3a–c) and at depth (Figure 3d–f). This predominance is particularly pronounced at stations influenced by fluvial inputs (S04–S07) and in bottom samples, where all stations and campaigns show ap(440) contributions greater than 50%, reaching up to 98% in some cases.
At the surface, the stations with greater fluvial influence (S06 and S07) consistently show dominance of ap(440) compared to the oceanic station (S01) and those with marine influence (S02–S03). However, this pattern weakens or even reverses during the February 2022 campaign, particularly at station S07 (Figure 3b). Additionally, during the June and September campaigns, some intermediate stations (S03, S04, and S05) show higher relative contributions of aCDOM(440) (Figure 3a,c), even exceeding the 50% threshold (Figure 3a).
Although aCDOM(440) remained below 50% at most stations, specific exceptions were identified. In September 2021, aCDOM(440) reached between 58% and 64% at stations S03, S04, and S05 (Figure 3a); in February 2022, S07 recorded 61% (Figure 3b); and in June 2022, S01 presented a value near the threshold (51%) (Figure 3c). These exceptions suggest specific conditions of increased input or persistence of dissolved matter, possibly related to lower particulate loads or local hydrodynamic variations.
In terms of absolute absorption, ap(440) exhibited the highest values, especially in surface samples influenced by fluvial inputs (Figure 3a,c), reaching peaks close to 2.5 m−1 (Figure 3c). In contrast, aCDOM(440) showed lower and more stable values (Figure 3b), with the highest records occurring during the rainy season campaigns (Figure 3a,c). In bottom samples, ap(440) values were generally below 0.5 m−1, while aCDOM(440) values did not exceed 0.1 m−1 (Figure 3d–f).
To quantitatively contextualize these observations, Table 1 summarizes the average values of key optical and environmental variables for each campaign, distinguishing between the surface layer (1 m) and the bottom layer (10–30 m). Consistent patterns are highlighted, such as higher turbidity, chlorophyll-a, ap(440), and at(440) in surface waters during June (with maximum values of at(440) = 1.511 m−1 and ap(440) = 0.944 m−1), along with a general decrease in ap(440), at(440), and aCDOM(440), as well as turbidity, chlorophyll-a, and temperature with depth. Surface salinity reached its lowest values during the months of highest fluvial discharge, particularly in June (23.3 PSS), consistent with greater terrestrial influence. Minimum surface temperature values (28.7 °C) were associated with the dry season, while the lowest average ZSD corresponded to the rainy season.
The observed spatial and temporal variations in absorption components are consistent with patterns documented in other river-influenced coastal systems. For instance, studies in Hudson Bay [25], the Laptev Sea [26], and North Borneo estuaries [27] have shown that terrestrial inputs of CDOM and particulate matter can persist across salinity gradients and into deeper layers, depending on hydrodynamics and mixing regimes. In Cartagena Bay, the relative dominance of aCDOM(440) in transitional zones and ap(440) near the Canal del Dique suggests a similar dynamic, where both hydrological seasonality and local resuspension processes shape the optical landscape. These insights reinforce the ecological relevance of evaluating both dissolved and particulate absorption in stratified and optically complex coastal waters.

3.2. Relationship Between Absorption Properties and Optical Quality Indicators

Correlation analyses revealed distinct patterns between optical absorption coefficients and environmental variables, particularly in surface waters. Ecologically relevant associations were explored in both surface and bottom layers using Spearman rank correlations (Table 2 and Table 3). In the surface layer, several variable pairs showed statistically significant correlations (|rs| > 0.433, α = 0.05, highlighted in bold in Table 2). These results emphasize the central role of freshwater inputs and suspended material in modulating water optical properties, especially through the delivery of CDOM and particulate matter.
Salinity showed strong negative correlations not only with aCDOM(440) (rs = −0.827), ap(440) (rs = −0.696), and at(440) (rs = −0.768), but also with chlorophyll-a (rs = −0.638), reinforcing the influence of freshwater inflows as vectors of both organic matter and phytoplankton biomass. Similarly, turbidity was significantly correlated with ap(440) (rs = 0.635), aCDOM(440) (rs = 0.503), and at(440) (rs = 0.648), reflecting its value as a proxy for optically active constituents. Interestingly, the negative correlation between turbidity and salinity (rs = −0.429) underscores the contrasting behavior of traditional indicators and IOP-derived metrics, further supporting the inclusion of absorption coefficients in the study of turbid coral environments.
These findings suggest that while traditional variables such as turbidity and salinity provide valuable information, they may not fully capture the complexity of underwater light environments. In contrast, absorption-based indicators offer more direct insights into light attenuation processes, particularly relevant for assessing conditions affecting coral reef habitats.
In contrast, bottom layer analyses (Table 3) revealed no statistically significant correlations between turbidity and optical absorption coefficients. Specifically, the correlations between turbidity and ap(440) (rs = 0.404) and at(440) (rs = 0.417) remained below the significance threshold (|rs| > 0.433, α = 0.05, n = 21). These statistically non-significant trends suggest that, unlike in surface waters, turbidity is not a reliable proxy for particulate absorption at depth. This finding highlights the more complex or localized nature of particulate dynamics in bottom layers, where sediment resuspension, benthic inputs, or weaker stratification may decouple the relationship between suspended solids and inherent optical properties.
Although most studies exploring CDOM-salinity relationships focus on surface layers, there is growing evidence that these associations can persist throughout the water column. For instance, Juhls et al. [26] reported strong negative relationships between aCDOM and salinity even in subsurface Arctic and estuarine layers, suggesting vertical coherence in freshwater-derived CDOM signals. While those studies employed different wavelengths (e.g., 350 or 443 nm), their results align with our findings and support the use of aCDOM(440) as a spectral proxy in CDOM-dominated systems.
Our results extend this understanding by demonstrating that, despite the lack of statistical significance, the inclusion of bottom-layer aCDOM(440) and Secchi depth measurements adds valuable insight into the vertical structure of optical quality in fluvially influenced coastal systems such as Cartagena Bay. This supports the recommendation by Martin et al. [28] to assess optical variability across depth strata, especially in systems characterized by vertical stratification and resuspension events.
As illustrated in Figure 4, salinity exhibited strong negative correlations with aCDOM(440) (rs = −0.827; Figure 4a) and ap(440) (rs = −0.696; Figure 4b), confirming the influence of terrestrial runoff in delivering both dissolved and particulate matter. This inverse relationship between aCDOM and salinity is well-documented in fluvially influenced coastal and estuarine systems, where freshwater discharges transport high concentrations of colored dissolved organic matter, which gradually dilutes with increasing salinity toward marine waters [27,29,30]. Turbidity was positively correlated with ap(440) (rs = 0.635; Figure 4c) and at(440) (rs = 0.648; Figure 4d), reinforcing its role as a proxy for suspended light-attenuating substances. These findings align with those of Eljaiek-Urzola et al. [15], who observed that both ap(440) increased significantly during high discharge events from the Canal del Dique, concurrently with turbidity peaks. This highlights turbidity as a reliable surrogate for the concentration of suspended particulates that modulate light penetration in optically complex coastal systems. Chlorophyll-a, an indicator of phytoplankton biomass, also correlated significantly with ap(440) (rs = 0.531; Figure 4e), highlighting the phytoplankton contribution to particulate absorption.
In summary, the patterns of correlation and spatial distribution in this study reinforce the value of using absorption-based indicators to characterize underwater light conditions in complex coastal zones. They also confirm the dual role of CDOM and suspended particles as both stressors and modulators of light availability, with direct implications for primary production and coral reef ecology in turbid systems [3,31]. These insights are critical for refining monitoring approaches and conservation strategies in fluvially influenced tropical coastal ecosystems.
The longitudinal transects depicted in Figure 5 reveal distinct spatial and vertical patterns in ap(440) across the gradient from the Canal del Dique outlet to offshore waters. In all three sampling campaigns, surface waters generally exhibited the highest ap(440) values at the stations most influenced by fluvial discharge (S06 and S07), with a progressive decrease toward offshore stations. However, each campaign also showed unique features worth highlighting.
In September 2021 (Figure 5a), surface ap(440) values peaked at the river-influenced stations (S06 and S07), but unexpectedly, station S02—characterized by a more marine influence—showed the highest value of the campaign (1.108 m−1), indicating a localized input or accumulation of particulate matter.
During February 2022 (Figure 5b), both surface and bottom layers exhibited the lowest ap(440) values recorded across all campaigns, suggesting a period of reduced particulate input and a relatively well-mixed water column. In most stations, the difference between surface and bottom layers was minimal, pointing to weak vertical stratification. An exception was observed at station S04, where bottom ap(440) (0.461 m−1) was nearly twice the surface value (0.234 m−1), suggesting localized resuspension or vertical transport.
In June 2022 (Figure 5c), the water column displayed strong vertical stratification in all stations, with a distribution pattern resembling that of September 2021. Notably, station S02 again exhibited surface ap(440) values (1.070 m−1) similar to those at the most turbid, river-influenced sites—S06 (1.472 m−1) and S07 (2.084 m−1)—highlighting the complex and dynamic nature of particulate distribution in this transitional coastal zone.
These findings are consistent with other optical studies in fluvial-marine transition zones, where sediment dynamics, resuspension, and freshwater pulses generate marked spatial and vertical heterogeneity in absorption coefficients [32,33,34]. The observed variability in ap(440) reinforces the importance of capturing both surface and bottom conditions when assessing light availability in reef systems exposed to high sediment fluxes.
Across all campaigns, the spatial structure of ap(440) reflects a gradient of influence from the Canal del Dique, with maximum absorption values recorded at stations located closest to its outflow (S06 and S07). This spatial signal is consistent with the strong terrestrial input characteristic of semi-enclosed coastal systems influenced by major freshwater discharges [33]. This gradient diminishes toward stations less exposed to fluvial discharge, particularly S01 and S02, although localized peaks—such as those observed at S02—highlight the dynamic nature of particulate distribution within this semi-enclosed bay. Such anomalies may reflect transient inputs, sediment resuspension, or retention zones that accumulate particulate matter, as also reported by Ferrari et al. [32] and Tilstone et al. [35].
The observed temporal and vertical variability underscore the importance of assessing both the particulate and dissolved fractions to better understand optical water quality and ecological functioning in systems with strong and variable terrestrial inputs. This multidimensional approach is especially relevant in areas like Varadero Reef, where corals thrive under suboptimal light conditions, making them highly sensitive to fluctuations in optical properties [5,8].
Just like ap(440), aCDOM(440) generally shows higher values at the surface than at depth in most stations (Figure 6a–c), confirming the prevalence of terrestrial-derived dissolved organic matter in surface layers influenced by riverine discharge. Regarding the spatial gradient, distinct patterns were observed for each campaign:
  • In September 2021 (Figure 6a), the spatial distribution of aCDOM(440) revealed an inverse trend compared to ap(440), with increasing values from station S07 (0.240 m−1) to S02 (0.613 m−1). This pattern suggests areas with lower particle concentration may retain higher CDOM levels due to reduced photodegradation and enhanced retention—mechanisms consistent with findings by Xi et al. [25] and Mohd-Shazali et al. [27]. An exception occurred at S03, which registered the campaign’s lowest surface value (0.188 m−1), possibly reflecting dilution from marine waters or local flushing.
  • In February 2022 (Figure 6b), a weaker spatial gradient was observed, with values progressively decreasing from S07 (0.171 m−1) to S01 (0.029 m−1). This campaign coincided with the lowest overall particulate and CDOM levels, consistent with a dry-season reduction in fluvial inputs and a more homogenized water column.
  • In June 2022 (Figure 6c), a marked decline in aCDOM(440) was recorded from S07 (0.766 m−1) to S01 (0.176 m−1), with a notable anomaly at station S02 (0.684 m−1), whose values were comparable to those of highly fluvial stations like S06 (0.691 m−1). These elevated values at S02 suggest that this site may be receiving episodic inputs of CDOM-rich water, possibly due to eddy activity, wind-driven transport, or internal waves—mechanisms noted in other optically complex systems [26,36].
These results emphasize that both CDOM and particulate absorption exhibit dynamic and at times decoupled spatial patterns, reinforcing the necessity to monitor both components independently. Moreover, the influence of CDOM on underwater light quality is particularly relevant for coral reef systems in turbid environments, where it modulates photic stress and may shape long-term coral survivorship [3,7,31].
To better understand the physical drivers behind these optical relationships, particularly the influence of freshwater discharge and hydrodynamic conditions, we examined the environmental context across the three campaigns using a combination of satellite and in situ data.

3.3. Environmental Context: Support for Optical Variability

The seasonal and spatial variability of underwater light absorption was assessed in relation to environmental conditions during the three sampling campaigns, using a combination of in situ measurements, satellite-derived data, and reanalysis products, as described in Section 2.6. These included sea surface temperature (SST), wind speed, tidal levels, precipitation, salinity, chlorophyll-a, turbidity, and water column stratification—each offering a complementary perspective on the physical and hydrological forcing mechanisms that influence optical properties in Cartagena Bay.
Environmental data indicate that September 2021 (Figure 7a) and June 2022 (Figure 7c) were characterized by warm sea surface temperatures (29–29.8 °C) and weak winds (<3 m·s−1), creating favorable conditions for thermohaline stratification. Conversely, February 2022 (Figure 7b) showed cooler SSTs (26.6–28.2 °C) and stronger winds (>3 m·s−1), which likely promoted vertical mixing and reduced the stability of the water column. These seasonal contrasts in SST and wind regimes are typical of tropical coastal systems influenced by both trade winds and the Intertropical Convergence Zone (ITCZ), which modulate regional hydrodynamics and freshwater inputs [34,37]. Tidal dynamics also played a role in shaping optical variability, with rising tides during the September 2021 (Figure 8a) and February 2022 (Figure 8b) campaigns and a falling tide during June (Figure 8c). This latter condition may have facilitated sediment resuspension and enhanced particulate concentrations in surface waters, a pattern evident in ap(440) values (Figure 5) and turbidity data (Table 1). Tidal asymmetry in semi-enclosed systems like Cartagena Bay can amplify the retention or export of fluvial materials, influencing CDOM accumulation and optical stratification [34,36].
Precipitation patterns further contextualize the optical differences observed across seasons. September and June coincided with high rainfall (>200 mm/month), while February marked the dry season with minimal precipitation (~60 mm) (Figure 9a). These differences are clearly associated with the magnitude of freshwater discharge through the Canal del Dique and are reflected in lower surface salinities, higher turbidity, and increased absorption by both CDOM and particulate matter during rainy months. Similar precipitation-driven effects on coastal optical properties have been reported in diverse systems, including Arctic deltas [26], Asian estuaries [27,38], and tropical South American bays [39,40].
Vertical stratification patterns, derived from CTD profiles and temperature–salinity diagrams (Figure 9b), confirm the presence of distinct surface and bottom layers during the September and June campaigns. These were typified by warmer, fresher surface waters overlaying cooler, saltier bottom layers, enhancing vertical differences in optical properties. February, by contrast, displayed a more uniform water column, consistent with increased wind-induced mixing.
Complementing these hydrographic conditions, bio-optical indicators also responded to seasonal forcing. Secchi depth decreased and turbidity rose during the rainy season, while surface chlorophyll-a concentrations peaked in June (6.2 μg·L−1), likely stimulated by elevated nutrient loads from terrestrial runoff. This pattern aligns with the strong correlation found between chlorophyll-a and ap(440), reinforcing the role of phytoplankton as a contributor to total particulate absorption in coastal waters [3,29].
Together, these environmental patterns underscore the tight coupling between regional climatic drivers and underwater light conditions. They also reinforce the need to interpret optical variability not solely as a product of biological or optical processes, but as an emergent property of complex and dynamic hydroclimatic interactions. This holistic perspective is essential for understanding the resilience of turbid coral reef systems such as Varadero, where benthic organisms rely on specific light regimes to maintain productivity under chronically reduced transparency [3,8].

3.4. Implications for Coral Light Environment

The spatial and seasonal variability observed in absorption properties has direct implications for the underwater light regime in Varadero Reef. Stations located farther from the Canal del Dique’s influence (S01–S03), especially during the February 2022 campaign, exhibited the highest water transparency (Secchi disk depth up to 13 m), low ap(440) values, and minimal CDOM absorption. These conditions allow greater irradiance to reach the benthos, which is critical for sustaining the photosynthetic needs of corals and their endosymbiotic algae [3,31].
Conversely, stations more strongly influenced by fluvial discharge (S06–S07) consistently showed elevated ap(440) values across campaigns, with maximum surface values exceeding 2 m−1 in June 2022. These high turbidity levels limit light penetration and reduce the vertical depth of the photic zone. However, they may also serve an adaptive role by filtering high-energy radiation, thereby providing photoprotection against excessive irradiance and UV exposure—a mechanism previously identified in turbid reef environments [8,41].
Notably, at certain stations and times—such as S03–S05 in September 2021 and S01 in June 2022—CDOM accounted for more than 50% of the total non-water absorption. This suggests that CDOM can become the dominant optical constituent, shaping not only the intensity but also the spectral quality of the light field. Because CDOM preferentially absorbs shorter wavelengths (UV and blue light), its presence may reduce photoinhibition risks while still allowing longer wavelengths to penetrate, thus modulating the light environment experienced by benthic communities [3,27].
This dual role of optical constituents—as both stressors and buffers—has major implications for coral physiology. While elevated particulate matter reduces light quantity, high CDOM levels can enhance spectral shielding, potentially fostering ligth acclimation and increasing tolerance to high thermal conditions [7]. The coexistence of reduced transparency and robust coral cover in Varadero therefore supports the notion that turbid reefs can harbor resilient coral assemblages when light quality is moderated by CDOM, a conclusion echoed in other marginal reef settings [29,42].
Understanding these trade-offs is crucial for interpreting the optical niche space available to corals in turbid coastal systems. In the case of Varadero, the balance between light limitation by particles and photoprotection by CDOM likely contributes to the persistence of coral-dominated communities under suboptimal light conditions. This insight adds to a growing body of literature calling for the incorporation of spectral quality metrics, not just light quantity, into assessments of coral reef vulnerability and resilience [5,8,28].
The strong dependence of optical absorption coefficients on the fluvial inputs from the Canal del Dique suggests that any modification to this freshwater-sediment delivery system would likely alter the underwater light environment in Varadero Reef. A complete closure of the canal could reduce both particulate and CDOM contributions, resulting in increased water transparency. While such a shift may seem beneficial in terms of light availability, it could also eliminate the spectral filtering effect provided by CDOM, potentially exposing corals to harmful UV radiation and altering the ecological balance that currently supports coral survival in this turbid environment [3,8]. These findings highlight the need to consider both light quantity and quality in management scenarios involving hydrological interventions.

3.5. Methodological Contributions and Broader Applicability

One of the key contributions of this study lies in the implementation of optical properties as a tool for monitoring marine ecosystems. This approach is grounded in the physical principle that variations in the bio-optical composition of the water column alter its light absorption and scattering characteristics. Optical properties can be classified into two categories: (1) apparent optical properties (AOPs), which are influenced by the aquatic medium and its environmental conditions, and (2) inherent optical properties (IOPs), which are determined by the constituents of the water itself.
AOPs, such as Secchi disk depth (ZSD), allow for rapid and low-cost estimations of parameters like the diffuse attenuation coefficient (Kd), revealing an inverse correlation between water transparency and particulate matter concentration [20]. However, their usefulness is limited to broad spatial scale approximations and is subject to variability depending on system type and the relative proportion of scattering versus absorption. Therefore, their interpretation must consider the specific conditions of the optical gradient (e.g., fluvial vs. marine influence).
In contrast, IOPs—including the specific absorption coefficients of phytoplankton (aphy), non-algal particles (aNAP), and CDOM (aCDOM)—offer a quantitative breakdown of the individual contributors to light attenuation. While their measurement requires standardized sampling and analytical methodologies, they provide higher analytical resolution that allows for the distinction between natural and anthropogenic sources of turbidity. Their inclusion significantly enhances diagnostic capabilities in optical water quality assessments.
The comparative application of both approaches in coastal systems such as Cartagena Bay reveals complementary advantages: while AOPs facilitate synoptic monitoring of turbidity changes, IOPs enable the identification of specific drivers behind those changes (e.g., phytoplankton blooms vs. terrigenous inputs). This distinction is critical for evaluating anthropogenic impacts, such as those associated with the modification of the Canal del Dique, where detailed characterization of IOPs could help predict effects on sensitive benthic communities (e.g., corals) by defining resilience thresholds.
Additionally, the proposed methodological framework has potential for application in other coastal reef systems subject to high turbidity and similar optical gradients, provided that local adaptations are made to the hydrodynamic and bio-optical conditions of each system. This potential for extrapolation—together with the relatively low cost of certain AOP measurements and the high specificity of IOPs—reinforces the value of this approach as a versatile tool for adaptive monitoring in vulnerable ecosystems.
The integration of both methodologies thus enhances early detection of ecosystem alterations, combining spatiotemporal coverage with bio-optical specificity and improving responsiveness to changes in marine environmental quality.

3.6. Limitations of the Absorption-Based Approach

Although this study does not include direct measurements of light scattering or backscattering—which represents a methodological limitation by addressing only one component of underwater light attenuation—the chosen approach was intentionally designed to match the capabilities of routine water quality monitoring laboratories, particularly those lacking access to high-cost instruments such as backscattering sensors or volume scattering function (VSF) systems.
The results demonstrate that integrating inherent optical properties is a technically and economically viable strategy for water quality monitoring, even in institutional contexts with limited resources. By combining fundamental principles of marine optics with protocols adaptable to local conditions, this approach can be progressively implemented into existing monitoring networks without requiring complex investments, thus enhancing diagnostic capacity without overburdening budgets.
Its application is particularly valuable in dynamic and hard-to-access coastal ecosystems, such as coral reefs in turbid waters, where gaps in data often constrain effective environmental management. This methodological framework helps democratize access to optical monitoring technologies, offering a reproducible, evidence-based alternative to support decision-making. To encourage widespread adoption, the development of standardized guidelines and training programs is recommended, especially for agencies with varying technical capacities.

4. Conclusions

This study demonstrates that the absorption coefficients ap(440) and aCDOM(440) offer a robust tool for characterizing optical water quality in complex and highly dynamic coastal systems. Varadero Reef is considered a functional ecosystem, despite being embedded in an extremely turbid environment with marked seasonal and vertical variability, which we were able to observe through the optical components responsible for light absorption.
The results show that ap(440) dominates absorption under high turbidity conditions and proximity to the canal, while aCDOM(440) becomes more relevant at stations with marine or mixed influence. CDOM also emerges as a potential photoprotective agent due to its ability to attenuate UV radiation. This functional duality—where particulate matter regulates light availability and CDOM modulates its spectral quality—helps to explain the reef’s resilience under adverse light conditions.
Integrating these inherent optical properties into monitoring frameworks provides a powerful approach to understanding system dynamics beyond what can be achieved using conventional descriptors such as turbidity, ZSD, or chlorophyll-a alone. These allow for more precise discrimination of optical processes and their ecological implications. The inclusion of these is recommended as key indicators in adaptive management strategies, ecological monitoring, and the conservation of coral reefs under strong continental pressures.
Finally, this study demonstrates that the absorption coefficients ap(440) and aCDOM(440) can be effectively incorporated into environmental monitoring schemes as sensitive, reproducible, and low-cost indicators. Even in the absence of scattering measurements, the proposed approach offers a practical and technically robust tool to strengthen optical assessments in complex coastal ecosystems, particularly in settings with operational limitations. To support its integration, we recommend the development of guidelines and training programs that promote its implementation across various institutional scales.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/w17192820/s1: Table S1: Summary of datasets used in this study, including their source, description, spatial and temporal resolution, coverage period, data format, and access information.

Author Contributions

Conceptualization, S.P.B.-T. and E.S.-d.-A.; methodology, S.P.B.-T., E.S.-d.-A. and Y.S.-B.; formal analysis, S.P.B.-T. and E.S.-d.-A.; software, A.M.-T.; investigation, S.P.B.-T., G.M.-M., J.P.R.-H. and Y.S.-B.; writing—original draft preparation, S.P.B.-T. and A.M.-T.; writing—review and editing, S.P.B.-T. and E.S.-d.-A. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Ministry of Science, Technology and Innovation of Colombia, Project ARC No. 75916, Influence of abiotic factors in the nearby coral reef El Varadero, Cartagena de Indias Bay. The APC was funded by the Direccion General Marítima (DIMAR), Colombia.

Data Availability Statement

The data supporting the findings of this study are available from the corresponding author upon reasonable request. Some of the datasets used, including metadata related to optical and environmental parameters, are publicly accessible through the CECOLDO Metadata Catalog at https://doi.org/10.26640/cecoldo.dataset_00585.

Acknowledgments

The authors acknowledge the support of the Oceanographic and Hydrographic Research Center of the Caribbean (CIOH) for field logistics and access to equipment. We also thank the ERA5 and CIOH-EMAR platforms for providing access to environmental and oceanographic data. Special thanks to the laboratory and technical staff who contributed to data processing and sample analysis.

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
APC Article Processing Charge
CDOM Chromophoric Dissolved Organic Matter
CTD Conductivity, Temperature, Depth
GF/F Glass Fiber Filter
IOPs Inherent Optical Properties
Kd PAR Diffuse Attenuation Coefficient for Downward Photosynthetically Active Radiation
NTU Nephelometric Turbidity Unit
SST Sea Surface Temperature
ZSD Secchi Disk Depth
ap(440) Particulate absorption coefficient at 440 nm
aCDOM(440) Absorption coefficient of chromophoric dissolved organic matter at 440 nm
at(440) Total absorption coefficient at 440 nm
Chl-a Chlorophyll-a concentration
rs Spearman rank correlation coefficient

Appendix A. Spectrophotometric Estimation of Particulate Absorption and Uncertainty Considerations

Appendix A.1. Measurement of Spectral Particulate Absorption ap(λ) Using Filter Pads in T-Mode

The spectral absorption coefficient of suspended particles, ap(λ), was estimated using the filter-pad method, following the IOCCG guidelines [18]. A dual-beam spectrophotometer without integrating sphere, operating in transmittance mode (T-mode), was used to measure the light transmitted through hydrated glass fiber filters with (sample) and without (blank) particles.
The absorption coefficient was computed from the measured optical density using the equation:
a p λ =   ln 10   α   O D f ( λ ) γ V / A
where:
  • ODf(λ): blank-corrected optical density at wavelength λ,
  • V: volume of filtered water (m3),
  • A: effective filter area (m2),
  • α = 0.679, γ = 1.2804: empirical coefficients for pathlength amplification correction in T-mode [43].
Although T-mode does not account for all scattering effects, the use of empirical beta corrections enables reliable estimation of relative changes in absorption among samples, especially when consistent protocols are applied.

Appendix A.2. Pathlength Amplification and Its Correction

The internal scattering within glass fiber filters artificially increases the photon pathlength, resulting in overestimation of absorption. This effect, known as pathlength amplification, is corrected using the empirical beta correction expressed as:
O D s λ = 0.679   O D f ( λ ) 1.2804
Substituting ODs(λ) in the equation for ap(λ) adjusts the estimate toward more realistic values. While this correction introduces its own uncertainties, it is considered adequate for comparative and spectral analyses in T-mode configurations, particularly when integrating spheres are unavailable.

Appendix A.3. Conceptual Framework for Uncertainty Propagation

The combined standard uncertainty of ap(λ), denoted uc(ap), can be approximated by propagating the uncertainties of each input variable:
O D s λ =   i 1 n ϑ a p ϑ x i u x i 2
where x i includes:
  • O D f ( λ ) : variability from scan replicates and filter heterogeneity,
  • α, γ: uncertainty in the empirical beta correction,
  • V: error in volume measurements (estimated at ±5 mL),
  • A: geometric uncertainty in the filter area.
Although full analytical propagation is not performed here, we conservatively estimate the overall relative uncertainty in ap(λ) as ±10–15%, based on instrumental precision, procedural replicates, and published intercomparison studies (e.g., [43,44]).

Appendix A.4. Quality Control: Instrumental Baselines and Blank Filters

To ensure measurement quality and minimize noise, the following controls were implemented:
  • Air baselines were recorded and used for instrument drift correction.
  • Multiple blank filters were scanned before, during, and after measurements.
  • Consistency among blank spectra was verified, particularly in the visible range (400–700 nm), ensuring OD levels within 0.3–0.4, and minimal spectral variation.

Appendix A.5. Supporting Figures

To evaluate the spectral consistency and performance of the blank filters used in the absorption measurements, we conducted replicate spectrophotometric scans in transmittance mode (T-mode) with air baseline correction. This quality assurance step follows the protocol established by [18]), who recommend comparing the spectral behavior of blank filters against reference ranges (see their Figure 5.5).
Figure A1 presents a comparative overview. Figure A1a shows the OD spectra from [18], while Figure A1b displays our dataset. The optical density of our blanks remained tightly distributed within ±0.01 OD units across the entire 200–850 nm spectrum, with no detectable offsets or artifacts. The red line denotes the mean OD across the nine replicates, confirming minimal spectral variability and excellent filter cleanliness. These findings highlight the high optical quality of the blank filters used in this study and support the robustness of the measurement approach, even without the use of an integrating sphere. This level of precision further reinforces the reliability of the absorption coefficients reported in this work.
The raw data used to generate these results are provided in Table A1, offering transparency and enabling comparisons with standardized filter performance benchmarks.
Figure A1. Comparison of spectrophotometric scans of baseline-corrected blank filters. (a) Spectral optical density (OD) scans of five blank filter pads corrected using an average blank filter signature, as reported by Roesler et al. ([18], Figure 5.5), measured in direct transmittance mode (left) and using an integrating sphere (right). (b) OD scans of nine baseline-corrected blank filter pads used in this study, measured in direct transmittance mode. Black lines indicate individual replicates; the red line shows the mean spectrum.
Figure A1. Comparison of spectrophotometric scans of baseline-corrected blank filters. (a) Spectral optical density (OD) scans of five blank filter pads corrected using an average blank filter signature, as reported by Roesler et al. ([18], Figure 5.5), measured in direct transmittance mode (left) and using an integrating sphere (right). (b) OD scans of nine baseline-corrected blank filter pads used in this study, measured in direct transmittance mode. Black lines indicate individual replicates; the red line shows the mean spectrum.
Water 17 02820 g0a1
To evaluate the optical quality and spectral consistency of the blank filters used in our absorption measurements, we analyzed their optical density (OD) spectra acquired in direct transmittance mode (T-mode), applying an air baseline correction. This procedure followed the standardized protocol described by [18] and illustrate in Figure A2a. The resulting mean OD spectrum, shown in Figure A2b, was derived from nine individual blank filter pads. The corresponding spectral OD values for each replicate are provided in Table A2 to ensure transparency and facilitate comparison with established benchmarks (cf. Roesler et al., [18], Figure 5.9).
Across the visible range (350–850 nm), the mean OD values remained stable between 2.3 and 2.5, closely matching the reference range of 2.2 (T = 0.6%) to 2.5 (T = 0.3%) reported by Roesler et al. [18]. As expected, OD increased exponentially in the ultraviolet region, reaching a maximum average value of approximately 4.55 at 200 nm. This value is consistent with the reference OD of ~4.1 (T = 0.008%) for high-quality blanks under similar conditions.
These findings confirm the high spectral quality of the blank filters used in this study. No spectral anomalies, signal offsets, or contamination artifacts were detected, supporting the accuracy of the air baseline correction and the reliability of the filter-pad absorption method employed.
Figure A2. Spectral optical density (OD) of blank filter pads measured in transmittance mode. (a) Reference OD spectra reported by Roesler et al. ([18], Figure 5.9) for blank filters under different neutral density (ND) configurations: air baseline (blue), 0.5 qND (green), and 2.0 qND (red). (b) Mean OD spectrum obtained from this study (black line) for blank filter pads (n = 9), with air baseline correction applied. Dashed horizontal lines indicate reference OD values at 2.2 and 2.5 (visible range), and 4.1 (UV range), as reported in Roesler et al. [18]. The close agreement between the measured and reference values confirms the spectral consistency and quality of the blanks used in this study.
Figure A2. Spectral optical density (OD) of blank filter pads measured in transmittance mode. (a) Reference OD spectra reported by Roesler et al. ([18], Figure 5.9) for blank filters under different neutral density (ND) configurations: air baseline (blue), 0.5 qND (green), and 2.0 qND (red). (b) Mean OD spectrum obtained from this study (black line) for blank filter pads (n = 9), with air baseline correction applied. Dashed horizontal lines indicate reference OD values at 2.2 and 2.5 (visible range), and 4.1 (UV range), as reported in Roesler et al. [18]. The close agreement between the measured and reference values confirms the spectral consistency and quality of the blanks used in this study.
Water 17 02820 g0a2
Table A1. Optical Density (OD) Spectra of Air Baseline and Blank Filters Measured in T-mode. This table includes individual OD spectra of the nine blank filters analyzed to produce Figure A1b. Values are baseline-corrected and span the wavelength range of 200–850 nm. These results were used to evaluate the consistency and optical quality of the blank filters applied in our absorption measurements.
Table A1. Optical Density (OD) Spectra of Air Baseline and Blank Filters Measured in T-mode. This table includes individual OD spectra of the nine blank filters analyzed to produce Figure A1b. Values are baseline-corrected and span the wavelength range of 200–850 nm. These results were used to evaluate the consistency and optical quality of the blank filters applied in our absorption measurements.
Long. Onda (nm)Aire-Sol-0001a-22Aire-Sol-0001b-22Aire-Sol-0003-22Aire-Sol-0004-22Aire-Sol-0005-22Aire-Sol-0008-22Aire-Sol-0010-22Aire-Sol_12 y 14-22Aire-Sol_19-22Mean OD Air Baseline
850−0.0003−0.0002−0.0002−0.0002−0.00020.00000.00030.00020.00000.0000
849−0.00050.00020.00020.00020.0002−0.0004−0.0005−0.0001−0.0003−0.0001
848−0.0002−0.0002−0.0002−0.0002−0.00020.00010.0003−0.00020.0001−0.0001
847−0.0009−0.0005−0.0005−0.0005−0.0005−0.0002−0.0002−0.00060.0002−0.0004
8460.00050.00040.00040.00040.0004−0.0001−0.00020.00030.00010.0002
845−0.0004−0.0002−0.0002−0.0002−0.00020.00000.0000−0.00020.0000−0.0002
844−0.00010.00010.00010.00010.0001−0.00020.00010.0002−0.00020.0000
8430.0001−0.0004−0.0004−0.0004−0.00040.00000.0000−0.0001−0.0003−0.0002
8420.0002−0.0002−0.0002−0.0002−0.0002−0.00020.0000−0.00030.0000−0.0001
841−0.0001−0.0003−0.0003−0.0003−0.00030.0000−0.00010.0002−0.0001−0.0001
840−0.0006−0.0003−0.0003−0.0003−0.00030.00010.0003−0.0001−0.0002−0.0002
839−0.0003−0.0005−0.0005−0.0005−0.0005−0.0002−0.00020.00010.0000−0.0003
838−0.0002−0.0002−0.0002−0.0002−0.0002−0.0003−0.0002−0.0003−0.0004−0.0002
8370.0005−0.0006−0.0006−0.0006−0.00060.0000−0.00040.0000−0.0001−0.0002
8360.0000−0.0009−0.0009−0.0009−0.0009−0.00020.00000.00000.0000−0.0004
835−0.0002−0.0004−0.0004−0.0004−0.0004−0.00010.00040.0001−0.0003−0.0002
834−0.00020.00000.00000.00000.00000.00010.0003−0.00050.00030.0000
833−0.00050.00050.00050.00050.00050.00010.00090.0000−0.00010.0003
832−0.0002−0.0004−0.0004−0.0004−0.00040.00000.00020.00000.0000−0.0002
8310.00000.00040.00040.00040.00040.00000.0005−0.00020.00010.0002
8300.0001−0.0001−0.0001−0.0001−0.0001−0.00020.00060.0002−0.00020.0000
829−0.00020.00010.00010.00010.00010.0001−0.0001−0.0005−0.00010.0000
8280.00030.00000.00000.00000.0000−0.00010.0001−0.00030.00000.0000
827−0.0004−0.0001−0.0001−0.0001−0.0001−0.00020.0001−0.0001−0.0001−0.0001
8260.00020.00060.00060.00060.0006−0.00050.00060.00020.00000.0003
8250.00000.00050.00050.00050.0005−0.00020.00020.0002−0.00030.0002
8240.00000.00020.00020.00020.00020.00010.0001−0.0004−0.00010.0001
823−0.0008−0.0003−0.0003−0.0003−0.0003−0.00020.00060.00020.0000−0.0002
822−0.00050.00000.00000.00000.00000.00000.0001−0.00020.0001−0.0001
821−0.0002−0.0002−0.0002−0.0002−0.0002−0.00060.00000.00000.0000−0.0002
8200.00010.00000.00000.00000.0000−0.00020.00040.0000−0.00050.0000
819−0.0008−0.0005−0.0005−0.0005−0.0005−0.00050.0005−0.00010.0001−0.0003
818−0.0002−0.0002−0.0002−0.0002−0.00020.0002−0.00020.0000−0.0003−0.0002
817−0.0002−0.0001−0.0001−0.0001−0.00010.00000.00050.00040.00000.0000
816−0.0004−0.0002−0.0002−0.0002−0.0002−0.0003−0.00020.0001−0.0001−0.0002
8150.0000−0.0002−0.0002−0.0002−0.0002−0.00020.00020.0000−0.0003−0.0001
8140.0003−0.0006−0.0006−0.0006−0.0006−0.00040.00010.00000.0002−0.0002
813−0.0001−0.0002−0.0002−0.0002−0.00020.00020.00010.0001−0.0004−0.0001
812−0.00010.00020.00020.00020.00020.0001−0.00010.00020.00030.0001
811−0.00010.00000.00000.00000.0000−0.00040.0001−0.0003−0.0004−0.0001
810−0.0002−0.0001−0.0001−0.0001−0.0001−0.00060.00030.0000−0.0003−0.0001
809−0.0002−0.0005−0.0005−0.0005−0.00050.00010.0001−0.0002−0.0003−0.0003
808−0.00040.00000.00000.00000.00000.00000.00030.0001−0.00040.0000
807−0.00050.00030.00030.00030.0003−0.00040.00030.00020.00000.0001
806−0.0002−0.0001−0.0001−0.0001−0.0001−0.00010.0002−0.0001−0.0003−0.0001
805−0.00030.00020.00020.00020.00020.00030.0005−0.0002−0.00020.0001
804−0.0001−0.0003−0.0003−0.0003−0.0003−0.00020.00050.0003−0.0003−0.0001
8030.0002−0.0002−0.0002−0.0002−0.0002−0.00010.0001−0.0006−0.0001−0.0002
8020.0000−0.0001−0.0001−0.0001−0.0001−0.00020.0000−0.0002−0.0001−0.0001
801−0.0001−0.0008−0.0008−0.0008−0.0008−0.00020.0003−0.00020.0000−0.0004
800−0.0004−0.0001−0.0001−0.0001−0.0001−0.00030.0002−0.0001−0.0002−0.0001
799−0.00020.00020.00020.00020.00020.00010.0002−0.0001−0.00050.0000
7980.00000.00000.00000.00000.0000−0.00030.0006−0.00010.00020.0000
797−0.0001−0.0002−0.0002−0.0002−0.0002−0.00010.0004−0.00040.0000−0.0001
796−0.0004−0.0003−0.0003−0.0003−0.0003−0.00020.0003−0.0001−0.0003−0.0002
795−0.00010.00000.00000.00000.0000−0.00010.0003−0.0001−0.00030.0000
794−0.0002−0.0003−0.0003−0.0003−0.0003−0.0003−0.0002−0.00010.0000−0.0002
7930.0001−0.0005−0.0005−0.0005−0.0005−0.0007−0.0004−0.0002−0.0003−0.0004
792−0.00010.00000.00000.00000.00000.00010.0002−0.0005−0.0002−0.0001
7910.00000.00020.00020.00020.0002−0.0002−0.00010.0000−0.00060.0000
7900.0000−0.0002−0.0002−0.0002−0.00020.00010.0004−0.0003−0.0001−0.0001
789−0.0001−0.0003−0.0003−0.0003−0.0003−0.00040.00050.00000.0002−0.0001
7880.0003−0.0002−0.0002−0.0002−0.0002−0.00030.00020.0001−0.0002−0.0001
7870.00020.00010.00010.00010.0001−0.00040.0003−0.00030.00000.0000
7860.00010.00000.00000.00000.00000.00010.00070.0000−0.00020.0001
7850.0001−0.0004−0.0004−0.0004−0.0004−0.00010.00030.0000−0.0002−0.0002
784−0.0002−0.0003−0.0003−0.0003−0.0003−0.00020.00010.0000−0.0001−0.0002
7830.0002−0.0003−0.0003−0.0003−0.0003−0.00020.00020.00040.0000−0.0001
7820.0003−0.0002−0.0002−0.0002−0.00020.00010.00100.0003−0.00040.0001
7810.0002−0.0002−0.0002−0.0002−0.0002−0.00060.0003−0.00010.0000−0.0001
7800.0001−0.0002−0.0002−0.0002−0.0002−0.0003−0.0001−0.00010.0000−0.0001
779−0.0001−0.0003−0.0003−0.0003−0.0003−0.00010.00020.0000−0.0001−0.0001
7780.0001−0.0005−0.0005−0.0005−0.0005−0.00030.0005−0.00010.0001−0.0002
777−0.0003−0.0006−0.0006−0.0006−0.0006−0.00020.0000−0.0001−0.0002−0.0003
7760.00000.00000.00000.00000.0000−0.00030.0006−0.00030.00000.0000
775−0.0001−0.0003−0.0003−0.0003−0.0003−0.00040.0005−0.0002−0.0002−0.0002
774−0.0002−0.0002−0.0002−0.0002−0.00020.00010.0001−0.00030.0002−0.0001
7730.0000−0.0003−0.0003−0.0003−0.0003−0.00010.0004−0.00030.0000−0.0002
7720.0004−0.0004−0.0004−0.0004−0.0004−0.00020.0000−0.0003−0.0003−0.0002
7710.0002−0.0004−0.0004−0.0004−0.00040.00010.0004−0.00010.0000−0.0001
7700.0003−0.0003−0.0003−0.0003−0.0003−0.0007−0.0001−0.00020.0001−0.0002
7690.00010.00000.00000.00000.0000−0.00010.00000.00010.00000.0000
768−0.0001−0.0005−0.0005−0.0005−0.0005−0.00030.0000−0.00020.0001−0.0003
7670.0001−0.0005−0.0005−0.0005−0.0005−0.0002−0.00020.0000−0.0001−0.0003
766−0.00020.00040.00040.00040.0004−0.00010.0002−0.0001−0.00010.0001
7650.0001−0.0002−0.0002−0.0002−0.00020.00030.00020.0001−0.00020.0000
764−0.00050.00000.00000.00000.0000−0.00020.00050.0000−0.00010.0000
763−0.00010.00000.00000.00000.0000−0.0003−0.0002−0.00010.0000−0.0001
762−0.00060.00000.00000.00000.0000−0.00040.0003−0.00020.0002−0.0001
761−0.00020.00030.00030.00030.0003−0.0003−0.0001−0.00050.00000.0000
7600.00010.00000.00000.00000.0000−0.00020.00030.0000−0.00030.0000
7590.0003−0.0003−0.0003−0.0003−0.0003−0.00030.0000−0.0002−0.0001−0.0002
7580.00030.00010.00010.00010.00010.00000.0002−0.0001−0.00010.0001
7570.00020.00010.00010.00010.0001−0.00020.0003−0.0004−0.00020.0000
7560.0005−0.0002−0.0002−0.0002−0.0002−0.00040.0001−0.00040.0000−0.0001
755−0.0001−0.0002−0.0002−0.0002−0.0002−0.00030.0002−0.0005−0.0004−0.0002
7540.00040.00010.00010.00010.0001−0.00040.0002−0.00010.00000.0000
7530.0002−0.0003−0.0003−0.0003−0.0003−0.00030.0003−0.0001−0.0001−0.0002
752−0.00010.00000.00000.00000.0000−0.00040.0005−0.0005−0.0002−0.0001
751−0.0003−0.0002−0.0002−0.0002−0.0002−0.00030.0003−0.0003−0.0002−0.0002
7500.0000−0.0002−0.0002−0.0002−0.0002−0.00010.0002−0.0001−0.0003−0.0001
7490.00000.00010.00010.00010.0001−0.00060.0002−0.00040.00010.0000
748−0.0002−0.0003−0.0003−0.0003−0.0003−0.00040.00000.0002−0.0001−0.0002
747−0.0003−0.0001−0.0001−0.0001−0.0001−0.00040.0004−0.00020.0000−0.0001
746−0.0001−0.0003−0.0003−0.0003−0.0003−0.00020.0003−0.00020.0003−0.0001
7450.0000−0.0002−0.0002−0.0002−0.0002−0.00010.0002−0.0001−0.0001−0.0001
744−0.00020.00000.00000.00000.0000−0.0001−0.0001−0.00010.00010.0000
7430.0001−0.0001−0.0001−0.0001−0.0001−0.00030.00060.00000.00000.0000
742−0.0002−0.0001−0.0001−0.0001−0.0001−0.00040.00040.00000.0001−0.0001
7410.0000−0.0005−0.0005−0.0005−0.0005−0.00010.00060.00000.0002−0.0001
7400.0001−0.0001−0.0001−0.0001−0.0001−0.00050.00050.00030.00030.0000
739−0.0002−0.0001−0.0001−0.0001−0.0001−0.00040.0005−0.00020.0001−0.0001
7380.0000−0.0002−0.0002−0.0002−0.0002−0.00010.0004−0.0002−0.0002−0.0001
737−0.00030.00010.00010.00010.0001−0.0003−0.00010.00020.00060.0000
7360.0003−0.0006−0.0006−0.0006−0.0006−0.00050.00010.00040.0003−0.0002
735−0.0001−0.0007−0.0007−0.0007−0.0007−0.00030.00020.0000−0.0002−0.0004
7340.0004−0.0003−0.0003−0.0003−0.0003−0.00050.00040.0000−0.0001−0.0001
733−0.0002−0.0002−0.0002−0.0002−0.0002−0.00040.0006−0.00020.0001−0.0001
7320.0002−0.0001−0.0001−0.0001−0.0001−0.00020.00030.00010.00020.0000
7310.0003−0.0002−0.0002−0.0002−0.0002−0.00020.0005−0.00040.0000−0.0001
7300.0001−0.0003−0.0003−0.0003−0.0003−0.00010.00040.00000.0000−0.0001
729−0.0001−0.0002−0.0002−0.0002−0.0002−0.00020.00040.0002−0.0002−0.0001
7280.0002−0.0004−0.0004−0.0004−0.0004−0.0003−0.0002−0.00030.0001−0.0002
7270.0000−0.0004−0.0004−0.0004−0.00040.00000.0001−0.00020.0001−0.0002
7260.0002−0.0006−0.0006−0.0006−0.0006−0.00040.0009−0.00030.0000−0.0002
725−0.0001−0.0002−0.0002−0.0002−0.0002−0.00060.0003−0.0005−0.0002−0.0002
724−0.0001−0.0006−0.0006−0.0006−0.0006−0.00030.00040.00010.0002−0.0002
7230.0002−0.0004−0.0004−0.0004−0.0004−0.00020.0004−0.00060.0003−0.0002
722−0.0001−0.0002−0.0002−0.0002−0.00020.00000.0004−0.0002−0.0001−0.0001
7210.0004−0.0002−0.0002−0.0002−0.0002−0.0003−0.0001−0.0004−0.0003−0.0001
720−0.0002−0.0002−0.0002−0.0002−0.0002−0.00020.0000−0.00040.0001−0.0002
7190.00010.00000.00000.00000.0000−0.00010.0003−0.00010.00020.0000
7180.0000−0.0004−0.0004−0.0004−0.0004−0.00030.0002−0.00040.0003−0.0002
717−0.0001−0.0001−0.0001−0.0001−0.0001−0.0004−0.00010.00020.0001−0.0001
7160.0003−0.0004−0.0004−0.0004−0.0004−0.00010.00030.0002−0.0002−0.0001
7150.0002−0.0002−0.0002−0.0002−0.0002−0.00010.00000.00000.00030.0000
714−0.00010.00010.00010.00010.0001−0.00020.00000.0001−0.00020.0000
7130.00010.00000.00000.00000.00000.00000.0003−0.0004−0.00040.0000
7120.00020.00010.00010.00010.00010.00030.0004−0.00050.00000.0001
7110.0002−0.0004−0.0004−0.0004−0.0004−0.00040.00040.0000−0.0003−0.0002
710−0.0001−0.0003−0.0003−0.0003−0.00030.0000−0.00020.00000.0001−0.0001
709−0.0002−0.0001−0.0001−0.0001−0.0001−0.00030.0006−0.0002−0.0005−0.0001
708−0.0001−0.0001−0.0001−0.0001−0.0001−0.00090.0003−0.0003−0.0003−0.0002
707−0.0002−0.0003−0.0003−0.0003−0.00030.0000−0.00010.0002−0.0004−0.0002
706−0.0005−0.0004−0.0004−0.0004−0.0004−0.00020.0000−0.0001−0.0004−0.0003
705−0.00050.00020.00020.00020.0002−0.00040.0005−0.0003−0.00010.0000
704−0.0004−0.0002−0.0002−0.0002−0.00020.00010.0000−0.00040.0000−0.0002
7030.0004−0.0005−0.0005−0.0005−0.0005−0.00030.0007−0.0001−0.0002−0.0002
702−0.0003−0.0004−0.0004−0.0004−0.0004−0.0001−0.00020.0000−0.0002−0.0003
701−0.0001−0.0001−0.0001−0.0001−0.0001−0.00060.00000.0001−0.0002−0.0001
700−0.0001−0.0001−0.0001−0.0001−0.0001−0.00040.0000−0.0004−0.0006−0.0002
6990.0000−0.0002−0.0002−0.0002−0.00020.00020.0003−0.0001−0.0001−0.0001
6980.0002−0.0003−0.0003−0.0003−0.00030.00000.0007−0.0005−0.0001−0.0001
6970.0000−0.0002−0.0002−0.0002−0.00020.00020.00010.0000−0.0007−0.0001
6960.0000−0.0002−0.0002−0.0002−0.00020.00000.0004−0.0003−0.0004−0.0001
6950.0002−0.0003−0.0003−0.0003−0.0003−0.00020.0002−0.0004−0.0003−0.0002
6940.0000−0.0004−0.0004−0.0004−0.0004−0.00040.0001−0.0001−0.0002−0.0003
6930.00020.00030.00030.00030.0003−0.00030.00050.0000−0.00010.0002
692−0.00040.00020.00020.00020.0002−0.00030.0002−0.0001−0.00040.0000
6910.0000−0.0001−0.0001−0.0001−0.00010.00000.0006−0.00040.00020.0000
6900.00000.00000.00000.00000.0000−0.0002−0.0003−0.00030.0000−0.0001
6890.0000−0.0001−0.0001−0.0001−0.0001−0.00030.00030.0000−0.0002−0.0001
688−0.0001−0.0002−0.0002−0.0002−0.0002−0.00020.00020.00010.0001−0.0001
6870.0001−0.0004−0.0004−0.0004−0.0004−0.00040.00040.00010.0007−0.0001
6860.00000.00000.00000.00000.0000−0.00060.0007−0.0002−0.0001−0.0001
6850.0002−0.0005−0.0005−0.0005−0.00050.00000.00040.00010.0004−0.0001
684−0.0002−0.0003−0.0003−0.0003−0.0003−0.0004−0.00020.00020.0002−0.0002
6830.00000.00010.00010.00010.0001−0.00010.0002−0.0005−0.00010.0000
6820.0002−0.0003−0.0003−0.0003−0.0003−0.00020.0000−0.0002−0.0003−0.0002
6810.0000−0.0004−0.0004−0.0004−0.00040.00010.0001−0.00040.0000−0.0002
6800.0001−0.0004−0.0004−0.0004−0.0004−0.00020.00010.0000−0.0001−0.0002
6790.0001−0.0001−0.0001−0.0001−0.0001−0.00020.0004−0.00040.0000−0.0001
6780.00010.00000.00000.00000.0000−0.00030.0004−0.0002−0.00010.0000
677−0.0001−0.0002−0.0002−0.0002−0.0002−0.00030.0003−0.00050.0000−0.0001
676−0.0002−0.0001−0.0001−0.0001−0.0001−0.00040.0001−0.0003−0.0001−0.0001
675−0.0001−0.0001−0.0001−0.0001−0.0001−0.00050.0005−0.0003−0.0004−0.0001
674−0.0003−0.0004−0.0004−0.0004−0.0004−0.00020.0001−0.0001−0.0002−0.0002
673−0.0005−0.0007−0.0007−0.0007−0.0007−0.00010.00060.00010.0003−0.0002
672−0.0003−0.0005−0.0005−0.0005−0.0005−0.00010.00000.0000−0.0002−0.0003
671−0.00040.00000.00000.00000.0000−0.00050.00040.00000.00040.0000
670−0.0002−0.0008−0.0008−0.0008−0.0008−0.00020.0002−0.00040.0000−0.0004
669−0.0002−0.0001−0.0001−0.0001−0.0001−0.00040.0006−0.0003−0.0004−0.0001
668−0.0004−0.0002−0.0002−0.0002−0.0002−0.0001−0.0002−0.0002−0.0003−0.0002
667−0.0003−0.0002−0.0002−0.0002−0.0002−0.00010.0006−0.0003−0.0004−0.0001
6660.0002−0.0006−0.0006−0.0006−0.0006−0.00040.0002−0.0003−0.0005−0.0004
665−0.0001−0.0004−0.0004−0.0004−0.00040.00010.0002−0.0003−0.0003−0.0002
664−0.0001−0.0003−0.0003−0.0003−0.0003−0.00040.0004−0.0002−0.0004−0.0002
663−0.0001−0.0001−0.0001−0.0001−0.0001−0.00030.0004−0.0004−0.0004−0.0002
6620.0000−0.0002−0.0002−0.0002−0.0002−0.00020.0002−0.0008−0.0005−0.0003
6610.0001−0.0004−0.0004−0.0004−0.0004−0.00020.0005−0.0005−0.0005−0.0003
6600.00000.00020.00020.00020.0002−0.00010.0007−0.0008−0.00020.0001
6590.0000−0.0001−0.0001−0.0001−0.00010.0002−0.0001−0.0002−0.0001−0.0001
6580.0001−0.0001−0.0001−0.0001−0.0001−0.00030.0005−0.0002−0.0001−0.0001
657−0.0005−0.0005−0.0005−0.0005−0.0005−0.00030.00020.00010.0002−0.0003
656−0.0002−0.0001−0.0001−0.0001−0.00010.00000.00030.0001−0.00020.0000
655−0.0004−0.0004−0.0004−0.0004−0.0004−0.00030.00040.0001−0.0001−0.0002
654−0.0003−0.0002−0.0002−0.0002−0.0002−0.0003−0.00010.00010.0004−0.0001
653−0.0002−0.0002−0.0002−0.0002−0.0002−0.00020.00020.00000.0000−0.0001
6520.0001−0.0001−0.0001−0.0001−0.0001−0.0001−0.0004−0.0001−0.0001−0.0001
651−0.0001−0.0001−0.0001−0.0001−0.00010.00020.0003−0.00030.00000.0000
650−0.0002−0.0003−0.0003−0.0003−0.0003−0.0002−0.0001−0.0001−0.0005−0.0003
6490.0002−0.0002−0.0002−0.0002−0.0002−0.0006−0.0002−0.0002−0.0001−0.0002
648−0.0001−0.0005−0.0005−0.0005−0.0005−0.00020.0001−0.00020.0001−0.0003
647−0.0001−0.0004−0.0004−0.0004−0.0004−0.00030.0000−0.00060.0000−0.0003
6460.0000−0.0003−0.0003−0.0003−0.00030.00010.0001−0.00010.0001−0.0001
645−0.0002−0.0004−0.0004−0.0004−0.0004−0.0001−0.00090.00020.0001−0.0003
644−0.0001−0.0006−0.0006−0.0006−0.0006−0.00040.0000−0.00020.0000−0.0004
6430.0002−0.0003−0.0003−0.0003−0.0003−0.00020.0002−0.00010.0001−0.0001
6420.00020.00010.00010.00010.0001−0.0004−0.00010.0000−0.00010.0000
6410.0004−0.0002−0.0002−0.0002−0.0002−0.00010.0000−0.00030.0001−0.0001
6400.0001−0.0001−0.0001−0.0001−0.0001−0.0002−0.0001−0.0002−0.0002−0.0001
6390.0003−0.0001−0.0001−0.0001−0.0001−0.00020.0002−0.0001−0.0004−0.0001
638−0.0001−0.0003−0.0003−0.0003−0.0003−0.00030.0003−0.0001−0.0002−0.0002
6370.0002−0.0003−0.0003−0.0003−0.0003−0.00050.00050.00000.0000−0.0001
6360.00000.00000.00000.00000.0000−0.00040.00010.0004−0.0005−0.0001
6350.0000−0.0002−0.0002−0.0002−0.0002−0.0003−0.00020.0001−0.0003−0.0002
634−0.0005−0.0004−0.0004−0.0004−0.0004−0.00060.0004−0.0001−0.0005−0.0003
633−0.0002−0.0004−0.0004−0.0004−0.00040.00000.00000.0000−0.0002−0.0002
632−0.0001−0.0004−0.0004−0.0004−0.00040.00020.0004−0.00010.0001−0.0001
631−0.0001−0.0001−0.0001−0.0001−0.0001−0.0003−0.0005−0.00020.0000−0.0002
630−0.0004−0.0002−0.0002−0.0002−0.00020.00000.0003−0.0002−0.0003−0.0001
629−0.0005−0.0002−0.0002−0.0002−0.0002−0.00010.0002−0.0002−0.0003−0.0002
628−0.0003−0.0008−0.0008−0.0008−0.0008−0.00020.00050.0000−0.0001−0.0004
6270.0000−0.0006−0.0006−0.0006−0.0006−0.0002−0.0002−0.0001−0.0004−0.0004
626−0.0002−0.0003−0.0003−0.0003−0.00030.00010.00000.0000−0.0004−0.0002
6250.0003−0.0004−0.0004−0.0004−0.0004−0.00020.0005−0.0001−0.0005−0.0002
6240.0005−0.0001−0.0001−0.0001−0.0001−0.00060.0003−0.00010.00010.0000
6230.0002−0.0001−0.0001−0.0001−0.0001−0.00010.00000.0001−0.0003−0.0001
6220.0004−0.0003−0.0003−0.0003−0.0003−0.0007−0.0001−0.0001−0.0002−0.0002
6210.0003−0.0001−0.0001−0.0001−0.0001−0.00040.00020.0003−0.00010.0000
6200.00010.00020.00020.00020.0002−0.00020.00030.0000−0.00010.0001
6190.00000.00010.00010.00010.0001−0.00010.00000.0000−0.00020.0000
6180.00000.00000.00000.00000.0000−0.0003−0.0002−0.00020.0001−0.0001
617−0.00020.00000.00000.00000.0000−0.0005−0.0002−0.0001−0.0002−0.0001
616−0.0002−0.0001−0.0001−0.0001−0.0001−0.00010.0000−0.0003−0.0002−0.0001
615−0.0001−0.0005−0.0005−0.0005−0.0005−0.00030.0001−0.0001−0.0002−0.0003
614−0.00030.00010.00010.00010.0001−0.00030.0002−0.0004−0.0004−0.0001
613−0.0004−0.0001−0.0001−0.0001−0.0001−0.00020.0006−0.0002−0.0001−0.0001
612−0.0003−0.0001−0.0001−0.0001−0.0001−0.00040.00020.00000.0001−0.0001
6110.0001−0.0003−0.0003−0.0003−0.0003−0.00060.00080.00010.0001−0.0001
6100.0002−0.0002−0.0002−0.0002−0.0002−0.00020.0002−0.00010.00030.0000
6090.00020.00010.00010.00010.0001−0.00030.0002−0.0002−0.00030.0000
608−0.0002−0.0004−0.0004−0.0004−0.0004−0.00010.0000−0.0001−0.0001−0.0003
6070.0000−0.0001−0.0001−0.0001−0.0001−0.00020.0000−0.00010.0000−0.0001
6060.0003−0.0005−0.0005−0.0005−0.0005−0.00010.0003−0.0003−0.0001−0.0002
605−0.0001−0.0006−0.0006−0.0006−0.0006−0.00050.0001−0.0006−0.0004−0.0005
604−0.0001−0.0001−0.0001−0.0001−0.0001−0.00040.0003−0.0002−0.0005−0.0001
603−0.0004−0.0002−0.0002−0.0002−0.0002−0.0004−0.0001−0.0001−0.0005−0.0003
602−0.0002−0.0001−0.0001−0.0001−0.0001−0.00020.0005−0.0003−0.0006−0.0001
601−0.0004−0.0002−0.0002−0.0002−0.0002−0.00030.0003−0.0003−0.0003−0.0002
600−0.0002−0.0003−0.0003−0.0003−0.0003−0.00040.00030.0000−0.0003−0.0002
599−0.0003−0.0005−0.0005−0.0005−0.0005−0.00040.00070.0000−0.0002−0.0002
5980.0001−0.0005−0.0005−0.0005−0.0005−0.00030.00020.0000−0.0001−0.0002
5970.0002−0.0004−0.0004−0.0004−0.0004−0.00030.0002−0.0002−0.0001−0.0002
596−0.0002−0.0004−0.0004−0.0004−0.0004−0.00080.0002−0.00020.0001−0.0003
595−0.0001−0.0003−0.0003−0.0003−0.0003−0.00050.00050.00020.0001−0.0001
5940.0000−0.0004−0.0004−0.0004−0.0004−0.0003−0.00030.00000.0003−0.0002
593−0.0002−0.0002−0.0002−0.0002−0.0002−0.00020.00020.00000.0001−0.0001
592−0.0001−0.0004−0.0004−0.0004−0.0004−0.0003−0.0001−0.00030.0001−0.0003
591−0.0001−0.0005−0.0005−0.0005−0.0005−0.00020.0001−0.00020.0000−0.0003
5900.00000.00000.00000.00000.0000−0.00030.0002−0.00030.00010.0000
5890.0003−0.0005−0.0005−0.0005−0.0005−0.00050.0005−0.0006−0.0002−0.0003
588−0.0001−0.0005−0.0005−0.0005−0.00050.00050.0002−0.0002−0.0005−0.0002
5870.0000−0.0003−0.0003−0.0003−0.0003−0.0003−0.0004−0.0001−0.0002−0.0003
586−0.0002−0.0003−0.0003−0.0003−0.0003−0.00040.0005−0.00010.0001−0.0001
585−0.0001−0.0001−0.0001−0.0001−0.0001−0.0003−0.00010.0002−0.0002−0.0001
584−0.0001−0.0003−0.0003−0.0003−0.0003−0.0005−0.00020.0002−0.0004−0.0003
583−0.00050.00000.00000.00000.0000−0.00020.0004−0.0001−0.0005−0.0001
582−0.00030.00000.00000.00000.0000−0.00030.00020.0001−0.0005−0.0001
581−0.0003−0.0005−0.0005−0.0005−0.00050.0000−0.00010.0001−0.0005−0.0003
580−0.00010.00000.00000.00000.00000.00000.0000−0.0004−0.0003−0.0001
579−0.0003−0.0001−0.0001−0.0001−0.0001−0.00040.0002−0.0001−0.0004−0.0002
578−0.0001−0.0002−0.0002−0.0002−0.0002−0.00030.0001−0.00010.0001−0.0001
577−0.0003−0.0003−0.0003−0.0003−0.0003−0.0009−0.0001−0.0002−0.0002−0.0003
576−0.0002−0.0002−0.0002−0.0002−0.00020.00000.0000−0.0002−0.0005−0.0002
5750.0000−0.0001−0.0001−0.0001−0.0001−0.00040.0004−0.0004−0.0001−0.0001
5740.0001−0.0004−0.0004−0.0004−0.0004−0.0001−0.0001−0.00050.0003−0.0002
5730.0002−0.0002−0.0002−0.0002−0.0002−0.00030.0001−0.00030.0003−0.0001
572−0.0004−0.0003−0.0003−0.0003−0.0003−0.0005−0.0001−0.00040.0003−0.0002
571−0.00010.00010.00010.00010.0001−0.00010.0000−0.00010.00000.0000
570−0.0003−0.0003−0.0003−0.0003−0.0003−0.0002−0.0003−0.00020.0003−0.0002
5690.0000−0.0004−0.0004−0.0004−0.0004−0.00040.0006−0.00020.0000−0.0002
5680.0002−0.0003−0.0003−0.0003−0.0003−0.00010.00050.00010.00020.0000
567−0.0002−0.0001−0.0001−0.0001−0.0001−0.00040.00040.0001−0.0001−0.0001
5660.0001−0.0003−0.0003−0.0003−0.0003−0.00060.00020.0002−0.0002−0.0001
565−0.00010.00000.00000.00000.0000−0.00020.0003−0.00010.00000.0000
564−0.0001−0.0005−0.0005−0.0005−0.0005−0.00020.00020.00010.0000−0.0002
563−0.0001−0.0001−0.0001−0.0001−0.0001−0.0004−0.00010.00010.0000−0.0001
562−0.00040.00010.00010.00010.0001−0.0002−0.0002−0.0002−0.0006−0.0001
561−0.0001−0.0002−0.0002−0.0002−0.0002−0.00020.0001−0.0004−0.0002−0.0002
560−0.00020.00000.00000.00000.0000−0.0003−0.0004−0.0005−0.0003−0.0002
559−0.0002−0.0004−0.0004−0.0004−0.0004−0.00010.0000−0.0004−0.0006−0.0003
558−0.00020.00040.00040.00040.0004−0.00020.0003−0.00010.00020.0002
557−0.0002−0.0006−0.0006−0.0006−0.0006−0.00030.00020.0000−0.0003−0.0004
556−0.0001−0.0005−0.0005−0.0005−0.00050.00000.0002−0.0005−0.0002−0.0003
555−0.0002−0.0001−0.0001−0.0001−0.0001−0.0005−0.00030.0000−0.0004−0.0002
554−0.0002−0.0004−0.0004−0.0004−0.00040.0002−0.0004−0.00040.0000−0.0003
5530.0002−0.0003−0.0003−0.0003−0.0003−0.00010.0002−0.00010.0000−0.0001
552−0.00020.00000.00000.00000.0000−0.00050.00020.0001−0.00020.0000
5510.0001−0.0002−0.0002−0.0002−0.0002−0.00020.00010.00020.0001−0.0001
550−0.00040.00000.00000.00000.0000−0.00010.0003−0.0003−0.0003−0.0001
549−0.00020.00010.00010.00010.0001−0.00020.00010.00020.00030.0001
548−0.00040.00010.00010.00010.0001−0.00040.0004−0.0001−0.00010.0000
5470.0000−0.0004−0.0004−0.0004−0.0004−0.0003−0.00030.0000−0.0001−0.0003
546−0.00030.00010.00010.00010.0001−0.00050.00010.00040.00000.0000
5450.00010.00000.00000.00000.00000.0000−0.00010.0004−0.00010.0000
544−0.0001−0.0002−0.0002−0.0002−0.0002−0.00010.00000.00000.0000−0.0001
543−0.0003−0.0002−0.0002−0.0002−0.0002−0.00050.00010.0001−0.0002−0.0002
542−0.0004−0.0004−0.0004−0.0004−0.0004−0.00060.0001−0.00010.0000−0.0003
541−0.0002−0.0002−0.0002−0.0002−0.00020.0001−0.0002−0.0001−0.0003−0.0002
540−0.00040.00020.00020.00020.0002−0.00020.00030.0000−0.00050.0000
539−0.0002−0.0001−0.0001−0.0001−0.0001−0.00040.0001−0.0001−0.0002−0.0001
5380.00010.00000.00000.00000.0000−0.00030.0001−0.0001−0.0004−0.0001
5370.0000−0.0001−0.0001−0.0001−0.0001−0.0002−0.0002−0.0001−0.0001−0.0001
5360.00000.00030.00030.00030.0003−0.00070.00020.0001−0.00010.0001
5350.0000−0.0005−0.0005−0.0005−0.0005−0.00010.0004−0.0001−0.0004−0.0002
534−0.0001−0.0001−0.0001−0.0001−0.0001−0.0004−0.00010.0004−0.0004−0.0001
533−0.0002−0.0002−0.0002−0.0002−0.0002−0.00040.00010.0003−0.0001−0.0001
5320.0001−0.0003−0.0003−0.0003−0.0003−0.00010.0002−0.00030.0000−0.0001
5310.0000−0.0002−0.0002−0.0002−0.0002−0.00050.0005−0.00050.0000−0.0001
530−0.0003−0.0005−0.0005−0.0005−0.0005−0.00030.0002−0.0002−0.0002−0.0003
5290.0001−0.0001−0.0001−0.0001−0.0001−0.00030.00010.0004−0.0004−0.0001
528−0.0002−0.0002−0.0002−0.0002−0.0002−0.0002−0.0003−0.00010.0000−0.0002
5270.0001−0.0001−0.0001−0.0001−0.0001−0.00010.0001−0.00010.00000.0000
526−0.00020.00010.00010.00010.0001−0.00020.0000−0.0002−0.00010.0000
525−0.00010.00010.00010.00010.0001−0.00040.0003−0.00040.00000.0000
524−0.00030.00010.00010.00010.0001−0.00010.0000−0.00010.00000.0000
523−0.00020.00040.00040.00040.0004−0.0005−0.0005−0.0003−0.00010.0000
522−0.0003−0.0003−0.0003−0.0003−0.0003−0.00020.0000−0.00020.0000−0.0002
5210.0000−0.0005−0.0005−0.0005−0.0005−0.00020.0003−0.0002−0.0001−0.0002
520−0.0002−0.0003−0.0003−0.0003−0.0003−0.00050.0002−0.00020.0001−0.0002
5190.0002−0.0001−0.0001−0.0001−0.0001−0.00030.0002−0.00030.0002−0.0001
518−0.0002−0.0001−0.0001−0.0001−0.0001−0.0001−0.00040.0002−0.0003−0.0002
517−0.00010.00000.00000.00000.0000−0.0003−0.0004−0.0003−0.0002−0.0001
5160.0000−0.0002−0.0002−0.0002−0.0002−0.00030.00010.0001−0.0005−0.0001
515−0.00020.00020.00020.00020.0002−0.00040.00040.0001−0.00070.0000
514−0.00020.00000.00000.00000.0000−0.00060.0005−0.0001−0.0002−0.0001
5130.00010.00000.00000.00000.0000−0.00060.0003−0.0002−0.0002−0.0001
512−0.0003−0.0001−0.0001−0.0001−0.0001−0.0005−0.0001−0.0002−0.0003−0.0002
5110.00010.00010.00010.00010.0001−0.00050.00030.0002−0.00030.0000
5100.0000−0.0002−0.0002−0.0002−0.0002−0.00030.0003−0.00010.0000−0.0001
509−0.0003−0.0004−0.0004−0.0004−0.0004−0.0003−0.00020.0001−0.0003−0.0003
508−0.0001−0.0005−0.0005−0.0005−0.0005−0.00030.00010.0002−0.0005−0.0003
507−0.00020.00000.00000.00000.0000−0.00030.0002−0.0006−0.0003−0.0002
506−0.0003−0.0003−0.0003−0.0003−0.0003−0.0005−0.0001−0.0002−0.0004−0.0003
5050.00000.00010.00010.00010.0001−0.0007−0.00030.0003−0.0003−0.0001
504−0.0001−0.0002−0.0002−0.0002−0.0002−0.0001−0.00010.0000−0.0004−0.0002
5030.00000.00020.00020.00020.0002−0.00030.00030.0005−0.00040.0001
5020.00020.00010.00010.00010.0001−0.00020.00010.00020.00020.0001
5010.00020.00000.00000.00000.0000−0.00070.0003−0.00010.00010.0000
5000.0002−0.0002−0.0002−0.0002−0.00020.00010.0009−0.00020.00000.0000
4990.0001−0.0001−0.0001−0.0001−0.0001−0.0006−0.0003−0.0002−0.0003−0.0002
4980.0001−0.0001−0.0001−0.0001−0.0001−0.0002−0.00020.00030.00010.0000
4970.0004−0.0003−0.0003−0.0003−0.0003−0.00060.00040.00000.0002−0.0001
496−0.00050.00010.00010.00010.0001−0.0004−0.00020.00000.0001−0.0001
495−0.0003−0.0002−0.0002−0.0002−0.0002−0.0006−0.0003−0.0001−0.0002−0.0002
494−0.0006−0.0005−0.0005−0.0005−0.00050.00020.0004−0.00080.0002−0.0003
493−0.00040.00020.00020.00020.0002−0.0002−0.00030.00030.00000.0000
492−0.0006−0.0005−0.0005−0.0005−0.0005−0.00060.00000.00000.0002−0.0004
491−0.0002−0.0005−0.0005−0.0005−0.0005−0.00010.00010.00030.0002−0.0002
4900.0000−0.0006−0.0006−0.0006−0.0006−0.00030.00020.0003−0.0003−0.0003
489−0.0002−0.0002−0.0002−0.0002−0.0002−0.0003−0.00020.0000−0.0001−0.0002
4880.00000.00000.00000.00000.0000−0.0003−0.0001−0.0003−0.0001−0.0001
487−0.0001−0.0001−0.0001−0.0001−0.0001−0.00080.0003−0.00030.0000−0.0001
4860.00040.00010.00010.00010.00010.00020.0002−0.00020.00010.0001
4850.0000−0.0002−0.0002−0.0002−0.0002−0.0004−0.0004−0.0001−0.0004−0.0002
484−0.0003−0.0002−0.0002−0.0002−0.0002−0.0003−0.0001−0.0002−0.0002−0.0002
483−0.0001−0.0003−0.0003−0.0003−0.00030.0000−0.0001−0.0002−0.0001−0.0002
482−0.0001−0.0003−0.0003−0.0003−0.0003−0.0001−0.0001−0.0002−0.0002−0.0002
481−0.0002−0.0006−0.0006−0.0006−0.0006−0.0003−0.0001−0.0005−0.0006−0.0005
480−0.0004−0.0003−0.0003−0.0003−0.0003−0.0005−0.00020.0006−0.0003−0.0002
479−0.00030.00030.00030.00030.0003−0.00070.0003−0.00020.00010.0001
4780.0001−0.0006−0.0006−0.0006−0.0006−0.00050.0001−0.00050.0002−0.0004
4770.00010.00010.00010.00010.0001−0.00040.0003−0.00010.00030.0000
476−0.0001−0.0001−0.0001−0.0001−0.0001−0.00010.0001−0.0001−0.0001−0.0001
475−0.0004−0.0001−0.0001−0.0001−0.0001−0.0001−0.0004−0.0001−0.0003−0.0002
474−0.00040.00010.00010.00010.0001−0.00070.00070.0004−0.00020.0000
473−0.00010.00030.00030.00030.0003−0.00060.0000−0.0002−0.00020.0000
472−0.00010.00000.00000.00000.0000−0.00030.00060.0000−0.0006−0.0001
471−0.00010.00010.00010.00010.0001−0.00070.0001−0.00030.00020.0000
470−0.00010.00000.00000.00000.00000.00000.0001−0.0001−0.0005−0.0001
4690.0000−0.0002−0.0002−0.0002−0.0002−0.00050.0002−0.00020.0002−0.0001
4680.0001−0.0006−0.0006−0.0006−0.0006−0.00010.00040.0000−0.0002−0.0002
4670.00000.00010.00010.00010.0001−0.0008−0.00050.0002−0.0001−0.0001
4660.0000−0.0007−0.0007−0.0007−0.0007−0.00050.0001−0.0002−0.0002−0.0004
465−0.0002−0.0003−0.0003−0.0003−0.0003−0.00050.0000−0.0001−0.0004−0.0002
4640.0001−0.0003−0.0003−0.0003−0.0003−0.0008−0.0001−0.00050.0001−0.0003
4630.0001−0.0005−0.0005−0.0005−0.0005−0.00040.0001−0.0004−0.0002−0.0003
462−0.0004−0.0004−0.0004−0.0004−0.0004−0.00050.0004−0.0001−0.0002−0.0003
461−0.00020.00000.00000.00000.0000−0.00010.0000−0.0004−0.0007−0.0001
460−0.0003−0.0002−0.0002−0.0002−0.0002−0.0004−0.0004−0.0002−0.0003−0.0002
459−0.00030.00000.00000.00000.00000.00010.0004−0.00010.00000.0000
4580.0000−0.0002−0.0002−0.0002−0.0002−0.0004−0.0005−0.00030.0000−0.0002
457−0.0004−0.0003−0.0003−0.0003−0.0003−0.00020.00030.00010.0001−0.0002
456−0.0005−0.0001−0.0001−0.0001−0.0001−0.0005−0.0005−0.00050.0000−0.0003
455−0.0004−0.0002−0.0002−0.0002−0.00020.00000.0000−0.00040.0003−0.0001
454−0.00010.00020.00020.00020.0002−0.00090.0000−0.00040.00020.0000
4530.00000.00010.00010.00010.0001−0.00020.0004−0.0006−0.0005−0.0001
452−0.0003−0.0002−0.0002−0.0002−0.0002−0.00010.0003−0.00010.0003−0.0001
4510.00040.00010.00010.00010.0001−0.00020.0004−0.0001−0.00050.0000
4500.00030.00000.00000.00000.00000.00020.0005−0.00010.00020.0001
449−0.0002−0.0002−0.0002−0.0002−0.0002−0.00060.0003−0.0002−0.0002−0.0002
4480.00020.00010.00010.00010.00010.0000−0.0001−0.0005−0.00020.0000
447−0.0006−0.0002−0.0002−0.0002−0.0002−0.0006−0.00030.00000.0005−0.0002
446−0.0002−0.0004−0.0004−0.0004−0.0004−0.0003−0.0001−0.0001−0.0001−0.0002
445−0.0004−0.0004−0.0004−0.0004−0.0004−0.0002−0.0001−0.0006−0.0003−0.0003
444−0.0003−0.0001−0.0001−0.0001−0.0001−0.00020.0001−0.0002−0.0007−0.0002
443−0.00010.00000.00000.00000.00000.00020.0001−0.0003−0.0008−0.0001
442−0.0002−0.0003−0.0003−0.0003−0.0003−0.0005−0.00010.0001−0.0002−0.0003
4410.0001−0.0001−0.0001−0.0001−0.0001−0.0002−0.0003−0.0003−0.0002−0.0001
4400.0001−0.0008−0.0008−0.0008−0.0008−0.00010.0003−0.0004−0.0007−0.0004
439−0.0003−0.0006−0.0006−0.0006−0.0006−0.00020.00020.0000−0.0002−0.0003
438−0.0006−0.0003−0.0003−0.0003−0.0003−0.00020.0002−0.0002−0.0003−0.0003
437−0.0001−0.0003−0.0003−0.0003−0.0003−0.00030.00020.0000−0.0001−0.0002
436−0.00040.00010.00010.00010.0001−0.00020.0006−0.0005−0.00050.0000
435−0.00030.00000.00000.00000.00000.0000−0.0005−0.0004−0.0002−0.0001
4340.00000.00010.00010.00010.0001−0.0003−0.0005−0.00020.0000−0.0001
4330.00010.00010.00010.00010.0001−0.00050.0000−0.0008−0.0001−0.0001
432−0.00010.00030.00030.00030.0003−0.0002−0.0004−0.00020.00000.0000
4310.00010.00020.00020.00020.0002−0.00030.0001−0.00050.00020.0000
4300.00010.00020.00020.00020.0002−0.00020.0001−0.00020.00020.0001
429−0.00010.00030.00030.00030.0003−0.00020.00020.00000.00000.0001
428−0.00040.00000.00000.00000.0000−0.0002−0.0006−0.00020.0000−0.0002
427−0.00010.00010.00010.00010.00010.0000−0.0004−0.00070.0001−0.0001
4260.00000.00000.00000.00000.0000−0.00070.00080.0000−0.00030.0000
4250.00000.00020.00020.00020.0002−0.00030.00030.00000.00000.0001
4240.00010.00040.00040.00040.0004−0.0004−0.00020.0005−0.00020.0001
4230.0003−0.0002−0.0002−0.0002−0.0002−0.00010.00030.0003−0.00020.0000
422−0.00040.00040.00040.00040.0004−0.0007−0.00060.0000−0.00030.0000
421−0.00020.00010.00010.00010.0001−0.00020.0002−0.00030.00000.0000
420−0.00010.00000.00000.00000.0000−0.0003−0.0002−0.00030.0001−0.0001
419−0.00040.00010.00010.00010.0001−0.00030.0000−0.0005−0.0001−0.0001
418−0.0006−0.0004−0.0004−0.0004−0.00040.0001−0.0006−0.00010.0002−0.0003
417−0.0001−0.0001−0.0001−0.0001−0.0001−0.00030.0000−0.0003−0.0002−0.0001
416−0.0006−0.0005−0.0005−0.0005−0.0005−0.00040.00000.00000.0001−0.0003
4150.0002−0.0002−0.0002−0.0002−0.0002−0.00010.0006−0.0002−0.0001−0.0001
4140.0004−0.0007−0.0007−0.0007−0.0007−0.00020.0006−0.0007−0.0002−0.0003
413−0.0005−0.0007−0.0007−0.0007−0.0007−0.00020.0003−0.0004−0.0004−0.0005
412−0.0002−0.0007−0.0007−0.0007−0.0007−0.00040.0006−0.00060.0000−0.0004
411−0.0003−0.0006−0.0006−0.0006−0.0006−0.00040.0005−0.0004−0.0006−0.0004
410−0.00030.00000.00000.00000.0000−0.00020.00060.0001−0.0004−0.0001
409−0.0004−0.0002−0.0002−0.0002−0.0002−0.00060.0000−0.0004−0.0003−0.0003
4080.0001−0.0004−0.0004−0.0004−0.0004−0.0003−0.0003−0.0001−0.0004−0.0003
407−0.0003−0.0004−0.0004−0.0004−0.0004−0.00030.0006−0.0001−0.0002−0.0002
4060.0000−0.0003−0.0003−0.0003−0.0003−0.0006−0.00040.0000−0.0005−0.0003
405−0.00030.00000.00000.00000.0000−0.0003−0.00040.00000.0001−0.0001
404−0.0004−0.0003−0.0003−0.0003−0.0003−0.00050.00020.00020.0002−0.0002
403−0.00050.00020.00020.00020.0002−0.00040.0005−0.0003−0.00010.0000
4020.0002−0.0001−0.0001−0.0001−0.0001−0.0006−0.00030.0001−0.0001−0.0001
4010.0002−0.0003−0.0003−0.0003−0.00030.00000.00010.0002−0.0002−0.0001
400−0.0003−0.0002−0.0002−0.0002−0.0002−0.00010.00010.00040.0002−0.0001
399−0.0003−0.0002−0.0002−0.0002−0.0002−0.00060.00020.00040.0003−0.0001
398−0.00020.00000.00000.00000.00000.00000.0005−0.0001−0.00030.0000
397−0.0003−0.0004−0.0004−0.0004−0.00040.0000−0.0005−0.00040.0001−0.0003
396−0.0001−0.0003−0.0003−0.0003−0.0003−0.0008−0.00050.00040.0000−0.0003
395−0.00030.00000.00000.00000.0000−0.0004−0.00020.00030.0000−0.0001
394−0.00050.00080.00080.00080.00080.0001−0.00030.00010.00040.0003
393−0.00010.00010.00010.00010.0001−0.00040.0002−0.0002−0.00010.0000
392−0.0003−0.0004−0.0004−0.0004−0.0004−0.00060.0001−0.0004−0.0004−0.0003
3910.0000−0.0002−0.0002−0.0002−0.00020.00010.00000.00020.0001−0.0001
390−0.0001−0.0001−0.0001−0.0001−0.00010.00010.00030.00000.00010.0000
389−0.0002−0.0004−0.0004−0.0004−0.0004−0.00020.0003−0.00050.0000−0.0002
388−0.00030.00000.00000.00000.00000.00000.0004−0.0008−0.0002−0.0001
3870.0000−0.0008−0.0008−0.0008−0.00080.00020.0003−0.0002−0.0001−0.0004
3860.0000−0.0003−0.0003−0.0003−0.0003−0.00030.0000−0.0002−0.0001−0.0002
385−0.0008−0.0002−0.0002−0.0002−0.00020.0001−0.00080.00020.0001−0.0002
3840.00000.00020.00020.00020.0002−0.0003−0.0002−0.0003−0.00010.0000
3830.0001−0.0002−0.0002−0.0002−0.00020.00100.00080.0000−0.00020.0001
3820.00010.00020.00020.00020.0002−0.0005−0.0001−0.0001−0.00040.0000
381−0.0002−0.0002−0.0002−0.0002−0.0002−0.00030.0000−0.0004−0.0001−0.0002
380−0.0003−0.0005−0.0005−0.0005−0.0005−0.00050.0009−0.0002−0.0005−0.0003
379−0.0004−0.0008−0.0008−0.0008−0.00080.0000−0.00010.0001−0.0004−0.0004
378−0.0002−0.0006−0.0006−0.0006−0.0006−0.00040.0001−0.00020.0001−0.0003
377−0.0001−0.0002−0.0002−0.0002−0.0002−0.00020.0000−0.00030.0000−0.0002
376−0.0002−0.0004−0.0004−0.0004−0.0004−0.00020.0005−0.00010.0003−0.0001
375−0.0005−0.0003−0.0003−0.0003−0.0003−0.00010.00010.00010.0004−0.0001
374−0.00040.00000.00000.00000.00000.00000.0000−0.0001−0.0003−0.0001
373−0.0002−0.0007−0.0007−0.0007−0.0007−0.0004−0.00070.0000−0.0001−0.0005
372−0.0002−0.0001−0.0001−0.0001−0.00010.00000.00030.0000−0.0003−0.0001
371−0.0004−0.0002−0.0002−0.0002−0.00020.00080.00010.00020.00010.0000
3700.0000−0.0003−0.0003−0.0003−0.0003−0.00010.0000−0.00030.0000−0.0002
369−0.0001−0.0005−0.0005−0.0005−0.0005−0.00040.00030.0003−0.0001−0.0002
368−0.00030.00030.00030.00030.0003−0.00040.0000−0.00030.00080.0001
367−0.0004−0.0002−0.0002−0.0002−0.0002−0.00070.0001−0.00040.0002−0.0002
3660.0001−0.0002−0.0002−0.0002−0.0002−0.0003−0.0004−0.0005−0.0003−0.0003
3650.00000.00010.00010.00010.0001−0.00050.00070.00010.00040.0001
364−0.0001−0.0002−0.0002−0.0002−0.0002−0.00050.0004−0.00060.0003−0.0001
3630.00000.00010.00010.00010.0001−0.00040.00010.00010.00000.0000
362−0.0001−0.0001−0.0001−0.0001−0.0001−0.0006−0.0005−0.00060.0004−0.0002
361−0.00020.00020.00020.00020.0002−0.00030.00030.0000−0.00010.0001
360−0.00040.00000.00000.00000.0000−0.00010.0001−0.00020.00000.0000
359−0.00040.00010.00010.00010.00010.00010.0001−0.00020.00010.0000
358−0.00030.00040.00040.00040.0004−0.0005−0.0002−0.00060.00060.0001
357−0.00050.00020.00020.00020.00020.00020.00050.00060.00010.0002
3560.0002−0.0002−0.0002−0.0002−0.0002−0.0002−0.0004−0.00160.0004−0.0003
355−0.0007−0.0002−0.0002−0.0002−0.0002−0.00050.00060.00000.0002−0.0001
354−0.0001−0.0001−0.0001−0.0001−0.00010.00020.00040.00020.00040.0001
353−0.0004−0.0001−0.0001−0.0001−0.0001−0.00030.00000.0000−0.0003−0.0002
352−0.00020.00030.00030.00030.0003−0.00020.00030.00010.00010.0001
351−0.00050.00010.00010.00010.0001−0.00020.00150.0003−0.00020.0002
350−0.0003−0.0001−0.0001−0.0001−0.0001−0.00060.00080.00030.00020.0000
349−0.00060.00010.00010.00010.0001−0.00110.00000.0001−0.0006−0.0002
348−0.00100.00030.00030.00030.0003−0.0012−0.00210.0006−0.0003−0.0003
3470.00050.00040.00040.00040.00040.00180.00050.00030.00130.0007
3460.00030.00060.00060.00060.0006−0.00030.00010.0002−0.00020.0003
3450.0009−0.0010−0.0010−0.0010−0.00100.00040.00070.0014−0.0005−0.0001
3440.00150.00100.00100.00100.00100.0004−0.0012−0.00080.00010.0004
3430.00010.00000.00000.00000.0000−0.0009−0.0013−0.00050.0007−0.0002
3420.00030.00060.00060.00060.0006−0.00080.00050.00060.00030.0004
341−0.0001−0.0001−0.0001−0.0001−0.00010.0000−0.00160.00000.0006−0.0002
3400.00040.00080.00080.00080.0008−0.0003−0.0008−0.0007−0.00090.0001
3390.00100.00010.00010.00010.0001−0.00080.0003−0.00140.00110.0000
3380.00040.00040.00040.00040.00040.0003−0.0012−0.0017−0.0011−0.0002
3370.0013−0.0008−0.0008−0.0008−0.00080.00000.00100.00170.00110.0002
336−0.00040.00020.00020.00020.00020.00000.00000.00170.00010.0002
3350.0022−0.0006−0.0006−0.0006−0.00060.00030.0013−0.00180.00000.0000
3340.0005−0.0002−0.0002−0.0002−0.00020.00150.00010.00100.00140.0004
333−0.0005−0.0001−0.0001−0.0001−0.00010.00110.00040.00100.00010.0002
332−0.00020.00090.00090.00090.00090.00030.0015−0.0010−0.00070.0004
331−0.00070.00000.00000.00000.00000.0005−0.0013−0.0015−0.0006−0.0004
330−0.0015−0.0025−0.0025−0.0025−0.0025−0.0001−0.0013−0.0013−0.0007−0.0017
3290.0003−0.0001−0.0001−0.0001−0.00010.00050.00030.0016−0.00010.0003
3280.00000.00130.00130.00130.00130.00100.00000.00170.00030.0009
327−0.0003−0.0004−0.0004−0.0004−0.00040.00070.00200.00040.00070.0002
3260.00030.00080.00080.00080.00080.0003−0.0004−0.00020.00030.0004
325−0.00020.00160.00160.00160.00160.0003−0.0011−0.0001−0.00010.0006
3240.0017−0.0005−0.0005−0.0005−0.00050.0011−0.00050.0002−0.00010.0000
323−0.00060.00070.00070.00070.00070.00000.00050.00180.00200.0007
3220.00060.00020.00020.00020.0002−0.00070.00030.00020.00010.0001
3210.0005−0.0007−0.0007−0.0007−0.0007−0.00030.00090.00030.00130.0000
3200.00120.00030.00030.00030.0003−0.0004−0.00030.00110.00020.0003
3190.0004−0.0015−0.0015−0.0015−0.00150.0007−0.0005−0.00020.0002−0.0006
3180.0003−0.0008−0.0008−0.0008−0.0008−0.00010.00140.00160.00010.0000
317−0.0009−0.0014−0.0014−0.0014−0.0014−0.00050.00130.0001−0.0006−0.0007
316−0.00150.00030.00030.00030.0003−0.0005−0.0002−0.00070.0002−0.0002
3150.0004−0.0004−0.0004−0.0004−0.0004−0.00060.00090.0001−0.0002−0.0001
314−0.0005−0.0006−0.0006−0.0006−0.0006−0.0009−0.00030.00100.0007−0.0003
313−0.0001−0.0007−0.0007−0.0007−0.0007−0.00060.00030.0008−0.0005−0.0003
312−0.0007−0.0005−0.0005−0.0005−0.0005−0.00090.00170.00110.00110.0000
311−0.00020.00020.00020.00020.0002−0.00070.0008−0.0010−0.0016−0.0002
310−0.0009−0.0004−0.0004−0.0004−0.00040.00030.00060.00020.0008−0.0001
309−0.00030.00000.00000.00000.0000−0.00030.0003−0.00040.0003−0.0001
308−0.0001−0.0002−0.0002−0.0002−0.0002−0.00060.0013−0.00010.00040.0000
3070.0000−0.0007−0.0007−0.0007−0.0007−0.00020.00020.00080.0000−0.0002
3060.0005−0.0001−0.0001−0.0001−0.00010.0000−0.0001−0.00020.00000.0000
3050.0004−0.0005−0.0005−0.0005−0.00050.0000−0.00010.0003−0.0001−0.0002
3040.0006−0.0001−0.0001−0.0001−0.00010.00090.00000.00040.00000.0002
303−0.00060.00050.00050.00050.00050.00030.0006−0.00030.00020.0002
3020.00040.00100.00100.00100.00100.0004−0.0019−0.0003−0.00040.0002
3010.00080.00110.00110.00110.00110.00020.0012−0.00010.00030.0007
3000.00060.00070.00070.00070.0007−0.0009−0.00020.00080.00000.0003
2990.0011−0.0017−0.0017−0.0017−0.0017−0.0002−0.0004−0.0010−0.0004−0.0009
2980.00020.00080.00080.00080.0008−0.00050.0004−0.00060.00080.0004
297−0.0001−0.0001−0.0001−0.0001−0.00010.00060.0005−0.00060.00010.0000
2960.0002−0.0002−0.0002−0.0002−0.0002−0.0009−0.0003−0.00030.0000−0.0002
295−0.0005−0.0007−0.0007−0.0007−0.00070.00080.00000.00030.0005−0.0002
294−0.00070.00050.00050.00050.00050.00130.0003−0.00050.00110.0004
2930.00030.00060.00060.00060.00060.00020.0002−0.0004−0.00050.0002
2920.0011−0.0003−0.0003−0.0003−0.0003−0.0002−0.00100.00050.0001−0.0001
2910.0019−0.0001−0.0001−0.0001−0.00010.00080.0009−0.00030.00030.0004
2900.0006−0.0002−0.0002−0.0002−0.0002−0.00070.0006−0.0004−0.0001−0.0001
289−0.00040.00060.00060.00060.00060.0003−0.00110.00060.00070.0003
2880.00000.00050.00050.00050.0005−0.00030.00110.0007−0.00050.0004
287−0.0007−0.0003−0.0003−0.0003−0.00030.0000−0.00050.0001−0.0005−0.0003
2860.00010.00040.00040.00040.00040.00010.0003−0.00030.00130.0004
285−0.0007−0.0013−0.0013−0.0013−0.00130.0007−0.0001−0.0011−0.0005−0.0008
284−0.00020.00000.00000.00000.00000.0001−0.0002−0.00080.00110.0000
2830.0010−0.0002−0.0002−0.0002−0.00020.00040.0003−0.0001−0.00040.0001
282−0.00020.00020.00020.00020.0002−0.00040.0001−0.0003−0.00020.0000
2810.00000.00070.00070.00070.00070.00040.0008−0.0001−0.00020.0004
2800.0004−0.0007−0.0007−0.0007−0.00070.00030.00100.00040.00060.0000
2790.00060.00040.00040.00040.00040.00010.0001−0.00040.00000.0002
2780.00080.00050.00050.00050.00050.00110.00070.0013−0.00040.0006
277−0.00080.00190.00190.00190.00190.0002−0.0006−0.0002−0.00010.0007
2760.00000.00070.00070.00070.0007−0.0004−0.00050.0002−0.00020.0002
275−0.00010.00050.00050.00050.00050.00060.00060.00000.00130.0005
2740.0003−0.0004−0.0004−0.0004−0.00040.00090.0005−0.00030.00070.0000
273−0.0009−0.0001−0.0001−0.0001−0.0001−0.0002−0.0002−0.0001−0.0002−0.0002
272−0.00060.00090.00090.00090.00090.0005−0.0009−0.0002−0.00040.0002
271−0.0008−0.0007−0.0007−0.0007−0.00070.0001−0.00060.0003−0.0013−0.0006
2700.00070.00100.00100.00100.00100.0001−0.0002−0.00010.00000.0005
269−0.00100.00010.00010.00010.00010.00030.0000−0.00060.0003−0.0001
268−0.0001−0.0003−0.0003−0.0003−0.00030.00020.0007−0.0001−0.0004−0.0001
2670.00030.00050.00050.00050.00050.00060.0005−0.00060.00020.0003
2660.00070.00070.00070.00070.00070.00010.00020.0004−0.00040.0004
265−0.00020.00020.00020.00020.00020.0001−0.00090.00070.00050.0001
264−0.0001−0.0007−0.0007−0.0007−0.00070.0000−0.0002−0.00020.0002−0.0003
2630.0003−0.0001−0.0001−0.0001−0.00010.00050.00120.00020.00010.0002
2620.0000−0.0002−0.0002−0.0002−0.00020.0007−0.00070.00040.00080.0000
2610.00000.00020.00020.00020.0002−0.00030.0004−0.0001−0.00030.0001
2600.00030.00040.00040.00040.00040.0001−0.0005−0.00010.00030.0002
2590.0013−0.0011−0.0011−0.0011−0.00110.00060.0009−0.00050.0003−0.0002
258−0.0007−0.0003−0.0003−0.0003−0.0003−0.00030.0000−0.0001−0.0006−0.0003
2570.0006−0.0002−0.0002−0.0002−0.00020.00110.0005−0.0001−0.00010.0001
2560.00000.00130.00130.00130.0013−0.00030.0005−0.00010.00100.0007
2550.00000.00010.00010.00010.00010.00020.0007−0.00030.00010.0001
254−0.00030.00080.00080.00080.00080.00070.0000−0.00010.00050.0004
2530.00000.00040.00040.00040.0004−0.0003−0.00040.0002−0.00040.0001
2520.00020.00060.00060.00060.00060.0000−0.0004−0.0005−0.00110.0001
251−0.00020.00020.00020.00020.00020.00070.00080.00110.00010.0004
2500.0003−0.0009−0.0009−0.0009−0.00090.00080.0002−0.00040.0000−0.0003
249−0.00040.00120.00120.00120.00120.00040.0012−0.0002−0.00050.0006
2480.0002−0.0001−0.0001−0.0001−0.00010.00080.0003−0.00010.00040.0001
247−0.00010.00170.00170.00170.00170.00060.00000.0000−0.00020.0008
246−0.00120.00000.00000.00000.0000−0.00070.00050.00030.00060.0000
245−0.00080.00010.00010.00010.0001−0.0004−0.00050.0002−0.0004−0.0002
244−0.0008−0.0007−0.0007−0.0007−0.00070.0004−0.00030.0001−0.0006−0.0004
2430.00050.00010.00010.00010.0001−0.0001−0.0005−0.00010.00010.0000
242−0.0005−0.0008−0.0008−0.0008−0.00080.0008−0.00060.0002−0.0002−0.0004
2410.00040.00100.00100.00100.00100.00030.00030.0002−0.00030.0005
240−0.00090.00030.00030.00030.00030.0004−0.00050.00020.00010.0000
2390.00010.00060.00060.00060.00060.0003−0.00010.00020.00010.0003
2380.00030.00040.00040.00040.00040.00080.0007−0.00050.00040.0004
2370.00000.00130.00130.00130.00130.0004−0.0002−0.0004−0.00020.0005
2360.0002−0.0003−0.0003−0.0003−0.00030.0003−0.00140.00020.0003−0.0002
2350.00020.00120.00120.00120.00120.0000−0.00020.0002−0.00030.0005
2340.0003−0.0004−0.0004−0.0004−0.0004−0.00010.00010.00040.0002−0.0001
2330.00000.00090.00090.00090.00090.00020.00060.00050.00010.0006
232−0.00040.00010.00010.00010.0001−0.00030.0002−0.00040.00020.0000
231−0.00020.00020.00020.00020.00020.00010.0003−0.00060.00010.0000
2300.00010.00080.00080.00080.00080.00020.00060.00050.00020.0006
229−0.00010.00060.00060.00060.00060.0006−0.0003−0.00020.00010.0003
2280.0007−0.0002−0.0002−0.0002−0.00020.00090.00020.00010.00060.0002
2270.0010−0.0005−0.0005−0.0005−0.00050.00000.00030.0006−0.0004−0.0001
226−0.00050.00020.00020.00020.00020.0000−0.00070.00030.00040.0000
2250.0006−0.0002−0.0002−0.0002−0.0002−0.0001−0.0008−0.0011−0.0001−0.0002
224−0.0002−0.0008−0.0008−0.0008−0.00080.00100.00050.00000.0000−0.0002
223−0.00020.00040.00040.00040.00040.00120.0009−0.00020.00100.0005
2220.00020.00070.00070.00070.00070.0014−0.00050.0000−0.00050.0004
221−0.00070.00050.00050.00050.00050.0001−0.0006−0.00010.00060.0001
2200.00020.00020.00020.00020.00020.00100.0005−0.0001−0.00030.0002
219−0.00020.00120.00120.00120.00120.00020.0001−0.00020.00100.0007
218−0.00090.00030.00030.00030.0003−0.00050.00020.0011−0.00010.0001
217−0.00100.00050.00050.00050.0005−0.00010.0001−0.00060.00050.0001
216−0.00030.00040.00040.00040.00040.00050.00010.0000−0.00090.0001
215−0.00070.00080.00080.00080.00080.00020.00030.0001−0.00040.0003
214−0.00030.00060.00060.00060.00060.0010−0.0002−0.0003−0.00030.0002
2130.00080.00000.00000.00000.00000.00020.00020.0006−0.00010.0002
212−0.00070.00010.00010.00010.00010.0000−0.0004−0.00050.00060.0000
2110.00030.00030.00030.00030.00030.00100.0012−0.00010.00030.0004
210−0.0007−0.0002−0.0002−0.0002−0.0002−0.00080.0000−0.00020.0001−0.0003
209−0.0002−0.0002−0.0002−0.0002−0.00020.0005−0.0004−0.00010.0005−0.0001
2080.00060.00060.00060.00060.00060.0006−0.0001−0.00020.00020.0004
2070.00010.00030.00030.00030.00030.0008−0.00060.00060.00010.0002
2060.00030.00040.00040.00040.00040.0008−0.00080.00140.00010.0004
2050.00040.00040.00040.00040.0004−0.0001−0.00120.0005−0.00010.0001
2040.00040.00000.00000.00000.00000.0006−0.00080.00010.00030.0000
203−0.00050.00060.00060.00060.00060.00080.0006−0.0002−0.00040.0003
2020.0001−0.0001−0.0001−0.0001−0.00010.00070.0003−0.00110.00000.0000
201−0.00040.00080.00080.00080.00080.00120.0004−0.00110.00000.0004
2000.00000.00040.00040.00040.0004−0.00030.0012−0.00040.00080.0003
Table A2. Spectral optical density (OD) values for blank filter pads (n = 9) measured in transmittance mode with air baseline correction.
Table A2. Spectral optical density (OD) values for blank filter pads (n = 9) measured in transmittance mode with air baseline correction.
Long. Onda (nm)Prom-ap-Sol-0001a-22Prom-ap-Sol-0001b-22Prom-ap-Sol-0003-22Prom-ap-Sol-0004-22Prom-ap-Sol-0005-22Prom-ap-Sol-0008-22Prom-ap-Sol-0010-22Prom-ap-Sol_12 y 14-22Prom-ap-Sol_19-22Mean OD (Blank Filters)
8502.31982.29972.29832.32042.30542.31982.29972.29832.32042.3091
8492.31922.29772.29792.32052.30632.31922.29772.29792.32052.3085
8482.32042.29732.29812.32042.30682.32042.29732.29812.32042.3088
8472.31952.29922.29672.31922.30682.31952.29922.29672.31922.3084
8462.31952.29792.29832.31902.30772.31952.29792.29832.31902.3086
8452.31912.29782.29832.31942.30642.31912.29782.29832.31942.3084
8442.31882.29782.29632.32002.30522.31882.29782.29632.32002.3079
8432.31802.29702.29712.31972.30592.31802.29702.29712.31972.3077
8422.31852.29732.29742.31932.30662.31852.29732.29742.31932.3080
8412.31952.29732.29682.31882.30472.31952.29732.29682.31882.3077
8402.31842.29742.29532.31872.30612.31842.29742.29532.31872.3073
8392.31782.29692.29532.31852.30702.31782.29692.29532.31852.3071
8382.31752.29572.29582.31772.30762.31752.29572.29582.31772.3068
8372.31762.29592.29612.31762.30372.31762.29592.29612.31762.3065
8362.31702.29602.29492.31782.30362.31702.29602.29492.31782.3061
8352.31642.29572.29422.31782.30472.31642.29572.29422.31782.3059
8342.31612.29502.29382.31732.30352.31612.29502.29382.31732.3053
8332.31572.29492.29412.31712.30362.31572.29492.29412.31712.3052
8322.31622.29412.29522.31652.30242.31622.29412.29522.31652.3052
8312.31622.29422.29362.31612.30242.31622.29422.29362.31612.3047
8302.31692.29502.29292.31572.30342.31692.29502.29292.31572.3049
8292.31542.29512.29332.31592.30322.31542.29512.29332.31592.3047
8282.31482.29452.29252.31472.30352.31482.29452.29252.31472.3041
8272.31472.29422.29272.31532.30442.31472.29422.29272.31532.3043
8262.31482.29392.29242.31482.30232.31482.29392.29242.31482.3038
8252.31502.29322.29252.31512.30342.31502.29322.29252.31512.3039
8242.31392.29272.29312.31492.30112.31392.29272.29312.31492.3034
8232.31472.29392.29232.31492.30262.31472.29392.29232.31492.3038
8222.31432.29402.29322.31502.30072.31432.29402.29322.31502.3037
8212.31432.29252.29292.31482.30032.31432.29252.29292.31482.3032
8202.31432.29312.29312.31472.29992.31432.29312.29312.31472.3034
8192.31412.29292.29192.31442.30112.31412.29292.29192.31442.3031
8182.31432.29432.29152.31432.30062.31432.29432.29152.31432.3033
8172.31482.29282.29202.31502.30052.31482.29282.29202.31502.3033
8162.31462.29292.29172.31532.30062.31462.29292.29172.31532.3033
8152.31472.29262.29142.31552.30192.31472.29262.29142.31552.3034
8142.31452.29312.29242.31582.30272.31452.29312.29242.31582.3038
8132.31502.29302.29182.31552.30282.31502.29302.29182.31552.3037
8122.31472.29412.29302.31582.30212.31472.29412.29302.31582.3041
8112.31482.29392.29272.31542.30342.31482.29392.29272.31542.3041
8102.31492.29372.29312.31512.30272.31492.29372.29312.31512.3040
8092.31532.29442.29372.31592.30262.31532.29442.29372.31592.3046
8082.31652.29422.29382.31652.30292.31652.29422.29382.31652.3050
8072.31692.29502.29332.31622.30392.31692.29502.29332.31622.3052
8062.31692.29502.29372.31632.30312.31692.29502.29372.31632.3052
8052.31712.29612.29362.31662.30332.31712.29612.29362.31662.3056
8042.31712.29612.29432.31662.30352.31712.29612.29432.31662.3057
8032.31672.29632.29352.31652.30402.31672.29632.29352.31652.3055
8022.31722.29632.29452.31742.30602.31722.29632.29452.31742.3063
8012.31742.29622.29512.31732.30652.31742.29622.29512.31732.3065
8002.31792.29582.29462.31772.30652.31792.29582.29462.31772.3065
7992.31812.29682.29492.31752.30632.31812.29682.29492.31752.3068
7982.31812.29692.29512.31792.30632.31812.29692.29512.31792.3069
7972.31812.29682.29642.31832.30662.31812.29682.29642.31832.3073
7962.31862.29762.29712.31882.30512.31862.29762.29712.31882.3077
7952.31842.29792.29692.31972.30452.31842.29792.29692.31972.3078
7942.31872.29712.29672.31892.30512.31872.29712.29672.31892.3075
7932.31922.29812.29702.31982.30572.31922.29812.29702.31982.3082
7922.31932.29882.29692.31982.30562.31932.29882.29692.31982.3084
7912.31962.29852.29622.32032.30562.31962.29852.29622.32032.3083
7902.31962.29852.29612.32012.30662.31962.29852.29612.32012.3084
7892.31992.29892.29652.32092.30672.31992.29892.29652.32092.3088
7882.31992.29872.29742.32162.30712.31992.29872.29742.32162.3091
7872.32002.29872.29772.32122.30742.32002.29872.29772.32122.3092
7862.32072.29822.29832.32202.30762.32072.29822.29832.32202.3096
7852.32112.29882.29812.32132.30772.32112.29882.29812.32132.3096
7842.32132.29922.29822.32102.30792.32132.29922.29822.32102.3097
7832.32242.29972.29922.32142.30872.32242.29972.29922.32142.3104
7822.32252.30012.29912.32112.30842.32252.30012.29912.32112.3104
7812.32232.30062.29932.32162.30912.32232.30062.29932.32162.3108
7802.32232.30052.29852.32182.30912.32232.30052.29852.32182.3106
7792.32242.30122.29882.32232.30952.32242.30122.29882.32232.3110
7782.32272.30032.29942.32262.31072.32272.30032.29942.32262.3112
7772.32322.30102.29992.32242.31112.32322.30102.29992.32242.3116
7762.32272.30072.30002.32282.31212.32272.30072.30002.32282.3116
7752.32292.30142.30032.32322.31172.32292.30142.30032.32322.3119
7742.32322.30182.30092.32342.31152.32322.30182.30092.32342.3122
7732.32352.30152.30112.32352.31002.32352.30152.30112.32352.3122
7722.32362.30202.30202.32412.31022.32362.30202.30202.32412.3126
7712.32372.30242.30212.32432.31042.32372.30242.30212.32432.3128
7702.32412.30262.30142.32492.30972.32412.30262.30142.32492.3129
7692.32422.30282.30122.32532.30922.32422.30282.30122.32532.3129
7682.32442.30242.30042.32442.30972.32442.30242.30042.32442.3126
7672.32452.30242.30112.32552.31072.32452.30242.30112.32552.3131
7662.32482.30262.30152.32472.31052.32482.30262.30152.32472.3131
7652.32502.30232.30172.32542.31152.32502.30232.30172.32542.3133
7642.32482.30252.30212.32542.31162.32482.30252.30212.32542.3135
7632.32522.30272.30242.32532.31062.32522.30272.30242.32532.3136
7622.32572.30242.30222.32542.31132.32572.30242.30222.32542.3136
7612.32572.30362.30222.32532.31132.32572.30362.30222.32532.3139
7602.32652.30312.30222.32562.31212.32652.30312.30222.32562.3141
7592.32552.30422.30222.32552.31172.32552.30422.30222.32552.3141
7582.32622.30432.30242.32562.31262.32622.30432.30242.32562.3144
7572.32612.30322.30222.32652.31382.32612.30322.30222.32652.3144
7562.32612.30382.30242.32592.31352.32612.30382.30242.32592.3144
7552.32592.30352.30272.32592.31442.32592.30352.30272.32592.3145
7542.32572.30392.30312.32562.31242.32572.30392.30312.32562.3143
7532.32622.30382.30392.32562.31262.32622.30382.30392.32562.3146
7522.32572.30452.30392.32612.31142.32572.30452.30392.32612.3146
7512.32602.30452.30322.32632.31222.32602.30452.30322.32632.3147
7502.32622.30362.30292.32692.31162.32622.30362.30292.32692.3145
7492.32612.30432.30252.32672.31242.32612.30432.30252.32672.3146
7482.32652.30392.30262.32682.31192.32652.30392.30262.32682.3146
7472.32632.30372.30312.32682.31232.32632.30372.30312.32682.3147
7462.32652.30332.30272.32652.31302.32652.30332.30272.32652.3146
7452.32712.30342.30352.32642.31132.32712.30342.30352.32642.3147
7442.32712.30382.30282.32642.31132.32712.30382.30282.32642.3146
7432.32682.30422.30292.32652.31202.32682.30422.30292.32652.3148
7422.32652.30442.30232.32582.31272.32652.30442.30232.32582.3145
7412.32652.30372.30252.32602.31362.32652.30372.30252.32602.3146
7402.32692.30422.30252.32582.31402.32692.30422.30252.32582.3147
7392.32662.30442.30292.32552.31342.32662.30442.30292.32552.3147
7382.32652.30452.30392.32592.31162.32652.30452.30392.32592.3148
7372.32642.30382.30362.32602.31172.32642.30382.30362.32602.3146
7362.32662.30392.30272.32682.31082.32662.30392.30272.32682.3145
7352.32652.30402.30162.32642.31112.32652.30402.30162.32642.3143
7342.32612.30412.30242.32632.31182.32612.30412.30242.32632.3144
7332.32592.30352.30302.32662.31182.32592.30352.30302.32662.3144
7322.32612.30312.30282.32642.31132.32612.30312.30282.32642.3142
7312.32642.30292.30232.32612.31092.32642.30292.30232.32612.3140
7302.32732.30272.30252.32652.31142.32732.30272.30252.32652.3144
7292.32742.30362.30252.32662.31082.32742.30362.30252.32662.3146
7282.32652.30372.30222.32622.31162.32652.30372.30222.32622.3143
7272.32642.30382.30212.32592.31222.32642.30382.30212.32592.3143
7262.32672.30442.30282.32612.31272.32672.30442.30282.32612.3147
7252.32702.30472.30302.32652.31302.32702.30472.30302.32652.3150
7242.32772.30462.30332.32682.31312.32772.30462.30332.32682.3153
7232.32782.30512.30402.32712.31372.32782.30512.30402.32712.3158
7222.32842.30602.30402.32772.31352.32842.30602.30402.32772.3162
7212.32882.30632.30482.32812.31412.32882.30632.30482.32812.3167
7202.32942.30722.30502.32892.31462.32942.30722.30502.32892.3173
7192.32992.30652.30612.32932.31522.32992.30652.30612.32932.3177
7182.33042.30812.30632.33102.31792.33042.30812.30632.33102.3188
7172.33142.30932.30712.33142.31792.33142.30932.30712.33142.3196
7162.33232.31012.30812.33312.31852.33232.31012.30812.33312.3206
7152.33312.31082.30922.33332.31852.33312.31082.30922.33332.3212
7142.33452.31202.30972.33402.31862.33452.31202.30972.33402.3221
7132.33472.31292.31032.33402.32052.33472.31292.31032.33402.3227
7122.33552.31362.31162.33522.32102.33552.31362.31162.33522.3237
7112.33692.31412.31302.33592.32202.33692.31412.31302.33592.3247
7102.33812.31472.31372.33742.32272.33812.31472.31372.33742.3256
7092.33882.31572.31452.33822.32442.33882.31572.31452.33822.3265
7082.33952.31662.31582.33902.32442.33952.31662.31582.33902.3274
7072.34022.31752.31622.33982.32642.34022.31752.31622.33982.3282
7062.34122.31842.31712.34072.32702.34122.31842.31712.34072.3291
7052.34212.31892.31772.34162.32802.34212.31892.31772.34162.3298
7042.34272.31982.31842.34232.32852.34272.31982.31842.34232.3305
7032.34342.32052.31902.34322.32912.34342.32052.31902.34322.3313
7022.34422.32162.32032.34372.33052.34422.32162.32032.34372.3322
7012.34512.32192.31992.34452.33102.34512.32192.31992.34452.3326
7002.34542.32302.32122.34522.33162.34542.32302.32122.34522.3335
6992.34612.32312.32232.34522.33332.34612.32312.32232.34522.3341
6982.34622.32392.32212.34642.33422.34622.32392.32212.34642.3346
6972.34742.32402.32352.34692.33342.34742.32402.32352.34692.3352
6962.34772.32462.32282.34772.33422.34772.32462.32282.34772.3356
6952.34822.32522.32432.34792.33512.34822.32522.32432.34792.3362
6942.34852.32592.32422.34832.33482.34852.32592.32422.34832.3365
6932.34932.32652.32542.34862.33572.34932.32652.32542.34862.3373
6922.34972.32642.32512.34962.33642.34972.32642.32512.34962.3376
6912.34992.32742.32572.34962.33672.34992.32742.32572.34962.3380
6902.34992.32732.32652.34962.33722.34992.32732.32652.34962.3382
6892.35092.32802.32642.35062.33772.35092.32802.32642.35062.3388
6882.35142.32812.32722.35092.33772.35142.32812.32722.35092.3392
6872.35152.32862.32692.35112.33832.35152.32862.32692.35112.3394
6862.35212.32852.32802.35152.33882.35212.32852.32802.35152.3399
6852.35272.32902.32752.35212.33862.35272.32902.32752.35212.3401
6842.35292.32912.32832.35192.33822.35292.32912.32832.35192.3403
6832.35262.33012.32792.35282.33932.35262.33012.32792.35282.3407
6822.35282.32962.32862.35272.33912.35282.32962.32862.35272.3407
6812.35292.33012.32902.35282.33932.35292.33012.32902.35282.3410
6802.35392.33052.32922.35292.33962.35392.33052.32922.35292.3414
6792.35362.33092.32912.35322.34062.35362.33092.32912.35322.3416
6782.35422.33092.33012.35342.34002.35422.33092.33012.35342.3419
6772.35402.33142.32932.35412.34062.35402.33142.32932.35412.3420
6762.35462.33092.33032.35432.34092.35462.33092.33032.35432.3423
6752.35442.33182.33072.35442.34182.35442.33182.33072.35442.3427
6742.35512.33142.33062.35502.34232.35512.33142.33062.35502.3429
6732.35572.33222.33132.35512.34212.35572.33222.33132.35512.3434
6722.35572.33272.33102.35502.34162.35572.33272.33102.35502.3434
6712.35622.33232.33142.35572.34242.35622.33232.33142.35572.3437
6702.35602.33292.33152.35602.34222.35602.33292.33152.35602.3439
6692.35642.33282.33152.35632.34242.35642.33282.33152.35632.3441
6682.35642.33302.33232.35612.34292.35642.33302.33232.35612.3443
6672.35642.33302.33172.35612.34352.35642.33302.33172.35612.3442
6662.35672.33332.33142.35602.34262.35672.33332.33142.35602.3442
6652.35692.33332.33142.35572.34292.35692.33332.33142.35572.3442
6642.35702.33362.33202.35602.34302.35702.33362.33202.35602.3445
6632.35672.33342.33172.35612.34292.35672.33342.33172.35612.3443
6622.35672.33402.33252.35612.34322.35672.33402.33252.35612.3446
6612.35742.33452.33222.35672.34412.35742.33452.33222.35672.3451
6602.35692.33382.33232.35702.34442.35692.33382.33232.35702.3449
6592.35772.33442.33282.35702.34332.35772.33442.33282.35702.3453
6582.35822.33472.33272.35712.34452.35822.33472.33272.35712.3455
6572.35812.33512.33312.35782.34392.35812.33512.33312.35782.3458
6562.35842.33502.33382.35812.34462.35842.33502.33382.35812.3462
6552.35872.33582.33352.35862.34502.35872.33582.33352.35862.3465
6542.35872.33562.33432.35882.34522.35872.33562.33432.35882.3467
6532.35922.33602.33452.35902.34592.35922.33602.33452.35902.3470
6522.35912.33652.33442.35902.34602.35912.33652.33442.35902.3471
6512.35962.33632.33472.35952.34592.35962.33632.33472.35952.3474
6502.35992.33652.33442.35992.34512.35992.33652.33442.35992.3474
6492.35992.33722.33482.36032.34592.35992.33722.33482.36032.3478
6482.36012.33772.33452.36022.34662.36012.33772.33452.36022.3479
6472.36022.33852.33522.36112.34692.36022.33852.33522.36112.3485
6462.36072.33802.33532.36072.34702.36072.33802.33532.36072.3485
6452.36132.33882.33592.36132.34692.36132.33882.33592.36132.3491
6442.36172.33812.33612.36162.34762.36172.33812.33612.36162.3492
6432.36162.33902.33612.36142.34782.36162.33902.33612.36142.3493
6422.36172.33892.33632.36212.34822.36172.33892.33632.36212.3496
6412.36192.33952.33672.36252.34832.36192.33952.33672.36252.3500
6402.36212.33972.33662.36252.34922.36212.33972.33662.36252.3501
6392.36242.33952.33712.36242.34952.36242.33952.33712.36242.3502
6382.36282.33952.33732.36222.34992.36282.33952.33732.36222.3504
6372.36342.34042.33742.36232.35052.36342.34042.33742.36232.3508
6362.36382.33902.33762.36252.35082.36382.33902.33762.36252.3507
6352.36372.33992.33812.36332.35132.36372.33992.33812.36332.3513
6342.36412.33992.33792.36332.35172.36412.33992.33792.36332.3514
6332.36432.33982.33822.36392.35202.36432.33982.33822.36392.3516
6322.36422.34032.33882.36382.35302.36422.34032.33882.36382.3519
6312.36462.34072.33932.36422.35162.36462.34072.33932.36422.3521
6302.36462.34022.33972.36442.35242.36462.34022.33972.36442.3522
6292.36482.34072.33992.36452.35272.36482.34072.33992.36452.3525
6282.36582.34122.33982.36502.35322.36582.34122.33982.36502.3530
6272.36562.34182.34072.36522.35242.36562.34182.34072.36522.3532
6262.36582.34182.34082.36512.35172.36582.34182.34082.36512.3532
6252.36632.34162.34162.36532.35352.36632.34162.34162.36532.3537
6242.36662.34152.34112.36602.35332.36662.34152.34112.36602.3538
6232.36702.34212.34102.36612.35342.36702.34212.34102.36612.3540
6222.36712.34272.34232.36632.35382.36712.34272.34232.36632.3545
6212.36732.34272.34192.36672.35232.36732.34272.34192.36672.3544
6202.36772.34282.34202.36712.35292.36772.34282.34202.36712.3547
6192.36772.34282.34272.36702.35292.36772.34282.34272.36702.3548
6182.36782.34382.34292.36742.35342.36782.34382.34292.36742.3553
6172.36832.34422.34302.36762.35312.36832.34422.34302.36762.3555
6162.36862.34392.34252.36832.35382.36862.34392.34252.36832.3556
6152.36872.34422.34332.36862.35462.36872.34422.34332.36862.3560
6142.36902.34472.34292.36852.35432.36902.34472.34292.36852.3561
6132.36952.34502.34302.36882.35562.36952.34502.34302.36882.3565
6122.36992.34432.34342.36922.35532.36992.34432.34342.36922.3566
6112.37012.34522.34362.36952.35592.37012.34522.34362.36952.3570
6102.37052.34612.34432.36932.35532.37052.34612.34432.36932.3573
6092.37062.34542.34462.36942.35602.37062.34542.34462.36942.3573
6082.37092.34632.34482.37022.35552.37092.34632.34482.37022.3578
6072.37132.34632.34482.37012.35582.37132.34632.34482.37012.3579
6062.37132.34632.34522.37082.35692.37132.34632.34522.37082.3582
6052.37162.34712.34522.37112.35662.37162.34712.34522.37112.3585
6042.37172.34762.34512.37162.35722.37172.34762.34512.37162.3588
6032.37212.34722.34622.37192.35752.37212.34722.34622.37192.3591
6022.37222.34802.34622.37162.35802.37222.34802.34622.37162.3593
6012.37312.34762.34622.37182.35812.37312.34762.34622.37182.3595
6002.37332.34782.34692.37242.35812.37332.34782.34692.37242.3599
5992.37332.34852.34702.37262.35852.37332.34852.34702.37262.3601
5982.37372.34802.34702.37322.35842.37372.34802.34702.37322.3602
5972.37372.34902.34722.37312.35922.37372.34902.34722.37312.3606
5962.37402.34882.34752.37332.35942.37402.34882.34752.37332.3608
5952.37442.34912.34752.37382.35952.37442.34912.34752.37382.3610
5942.37452.34912.34802.37412.35902.37452.34912.34802.37412.3612
5932.37492.34942.34822.37432.36002.37492.34942.34822.37432.3615
5922.37512.35012.34832.37462.36022.37512.35012.34832.37462.3618
5912.37542.34982.34912.37522.36042.37542.34982.34912.37522.3622
5902.37592.35082.34912.37532.36082.37592.35082.34912.37532.3625
5892.37572.35092.34952.37562.36092.37572.35092.34952.37562.3627
5882.37612.35112.34942.37562.36112.37612.35112.34942.37562.3628
5872.37682.35092.34982.37582.36142.37682.35092.34982.37582.3631
5862.37692.35162.34982.37612.36212.37692.35162.34982.37612.3634
5852.37722.35192.34992.37592.36122.37722.35192.34992.37592.3635
5842.37742.35212.35012.37712.36192.37742.35212.35012.37712.3639
5832.37792.35282.35052.37702.36252.37792.35282.35052.37702.3643
5822.37792.35292.35072.37742.36312.37792.35292.35072.37742.3646
5812.37812.35302.35132.37712.36232.37812.35302.35132.37712.3646
5802.37832.35332.35172.37772.36202.37832.35332.35172.37772.3649
5792.37902.35392.35202.37802.36412.37902.35392.35202.37802.3655
5782.37902.35392.35232.37842.36342.37902.35392.35232.37842.3656
5772.37952.35452.35242.37862.36382.37952.35452.35242.37862.3660
5762.37962.35452.35242.37912.36332.37962.35452.35242.37912.3660
5752.37992.35492.35282.37882.36482.37992.35492.35282.37882.3664
5742.37982.35502.35282.37962.36452.37982.35502.35282.37962.3666
5732.38012.35482.35362.37962.36442.38012.35482.35362.37962.3667
5722.38062.35582.35332.38022.36532.38062.35582.35332.38022.3672
5712.38102.35632.35352.38042.36492.38102.35632.35352.38042.3675
5702.38122.35602.35392.38082.36512.38122.35602.35392.38082.3677
5692.38172.35672.35432.38112.36562.38172.35672.35432.38112.3681
5682.38252.35572.35472.38182.36572.38252.35572.35472.38182.3683
5672.38252.35592.35452.38132.36642.38252.35592.35452.38132.3683
5662.38312.35732.35512.38162.36692.38312.35732.35512.38162.3690
5652.38312.35722.35592.38202.36712.38312.35722.35592.38202.3693
5642.38382.35742.35602.38212.36802.38382.35742.35602.38212.3696
5632.38472.35822.35652.38252.36812.38472.35822.35652.38252.3702
5622.38462.35812.35662.38272.36782.38462.35812.35662.38272.3702
5612.38442.35832.35692.38352.36822.38442.35832.35692.38352.3705
5602.38482.35882.35682.38372.36832.38482.35882.35682.38372.3707
5592.38542.35912.35722.38402.36852.38542.35912.35722.38402.3711
5582.38582.35932.35802.38452.36902.38582.35932.35802.38452.3716
5572.38592.35962.35822.38462.36982.38592.35962.35822.38462.3718
5562.38612.36052.35812.38512.36932.38612.36052.35812.38512.3721
5552.38682.36032.35862.38542.37002.38682.36032.35862.38542.3725
5542.38692.36092.35872.38562.36962.38692.36092.35872.38562.3726
5532.38722.36172.35882.38582.37092.38722.36172.35882.38582.3731
5522.38802.36132.35952.38662.37142.38802.36132.35952.38662.3736
5512.38822.36142.35972.38682.37152.38822.36142.35972.38682.3738
5502.38852.36182.36022.38722.37192.38852.36182.36022.38722.3741
5492.38892.36202.36042.38742.37272.38892.36202.36042.38742.3745
5482.38932.36272.36092.38762.37302.38932.36272.36092.38762.3749
5472.38952.36272.36102.38812.37322.38952.36272.36102.38812.3751
5462.39032.36332.36162.38882.37332.39032.36332.36162.38882.3757
5452.39092.36402.36162.38922.37342.39092.36402.36162.38922.3761
5442.39102.36412.36282.38982.37412.39102.36412.36282.38982.3766
5432.39152.36472.36322.38982.37462.39152.36472.36322.38982.3770
5422.39192.36492.36372.39042.37502.39192.36492.36372.39042.3774
5412.39262.36462.36372.39072.37522.39262.36462.36372.39072.3776
5402.39302.36522.36482.39142.37552.39302.36522.36482.39142.3783
5392.39312.36632.36492.39182.37662.39312.36632.36492.39182.3788
5382.39352.36682.36472.39182.37702.39352.36682.36472.39182.3790
5372.39402.36692.36602.39272.37742.39402.36692.36602.39272.3796
5362.39492.36692.36632.39272.37762.39492.36692.36632.39272.3799
5352.39452.36692.36672.39332.37812.39452.36692.36672.39332.3801
5342.39522.36772.36682.39352.37872.39522.36772.36682.39352.3806
5332.39522.36842.36742.39382.37952.39522.36842.36742.39382.3810
5322.39582.36842.36792.39402.37872.39582.36842.36792.39402.3812
5312.39592.36882.36832.39432.38002.39592.36882.36832.39432.3816
5302.39662.36932.36882.39562.38082.39662.36932.36882.39562.3824
5292.39732.37022.36892.39582.38062.39732.37022.36892.39582.3828
5282.39732.37042.36932.39632.38172.39732.37042.36932.39632.3832
5272.39782.37082.36962.39712.38242.39782.37082.36962.39712.3837
5262.39822.37172.36982.39712.38232.39822.37172.36982.39712.3840
5252.39882.37162.37102.39792.38272.39882.37162.37102.39792.3846
5242.39942.37232.37122.39832.38282.39942.37232.37122.39832.3850
5232.39972.37232.37102.39852.38332.39972.37232.37102.39852.3851
5222.40002.37312.37202.39862.38362.40002.37312.37202.39862.3857
5212.40042.37312.37192.39952.38402.40042.37312.37192.39952.3860
5202.40102.37442.37312.39982.38492.40102.37442.37312.39982.3868
5192.40122.37462.37312.39962.38462.40122.37462.37312.39962.3868
5182.40212.37392.37332.39962.38532.40212.37392.37332.39962.3870
5172.40162.37482.37382.40062.38632.40162.37482.37382.40062.3875
5162.40192.37522.37442.40022.38652.40192.37522.37442.40022.3878
5152.40272.37512.37372.40142.38672.40272.37512.37372.40142.3881
5142.40272.37612.37462.40142.38732.40272.37612.37462.40142.3885
5132.40342.37572.37492.40232.38742.40342.37572.37492.40232.3889
5122.40382.37602.37542.40182.38672.40382.37602.37542.40182.3890
5112.40432.37622.37552.40252.38872.40432.37622.37552.40252.3895
5102.40442.37692.37552.40292.38832.40442.37692.37552.40292.3897
5092.40502.37732.37572.40332.38812.40502.37732.37572.40332.3901
5082.40492.37722.37602.40332.38892.40492.37722.37602.40332.3902
5072.40522.37782.37672.40392.38892.40522.37782.37672.40392.3907
5062.40542.37812.37712.40362.38802.40542.37812.37712.40362.3907
5052.40612.37792.37752.40422.39062.40612.37792.37752.40422.3914
5042.40632.37832.37822.40482.39012.40632.37832.37822.40482.3917
5032.40702.37862.37812.40612.39022.40702.37862.37812.40612.3922
5022.40702.38002.37852.40542.39052.40702.38002.37852.40542.3925
5012.40812.37982.37882.40592.39152.40812.37982.37882.40592.3930
5002.40742.38062.37902.40672.39232.40742.38062.37902.40672.3933
4992.40792.38072.37962.40692.39162.40792.38072.37962.40692.3935
4982.40882.38072.37982.40732.39282.40882.38072.37982.40732.3940
4972.40922.38152.38032.40792.39272.40922.38152.38032.40792.3945
4962.40982.38192.38062.40812.39372.40982.38192.38062.40812.3950
4952.41012.38252.38142.40822.39322.41012.38252.38142.40822.3953
4942.40962.38272.38172.40892.39392.40962.38272.38172.40892.3955
4932.41102.38272.38202.40882.39332.41102.38272.38202.40882.3958
4922.41062.38252.38242.40932.39452.41062.38252.38242.40932.3960
4912.41152.38352.38282.40972.39472.41152.38352.38282.40972.3967
4902.41202.38392.38272.41072.39482.41202.38392.38272.41072.3971
4892.41252.38442.38372.41022.39552.41252.38442.38372.41022.3975
4882.41242.38392.38352.41102.39612.41242.38392.38352.41102.3975
4872.41302.38452.38492.41192.39652.41302.38452.38492.41192.3983
4862.41402.38552.38532.41222.39712.41402.38552.38532.41222.3990
4852.41392.38562.38552.41192.39752.41392.38562.38552.41192.3990
4842.41442.38612.38592.41312.39762.41442.38612.38592.41312.3996
4832.41452.38622.38652.41312.39812.41452.38622.38652.41312.3998
4822.41502.38702.38672.41332.39762.41502.38702.38672.41332.4002
4812.41502.38682.38622.41382.39812.41502.38682.38622.41382.4002
4802.41612.38772.38562.41362.39802.41612.38772.38562.41362.4005
4792.41552.38802.38622.41462.40092.41552.38802.38622.41462.4011
4782.41572.38782.38672.41502.39962.41572.38782.38672.41502.4011
4772.41682.38872.38702.41492.40042.41682.38872.38702.41492.4017
4762.41692.38902.38692.41492.39982.41692.38902.38692.41492.4017
4752.41762.38982.38792.41532.40002.41762.38982.38792.41532.4023
4742.41712.38962.38762.41562.40142.41712.38962.38762.41562.4023
4732.41682.38852.38772.41672.40072.41682.38852.38772.41672.4022
4722.41742.38852.38782.41642.40152.41742.38852.38782.41642.4024
4712.41752.38862.38782.41672.40042.41752.38862.38782.41672.4024
4702.41792.38882.38812.41632.40182.41792.38882.38812.41632.4027
4692.41792.38872.38812.41712.40242.41792.38872.38812.41712.4029
4682.41842.38902.38892.41752.40152.41842.38902.38892.41752.4032
4672.41862.39032.38912.41712.40232.41862.39032.38912.41712.4036
4662.41902.38962.38912.41792.40182.41902.38962.38912.41792.4037
4652.41892.38942.38942.41902.40282.41892.38942.38942.41902.4040
4642.41942.38972.38952.41852.40222.41942.38972.38952.41852.4041
4632.42012.39042.39002.41852.40322.42012.39042.39002.41852.4046
4622.42002.39082.39052.41862.40422.42002.39082.39052.41862.4049
4612.42042.39092.39032.41932.40432.42042.39092.39032.41932.4051
4602.42032.39172.39012.41892.40362.42032.39172.39012.41892.4051
4592.42132.39172.39032.41922.40412.42132.39172.39032.41922.4055
4582.42102.39212.39142.41982.40492.42102.39212.39142.41982.4059
4572.42112.39222.39152.42112.40592.42112.39222.39152.42112.4064
4562.42132.39292.39192.42022.40632.42132.39292.39192.42022.4065
4552.42152.39242.39232.42012.40572.42152.39242.39232.42012.4065
4542.42212.39312.39232.42082.40652.42212.39312.39232.42082.4070
4532.42272.39352.39282.42092.40812.42272.39352.39282.42092.4075
4522.42372.39392.39332.42162.40692.42372.39392.39332.42162.4080
4512.42352.39482.39352.42182.40692.42352.39482.39352.42182.4082
4502.42382.39492.39392.42252.40792.42382.39492.39392.42252.4087
4492.42422.39532.39422.42272.40852.42422.39532.39422.42272.4090
4482.42512.39492.39502.42272.40812.42512.39492.39502.42272.4093
4472.42552.39612.39492.42382.40812.42552.39612.39492.42382.4098
4462.42602.39582.39542.42412.40922.42602.39582.39542.42412.4102
4452.42602.39602.39622.42432.40952.42602.39602.39622.42432.4105
4442.42672.39732.39622.42442.41042.42672.39732.39622.42442.4111
4432.42702.39642.39692.42532.41192.42702.39642.39692.42532.4115
4422.42732.39832.39702.42582.41032.42732.39832.39702.42582.4119
4412.42742.39802.39762.42552.41042.42742.39802.39762.42552.4119
4402.42812.39882.39762.42592.41122.42812.39882.39762.42592.4125
4392.42852.39862.39842.42632.41172.42852.39862.39842.42632.4128
4382.42892.39902.39832.42712.41172.42892.39902.39832.42712.4132
4372.42982.39982.39822.42712.41242.42982.39982.39822.42712.4136
4362.42962.40012.39892.42762.41332.42962.40012.39892.42762.4140
4352.43002.39962.39972.42802.41322.43002.39962.39972.42802.4142
4342.43082.40122.40052.42872.41382.43082.40122.40052.42872.4151
4332.43152.40162.40062.42922.41492.43152.40162.40062.42922.4156
4322.43152.40162.40062.42902.41382.43152.40162.40062.42902.4155
4312.43222.40222.40192.42982.41532.43222.40222.40192.42982.4164
4302.43292.40372.40182.43002.41672.43292.40372.40182.43002.4171
4292.43342.40292.40202.43142.41732.43342.40292.40202.43142.4174
4282.43412.40372.40252.43092.41652.43412.40372.40252.43092.4177
4272.43382.40362.40352.43152.41702.43382.40362.40352.43152.4180
4262.43512.40402.40372.43122.41792.43512.40402.40372.43122.4184
4252.43542.40512.40352.43192.41882.43542.40512.40352.43192.4189
4242.43642.40532.40452.43242.41852.43642.40532.40452.43242.4195
4232.43682.40562.40512.43352.41952.43682.40562.40512.43352.4202
4222.43692.40572.40492.43392.41852.43692.40572.40492.43392.4201
4212.43722.40692.40542.43442.42082.43722.40692.40542.43442.4210
4202.43762.40692.40662.43482.42162.43762.40692.40662.43482.4215
4192.43832.40762.40692.43532.42052.43832.40762.40692.43532.4219
4182.43892.40842.40702.43582.42122.43892.40842.40702.43582.4224
4172.43942.40852.40792.43622.42162.43942.40852.40792.43622.4229
4162.44012.41002.40902.43642.42212.44012.41002.40902.43642.4237
4152.44072.40962.40902.43752.42352.44072.40962.40902.43752.4241
4142.44152.41082.40922.43862.42572.44152.41082.40922.43862.4251
4132.44212.41122.40972.43852.42382.44212.41122.40972.43852.4252
4122.44252.41132.41042.43912.42422.44252.41132.41042.43912.4256
4112.44282.41202.40942.44022.42502.44282.41202.40942.44022.4260
4102.44462.41322.41072.44012.42592.44462.41322.41072.44012.4270
4092.44442.41402.41172.44032.42592.44442.41402.41172.44032.4274
4082.44502.41432.41152.44152.42662.44502.41432.41152.44152.4279
4072.44522.41512.41212.44182.42802.44522.41512.41212.44182.4285
4062.44572.41422.41292.44252.42732.44572.41422.41292.44252.4287
4052.44642.41402.41342.44392.42832.44642.41402.41342.44392.4293
4042.44742.41512.41442.44412.42942.44742.41512.41442.44412.4302
4032.44772.41562.41542.44482.43042.44772.41562.41542.44482.4308
4022.44892.41672.41532.44532.43052.44892.41672.41532.44532.4314
4012.44982.41692.41582.44632.43092.44982.41692.41582.44632.4321
4002.45012.41752.41622.44772.43252.45012.41752.41622.44772.4328
3992.45062.41872.41712.44842.43162.45062.41872.41712.44842.4335
3982.45162.41882.41792.44812.43402.45162.41882.41792.44812.4341
3972.45162.41952.41862.44832.43412.45162.41952.41862.44832.4345
3962.45272.41952.41852.44842.43562.45272.41952.41852.44842.4349
3952.45292.42112.41942.44922.43622.45292.42112.41942.44922.4357
3942.45372.42092.42092.44922.43702.45372.42092.42092.44922.4363
3932.45372.42162.42092.45032.43822.45372.42162.42092.45032.4368
3922.45442.42102.42072.45052.43822.45442.42102.42072.45052.4368
3912.45592.42172.42182.45112.43892.45592.42172.42182.45112.4378
3902.45572.42332.42262.45182.43942.45572.42332.42262.45182.4384
3892.45592.42282.42192.45062.43772.45592.42282.42192.45062.4378
3882.45582.42352.42342.45142.43992.45582.42352.42342.45142.4387
3872.45602.42402.42322.45152.44222.45602.42402.42322.45152.4391
3862.45682.42432.42312.45202.44242.45682.42432.42312.45202.4394
3852.45712.42412.42442.45212.44152.45712.42412.42442.45212.4397
3842.45682.42642.42402.45322.44152.45682.42642.42402.45322.4403
3832.46022.42582.42182.45172.44082.46022.42582.42182.45172.4400
3822.45762.42432.42282.45232.44142.45762.42432.42282.45232.4395
3812.45692.42372.42252.45332.44232.45692.42372.42252.45332.4394
3802.45752.42322.42302.45352.44242.45752.42322.42302.45352.4396
3792.45782.42402.42282.45392.44202.45782.42402.42282.45392.4399
3782.45832.42472.42332.45302.44452.45832.42472.42332.45302.4403
3772.45912.42552.42442.45352.44412.45912.42552.42442.45352.4410
3762.45972.42552.42452.45392.44432.45972.42552.42452.45392.4413
3752.45922.42652.42452.45362.44482.45922.42652.42452.45362.4414
3742.46032.42552.42472.45352.44522.46032.42552.42472.45352.4415
3732.46002.42742.42682.45472.44562.46002.42742.42682.45472.4426
3722.46042.42702.42672.45592.44422.46042.42702.42672.45592.4427
3712.46292.43112.42562.45442.44522.46292.43112.42562.45442.4437
3702.46002.42622.42482.45492.44532.46002.42622.42482.45492.4419
3692.46052.42652.42602.45482.44732.46052.42652.42602.45482.4426
3682.46192.42562.42442.45472.44682.46192.42562.42442.45472.4422
3672.46152.42622.42322.45372.44642.46152.42622.42322.45372.4417
3662.46142.42682.42452.45462.44672.46142.42682.42452.45462.4424
3652.46252.42772.42592.45662.44812.46252.42772.42592.45662.4437
3642.46232.42752.42632.45762.44892.46232.42752.42632.45762.4440
3632.46402.42962.42702.45752.44862.46402.42962.42702.45752.4450
3622.46492.42742.42772.45792.44852.46492.42742.42772.45792.4449
3612.46242.43122.43172.45722.45132.46242.43122.43172.45722.4463
3602.46302.43202.42672.45582.44712.46302.43202.42672.45582.4447
3592.46282.42632.42672.45582.44852.46282.42632.42672.45582.4435
3582.46212.42672.42532.45592.44572.46212.42672.42532.45592.4429
3572.46622.42602.42492.45572.44812.46622.42602.42492.45572.4437
3562.45692.42822.42892.45402.45102.45692.42822.42892.45402.4430
3552.45922.42752.41902.45232.44062.45922.42752.41902.45232.4396
3542.45822.42292.42192.44952.43932.45822.42292.42192.44952.4383
3532.46152.42262.42102.45542.43962.46152.42262.42102.45542.4401
3522.45192.42092.42222.44832.44302.45192.42092.42222.44832.4366
3512.45092.42012.41352.44262.43402.45092.42012.41352.44262.4320
3502.44392.41482.41412.44042.43382.44392.41482.41412.44042.4289
3492.44362.40422.40782.43902.42642.44362.40422.40782.43902.4240
3482.46682.43862.43072.45382.45272.46682.43862.43072.45382.4481
3472.46532.42872.42762.45402.44272.46532.42872.42762.45402.4438
3462.46502.43572.42852.45562.44422.46502.43572.42852.45562.4460
3452.46892.44132.43342.45352.45892.46892.44132.43342.45352.4503
3442.46912.44032.43822.45852.45392.46912.44032.43822.45852.4518
3432.47142.44242.44072.45522.45282.47142.44242.44072.45522.4525
3422.47212.44322.43332.46262.45982.47212.44322.43332.46262.4536
3412.47722.43852.43622.45932.44432.47722.43852.43622.45932.4519
3402.47812.44092.43962.46312.46142.47812.44092.43962.46312.4561
3392.47802.44652.44472.46412.45422.47802.44652.44472.46412.4579
3382.47852.44902.44482.46942.46022.47852.44902.44482.46942.4604
3372.48332.45102.44432.46362.47152.48332.45102.44432.46362.4618
3362.48332.44882.45152.46962.46642.48332.44882.45152.46962.4637
3352.48222.45282.44802.47232.45792.48222.45282.44802.47232.4632
3342.48292.45052.45192.47492.47202.48292.45052.45192.47492.4658
3332.48552.45602.45392.47732.47642.48552.45602.45392.47732.4691
3322.48932.45252.45462.47712.47762.48932.45252.45462.47712.4694
3312.49092.45492.46192.47682.46812.49092.45492.46192.47682.4708
3302.49342.45542.45512.47662.47782.49342.45542.45512.47662.4710
3292.49432.46442.46612.48252.47752.49432.46442.46612.48252.4769
3282.49832.46892.46512.48182.47982.49832.46892.46512.48182.4787
3272.49902.46942.45742.48762.47862.49902.46942.45742.48762.4784
3262.50262.46402.46512.49112.48492.50262.46402.46512.49112.4812
3252.50682.46882.46832.49052.48442.50682.46882.46832.49052.4837
3242.50822.47012.46772.49542.48642.50822.47012.46772.49542.4855
3232.51242.48042.47822.49932.48742.51242.48042.47822.49932.4920
3222.51432.47812.47352.49822.49982.51432.47812.47352.49822.4920
3212.51612.47872.48282.50402.49522.51612.47872.48282.50402.4954
3202.52012.48982.47812.50922.49622.52012.48982.47812.50922.4990
3192.52482.48772.48152.50932.50162.52482.48772.48152.50932.5009
3182.52782.49542.48672.51312.51302.52782.49542.48672.51312.5066
3172.52842.49552.48722.52152.51962.52842.49552.48722.52152.5094
3162.53442.50152.49852.52052.51312.53442.50152.49852.52052.5136
3152.54302.50612.50182.52202.52892.54302.50612.50182.52202.5194
3142.54502.50712.49962.53022.53342.54502.50712.49962.53022.5219
3132.54922.51262.50502.53452.53212.54922.51262.50502.53452.5261
3122.55072.51422.51092.54012.53292.55072.51422.51092.54012.5294
3112.55812.51672.51462.54052.54532.55812.51672.51462.54052.5339
3102.56082.52932.52462.55172.54342.56082.52932.52462.55172.5418
3092.56862.53362.52662.55412.54412.56862.53362.52662.55412.5455
3082.58392.53632.53482.56432.55592.58392.53632.53482.56432.5549
3072.58232.54602.53592.56862.56452.58232.54602.53592.56862.5589
3062.58562.55032.55132.57662.57202.58562.55032.55132.57662.5666
3052.59392.56112.55102.57912.57442.59392.56112.55102.57912.5716
3042.59832.56452.56052.58992.57652.59832.56452.56052.58992.5781
3032.60872.57322.56632.59332.59582.60872.57322.56632.59332.5865
3022.61592.58382.58002.60452.59942.61592.58382.58002.60452.5964
3012.62702.58392.58052.61792.60892.62702.58392.58052.61792.6031
3002.63022.59532.58852.62522.62122.63022.59532.58852.62522.6111
2992.63762.60802.59332.63202.62522.63762.60802.59332.63202.6185
2982.65232.61382.60662.63922.63872.65232.61382.60662.63922.6292
2972.66192.62532.61612.65172.63982.66192.62532.61612.65172.6389
2962.66272.62812.62582.66462.65402.66272.62812.62582.66462.6463
2952.67862.63952.63372.66832.66622.67862.63952.63372.66832.6563
2942.68992.65472.64682.68082.68152.68992.65472.64682.68082.6696
2932.70172.66242.65742.69382.68582.70172.66242.65742.69382.6796
2922.71272.67402.66472.70172.69002.71272.67402.66472.70172.6885
2912.72812.68832.67862.71712.70772.72812.68832.67862.71712.7035
2902.74002.70282.68832.73662.71732.74002.70282.68832.73662.7170
2892.75022.70762.70622.75262.73902.75022.70762.70622.75262.7302
2882.76472.72832.71822.75892.74592.76472.72832.71822.75892.7429
2872.78092.73782.73102.77162.75922.78092.73782.73102.77162.7557
2862.79382.75022.74042.78432.76962.79382.75022.74042.78432.7674
2852.80402.76472.75732.79652.77992.80402.76472.75732.79652.7805
2842.82012.78042.77982.81812.79892.82012.78042.77982.81812.7995
2832.83702.79372.78722.82972.80772.83702.79372.78722.82972.8114
2822.85472.80582.80752.84462.82282.85472.80582.80752.84462.8276
2812.86662.82152.82062.86212.84372.86662.82152.82062.86212.8428
2802.88092.83942.83222.87722.86282.88092.83942.83222.87722.8580
2792.89682.85362.84742.89392.87352.89682.85362.84742.89392.8730
2782.91482.87882.86822.90962.88882.91482.87882.86822.90962.8924
2772.92902.88322.88622.92562.91152.92902.88322.88622.92562.9066
2762.94802.90732.90332.94712.92452.94802.90732.90332.94712.9262
2752.96432.91602.92092.95502.93552.96432.91602.92092.95502.9387
2742.98222.93852.93792.98152.95392.98222.93852.93792.98152.9593
2732.99452.95362.95312.99882.96392.99452.95362.95312.99882.9738
2723.02062.97132.97003.01012.98083.02062.97132.97003.01012.9916
2713.03432.98872.99383.02663.00003.03432.98872.99383.02663.0097
2703.05043.00643.01263.05243.02963.05043.00643.01263.05243.0303
2693.06283.02273.02793.06433.04483.06283.02273.02793.06433.0444
2683.08683.04163.04463.07703.07013.08683.04163.04463.07703.0633
2673.09983.05243.06103.09673.06743.09983.05243.06103.09673.0764
2663.12123.06643.08073.11783.08023.12123.06643.08073.11783.0947
2653.13813.09293.09713.13573.11603.13813.09293.09713.13573.1160
2643.15073.11023.11943.14793.13343.15073.11023.11943.14793.1322
2633.17213.13123.13873.17543.13833.17213.13123.13873.17543.1526
2623.19083.14663.15293.18933.16623.19083.14663.15293.18933.1695
2613.20713.16883.17303.20753.17253.20713.16883.17303.20753.1873
2603.22463.17573.19093.22413.20303.22463.17573.19093.22413.2037
2593.23923.19793.20323.24303.21633.23923.19793.20323.24303.2203
2583.24853.21133.22993.24533.25393.24853.21133.22993.24533.2360
2573.26533.22893.24163.26563.24743.26533.22893.24163.26563.2500
2563.28303.23903.26113.28363.25803.28303.23903.26113.28363.2657
2553.29393.25633.26893.30533.27003.29393.25633.26893.30533.2799
2543.31413.28153.28873.31823.29363.31413.28153.28873.31823.2999
2533.33533.29343.31783.33053.32083.33533.29343.31783.33053.3194
2523.34743.30703.32083.34513.34323.34743.30703.32083.34513.3315
2513.36183.32873.33793.35593.35333.36183.32873.33793.35593.3469
2503.37483.34583.35813.37523.34893.37483.34583.35813.37523.3618
2493.39573.35243.37153.38603.37953.39573.35243.37153.38603.3768
2483.41473.36473.38153.40673.36503.41473.36473.38153.40673.3889
2473.42103.39293.40343.43283.41663.42103.39293.40343.43283.4130
2463.43183.40383.42413.43743.41543.43183.40383.42413.43743.4233
2453.44973.42263.43403.45463.44863.44973.42263.43403.45463.4411
2443.46993.43573.45733.46343.46323.46993.43573.45733.46343.4573
2433.48763.44423.47753.48273.47683.48763.44423.47753.48273.4734
2423.50583.45993.48623.48803.49713.50583.45993.48623.48803.4863
2413.51683.48863.50023.51393.52783.51683.48863.50023.51393.5074
2403.54103.49653.51093.53253.52783.54103.49653.51093.53253.5211
2393.55233.52793.54243.55463.56013.55233.52793.54243.55463.5461
2383.56883.53213.54083.55863.57553.56883.53213.54083.55863.5529
2373.59953.54723.56243.56813.58033.59953.54723.56243.56813.5705
2363.61043.56653.58623.61003.60903.61043.56653.58623.61003.5950
2353.62623.58453.59483.61613.62873.62623.58453.59483.61613.6080
2343.64123.61623.61603.64263.63223.64123.61623.61603.64263.6293
2333.67373.62863.65893.64833.66333.67373.62863.65893.64833.6536
2323.68713.65863.66203.67273.70143.68713.65863.66203.67273.6736
2313.70953.68633.67543.68713.71803.70953.68633.67543.68713.6927
2303.73253.68803.70003.71433.74813.73253.68803.70003.71433.7131
2293.74863.71923.70423.73383.73933.74863.71923.70423.73383.7279
2283.76123.73113.73083.75413.76453.76123.73113.73083.75413.7465
2273.78173.74183.75553.77643.81473.78173.74183.75553.77643.7695
2263.80273.74853.77843.77053.81403.80273.74853.77843.77053.7794
2253.82803.78743.79063.79223.82963.82803.78743.79063.79223.8029
2243.83103.79973.80863.81853.88413.83103.79973.80863.81853.8222
2233.85583.79983.82773.83893.87283.85583.79983.82773.83893.8353
2223.86963.81243.81803.84343.89613.86963.81243.81803.84343.8425
2213.89593.82543.86223.87603.88463.89593.82543.86223.87603.8671
2203.89493.86443.85513.88203.93323.89493.86443.85513.88203.8807
2193.92603.87453.86353.88823.92783.92603.87453.86353.88823.8925
2183.94663.87823.89833.91593.95433.94663.87823.89833.91593.9147
2173.96193.88583.90513.91423.97083.96193.88583.90513.91423.9227
2163.95643.91293.91763.93683.99623.95643.91293.91763.93683.9382
2153.97253.93683.94293.92964.00483.97253.93683.94293.92963.9521
2143.99283.94433.95713.95574.00553.99283.94433.95713.95573.9672
2134.03133.98173.95913.95894.02974.03133.98173.95913.95893.9880
2124.03953.96243.96013.99834.05734.03953.96243.96013.99833.9975
2114.05563.98383.98164.00534.08334.05563.98383.98164.00534.0151
2104.08854.01063.99794.03024.10054.08854.01063.99794.03024.0394
2094.09204.04434.06334.05604.15594.09204.04434.06334.05604.0741
2084.14844.05564.04034.07224.10184.14844.05564.04034.07224.0816
2074.16914.15294.07094.09794.24324.16914.15294.07094.09794.1361
2064.22664.12804.13034.13784.32054.22664.12804.13034.13784.1740
2054.24184.14394.16064.19154.37334.24184.14394.16064.19154.2054
2044.29164.19534.24174.19304.45494.29164.19534.24174.19304.2553
2034.71004.67054.62704.26094.46174.71004.67054.62704.26094.5554
2024.48054.47334.38764.36164.52974.48054.47334.38764.36164.4373
2014.44464.38844.32394.99734.71194.44464.38844.32394.99734.5578
2004.64834.54194.42524.61964.63584.64834.54194.42524.61964.5673

References

  1. Davis, K.A.; Pawlak, G.; Monismith, S.G. Turbulence and Coral Reefs. Annu. Rev. Mar. Sci. 2021, 13, 343–373. [Google Scholar] [CrossRef]
  2. Alegría-Ortega, A.; Sanín-Pérez, M.J.; Quan-Young, L.I.; Londoño-Mesa, M.H. Genetic Structure of Orbicella faveolata Population Reveals High Connectivity among a Marine Protected Area and Varadero Reef in the Colombian Caribbean. Aquat. Conserv. Mar. Freshw. Ecosyst. 2021, 31, 764–776. [Google Scholar] [CrossRef]
  3. López-Londoño, T.; Galindo-Martínez, C.T.; Gómez-Campo, K.; González-Guerrero, L.A.; Roitman, S.; Pollock, F.J.; Pizarro, V.; López-Victoria, M.; Medina, M.; Iglesias-Prieto, R. Physiological and Ecological Consequences of the Water Optical Properties Degradation on Reef Corals. Coral Reefs 2021, 40, 1243–1256. [Google Scholar] [CrossRef]
  4. López-Victoria, M.; Herrera, M.A.; Muñoz-López, V.; Rodríguez-Moreno, M.; Puentes-Sayo, A.; Torres-Rodríguez, J.; Torres, O.; Chasqui, L.H.; Tavera, J.; Acero, A. Fish Species Richness of a Coral Reef under Suboptimum Conditions: The Case of Varadero (Cartagena Bay, Colombia). Acta Biol. Colomb. 2023, 28, 108–117. [Google Scholar] [CrossRef]
  5. López-Victoria, M.; Rodríguez-Moreno, M.; Zapata, F.A. A Paradoxical Reef from Varadero, Cartagena Bay, Colombia. Coral Reefs 2015, 34, 231. [Google Scholar] [CrossRef]
  6. Pizarro, V.; Rodríguez, S.C.; López-Victoria, M.; Zapata, F.A.; Zea, S.; Galindo-Martínez, C.T.; Iglesias-Prieto, R.; Pollock, J.; Medina, M. Unraveling the Structure and Composition of Varadero Reef, an Improbable and Imperiled Coral Reef in the Colombian Caribbean. PeerJ 2017, 5, e4119. [Google Scholar] [CrossRef]
  7. Roitman, S.; López-Londoño, T.; Joseph Pollock, F.; Ritchie, K.B.; Galindo-Martínez, C.T.; Gómez-Campo, K.; González-Guerrero, L.A.; Pizarro, V.; López-Victoria, M.; Iglesias-Prieto, R. Surviving Marginalized Reefs: Assessing the Implications of the Microbiome on Coral Physiology and Survivorship. Coral Reefs 2020, 39, 795–807. [Google Scholar] [CrossRef]
  8. Zweifler, A.; O’leary, M.; Morgan, K.; Browne, N.K. Turbid Coral Reefs: Past, Present and Future—A Review. Diversity 2021, 13, 251. [Google Scholar] [CrossRef]
  9. Mobley, C.D. The Optical Properties of Water. Handb. Opt. 1995, 1, 43. [Google Scholar]
  10. Coble, P.G. Marine Optical Biogeochemistry:  The Chemistry of Ocean Color. Chem. Rev. 2007, 107, 402–418. [Google Scholar] [CrossRef]
  11. Zepp, R.G.; Shank, G.C.; Stabenau, E.; Patterson, K.W.; Cyterski, M.; Fisher, W.; Bartels, E.; Anderson, S.L. Spatial and Temporal Variability of Solar Ultraviolet Exposure of Coral Assemblages in the Florida Keys: Importance of Colored Dissolved Organic Matter. Limnol. Oceanogr. 2008, 53, 1909–1922. [Google Scholar] [CrossRef]
  12. Russell, B.J.; Dierssen, H.M.; Hochberg, E.J. Water Column Optical Properties of Pacific Coral Reefs Across Geomorphic Zones and in Comparison to Offshore Waters. Remote Sens. 2019, 11, 1757. [Google Scholar] [CrossRef]
  13. Mitchell, B.G.; Kahru, M.; Wieland, J.; Stramska, M. Determination of Spectral Absorption Coefficients of Particles, Dissolved Material and Phytoplankton for Discrete Water Samples. In Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2002; Volume 210004, p. 231. [Google Scholar]
  14. Betancur-Turizo, S.P.; Mejia-Trejo, A.; Santos-Barrera, Y.; Marin-Amado, T.; Zapata-Valezuela, E.P.; Rivero-Hernández, J.P.; del Pilar Adames-Prada, R. Dataset on the Variability of the Light Field in Coastal Waters. Data Brief 2024, 57, 110923. [Google Scholar] [CrossRef]
  15. Eljaiek-Urzola, M.; Betancur-Turizo, S.P.; De Carvalho, L.A.S.; Quiñones-Bolaños, E. Seasonal and Spatial Variability of Absorption Properties in Cartagena Bay’s Complex Waters. Estuaries Coasts 2025, 48, 10. [Google Scholar] [CrossRef]
  16. Santamaría-del-Angel, E.; Soto, I.; Millán-Nuñez, R.; González-Silvera, A.; Wolny, J.; Cerdeira-Estrada, S.; Cajal-Medrano, R.; Muller-Karger, F.; Cannizzaro, J.; Padilla-Rosas, Y.; et al. Phytoplankton Blooms: New Initiative Using Marine Optics as a Basis for Monitoring Programs. In Coastal Ecosystems: Experiences and Recommendations for Environmental Monitoring Programs; Nova Science Publishers: Hauppauge, NY, USA, 2015; pp. 57–88. [Google Scholar]
  17. Baird, R.B.; Eaton, A.D.; Rice, E.W. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
  18. Roesler, C.; Stramski, D.; D’Sa, E.; Röttgers, R.; Reynolds, R.A. Spectrophotometric Measurements of Particulate Absorption Using Filter Pads; IOCCG: Washington, DC, USA, 2018. [Google Scholar]
  19. Morel, A.; Prieur, L. Analysis of Variations in Ocean Color1. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
  20. Castillo-Ramírez, A.; Santamaría-del-Ángel, E.; González-Silvera, A.; Frouin, R.; Sebastiá-Frasquet, M.-T.; Tan, J.; Lopez-Calderon, J.; Sánchez-Velasco, L.; Enríquez-Paredes, L. A New Algorithm to Estimate Diffuse Attenuation Coefficient from Secchi Disk Depth. J. Mar. Sci. Eng. 2020, 8, 558. [Google Scholar] [CrossRef]
  21. Santamaría-del-Angel, E.; Millán-Núñez, R.; González-Silvera, A.; Cajal-Medrano, R. A Comparison of Chl a Concentrations Estimated in Situ and Chl a Concentrations Determined via Remote Sensing: A Statistical Examination of the Match-up Approach. In Handbook of Satellite Remote Sensing Image Interpretation: Applications for Marine Living Resources Conservation and Management; EU PRESPO and IOCCG: Dartmouth, NH, Canada, 2011; pp. 241–259. [Google Scholar]
  22. Perdices, M. Null Hypothesis Significance Testing, p-Values, Effects Sizes and Confidence Intervals. Brain Impair. 2018, 19, 70–80. [Google Scholar] [CrossRef]
  23. Mu, Y.; Liu, X.; Wang, L. A Pearson’s Correlation Coefficient Based Decision Tree and Its Parallel Implementation. Inf. Sci. 2018, 435, 40–58. [Google Scholar] [CrossRef]
  24. Kokoska, S.; Nevison, C. Critical Values For Spearman’s Rank Correlation Coefficient. In Statistical Tables and Formulae; Springer Texts in Statistics; Springer: New York, NY, USA, 1989; p. 86. ISBN 978-0-387-96873-5. [Google Scholar]
  25. Xi, H.; Larouche, P.; Tang, S.; Michel, C. Seasonal Variability of Light Absorption Properties and Water Optical Constituents in Hudson Bay, Canada. JGR Ocean. 2013, 118, 3087–3102. [Google Scholar] [CrossRef]
  26. Juhls, B.; Overduin, P.P.; Hölemann, J.; Hieronymi, M.; Matsuoka, A.; Heim, B.; Fischer, J. Dissolved Organic Matter at the Fluvial–Marine Transition in the Laptev Sea Using in Situ Data and Ocean Colour Remote Sensing. Biogeosciences 2019, 16, 2693–2713. [Google Scholar] [CrossRef]
  27. Mohd-Shazali, S.M.; Madihah, J.-S.; Ali, N.; Cheng-Ann, C.; Brewin, R.J.W.; Idris, M.S.; Noir, P.P. Dynamics of Absorption Properties of CDOM and Its Composition in Likas Estuary, North Borneo, Malaysia. Oceanologia 2022, 64, 583–594. [Google Scholar] [CrossRef]
  28. Martin, P.; Sanwlani, N.; Lee, T.W.Q.; Wong, J.M.C.; Chang, K.Y.W.; Wong, E.W.-S.; Liew, S.C. Dissolved Organic Matter from Tropical Peatlands Reduces Shelf Sea Light Availability in the Singapore Strait, Southeast Asia. Mar. Ecol. Prog. Ser. 2021, 672, 89–109. [Google Scholar] [CrossRef]
  29. Keith, D.J.; Lunetta, R.S.; Schaeffer, B.A. Optical Models for Remote Sensing of Colored Dissolved Organic Matter Absorption and Salinity in New England, Middle Atlantic and Gulf Coast Estuaries USA. Remote Sens. 2016, 8, 283. [Google Scholar] [CrossRef]
  30. Nima, C.; Frette, Ø.; Hamre, B.; Stamnes, J.J.; Chen, Y.-C.; Sørensen, K.; Norli, M.; Lu, D.; Xing, Q.; Muyimbwa, D. CDOM Absorption Properties of Natural Water Bodies along Extreme Environmental Gradients. Water 2019, 11, 1988. [Google Scholar] [CrossRef]
  31. Tamir, R.; Eyal, G.; Kramer, N.; Laverick, J.H.; Loya, Y. Light Environment Drives the Shallow-to-mesophotic Coral Community Transition. Ecosphere 2019, 10, e02839. [Google Scholar] [CrossRef]
  32. Ferrari, G.M.; Bo, F.G.; Babin, M. Geo-Chemical and Optical Characterizations of Suspended Matter in European Coastal Waters. Estuar. Coast. Shelf Sci. 2003, 57, 17–24. [Google Scholar] [CrossRef]
  33. Wang, C.; Li, W.; Chen, S.; Li, D.; Wang, D.; Liu, J. The Spatial and Temporal Variation of Total Suspended Solid Concentration in Pearl River Estuary during 1987–2015 Based on Remote Sensing. Sci. Total Environ. 2018, 618, 1125–1138. [Google Scholar] [CrossRef] [PubMed]
  34. Molares, R.; Mestres, M. Efectos de La Descarga Estacional Del Canal Del Dique En El Mecanismo de Intercambio de Aguas de Una Bahía Semicerrada y Micromareal: Bahía de Cartagena, Colombia. Bol. Cient. CIOH 2012, 30, 53–74. [Google Scholar] [CrossRef]
  35. Tilstone, G.H.; Peters, S.W.; van der Woerd, H.J.; Eleveld, M.A.; Ruddick, K.; Schönfeld, W.; Krasemann, H.; Martinez-Vicente, V.; Blondeau-Patissier, D.; Röttgers, R. Variability in Specific-Absorption Properties and Their Use in a Semi-Analytical Ocean Colour Algorithm for MERIS in North Sea and Western English Channel Coastal Waters. Remote Sens. Environ. 2012, 118, 320–338. [Google Scholar] [CrossRef]
  36. Chang, G.C.; Barnard, A.H.; McLean, S.; Egli, P.J.; Moore, C.; Zaneveld, J.R.V.; Dickey, T.D.; Hanson, A. In Situ Optical Variability and Relationships in the Santa Barbara Channel: Implications for Remote Sensing. Appl. Opt. 2006, 45, 3593–3604. [Google Scholar] [CrossRef]
  37. Tosic, M.; Restrepo, J.D.; Lonin, S.; Izquierdo, A.; Martins, F. Water and Sediment Quality in Cartagena Bay, Colombia: Seasonal Variability and Potential Impacts of Pollution. Estuar. Coast. Shelf Sci. 2019, 216, 187–203. [Google Scholar] [CrossRef]
  38. Chu, Q.; Zhang, Y.; Ma, R.; Hu, M.; Jing, Y. MODIS-Based Remote Estimation of Absorption Coefficients of an Inland Turbid Lake in China. Remote Sens. 2020, 12, 1940. [Google Scholar] [CrossRef]
  39. Arena, M.; Delgado, A.L.; Celleri, C.; Pratolongo, P.D. Preliminary Assessment of Spatial and Short-Term Variability of Bio-Optical Properties in a Tidal Dominated Estuary (Bahía Blanca, Argentina). Reg. Stud. Mar. Sci. 2019, 29, 100639. [Google Scholar] [CrossRef]
  40. Noernberg, M.A.; Mizerkowski, B.D.; Mafra, L.L., Jr.; Freitas, F.H. Seasonal Evolution of Particulate and Dissolved Absorption Coefficients in a Subtropical Estuary. Estuar. Coast. Shelf Sci. 2020, 244, 106907. [Google Scholar] [CrossRef]
  41. Teixeira, C.D.; Leitão, R.L.L.; Ribeiro, F.V.; Moraes, F.C.; Neves, L.M.; Bastos, A.C.; Pereira-Filho, G.H.; Kampel, M.; Salomon, P.S.; Sá, J.A.; et al. Sustained Mass Coral Bleaching (2016–2017) in Brazilian Turbid-Zone Reefs: Taxonomic, Cross-Shelf and Habitat-Related Trends. Coral Reefs 2019, 38, 801–813. [Google Scholar] [CrossRef]
  42. Perry, C.T.; Larcombe, P. Marginal and Non-Reef-Building Coral Environments. Coral Reefs 2003, 22, 427–432. [Google Scholar] [CrossRef]
  43. Stramski, D.; Reynolds, R.A.; Kaczmarek, S.; Uitz, J.; Zheng, G. Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region. Appl. Opt. 2015, 54, 6763–6782. [Google Scholar] [CrossRef] [PubMed]
  44. Lefering, I.; Röttgers, R.; Weeks, R.; Connor, D.; Utschig, C.; Heymann, K.; McKee, D. Improved determination of particulate absorption from combined filter pad and PSICAM measurements. Opt. Express 2016, 24, 24805–24823. [Google Scholar] [CrossRef]
Figure 1. Cartagena Bay. (a) Location of the study area in the Caribbean Sea. The inset map highlights, with a red square, Cartagena Bay on the northern coast of Colombia; this area corresponds to the enlarged view shown in panel (b); (b) in situ sampling stations distributed along a fluvial–marine gradient. Red circles indicate stations with strong fluvial influence (S06 and S07); green circles represent stations with intermediate influence (S04 and S05); blue circles correspond to marine-influenced stations (S02 and S03); and the black circle denotes station with oceanic characteristics (S01).
Figure 1. Cartagena Bay. (a) Location of the study area in the Caribbean Sea. The inset map highlights, with a red square, Cartagena Bay on the northern coast of Colombia; this area corresponds to the enlarged view shown in panel (b); (b) in situ sampling stations distributed along a fluvial–marine gradient. Red circles indicate stations with strong fluvial influence (S06 and S07); green circles represent stations with intermediate influence (S04 and S05); blue circles correspond to marine-influenced stations (S02 and S03); and the black circle denotes station with oceanic characteristics (S01).
Water 17 02820 g001
Figure 2. Methodological framework used in this study, illustrating the integration of environmental and sedimentary context, conventional and optical water quality metrics, water sampling design, and statistical analyses.
Figure 2. Methodological framework used in this study, illustrating the integration of environmental and sedimentary context, conventional and optical water quality metrics, water sampling design, and statistical analyses.
Water 17 02820 g002
Figure 3. Relative contribution of aCDOM (440) and ap (440) to total non-water absorption in samples collected during September 2021, February 2022, and June 2022. Panels (ac) show surface layer contributions, while panels (df) corresponds to bottom layer samples. The left y-axis represents the relative contribution (%), and the right y-axis shows the absorption coefficients of ap(440) (white circles) and aCDOM(440) (yellow triangles). A red line marks the 50% contribution threshold. Stations are categorized according to their position: oceanic (S01, sea green), marine-influenced (S02–S03), intermediate fluvial influence (S04–S05), and strong fluvial influence (S06–S07).
Figure 3. Relative contribution of aCDOM (440) and ap (440) to total non-water absorption in samples collected during September 2021, February 2022, and June 2022. Panels (ac) show surface layer contributions, while panels (df) corresponds to bottom layer samples. The left y-axis represents the relative contribution (%), and the right y-axis shows the absorption coefficients of ap(440) (white circles) and aCDOM(440) (yellow triangles). A red line marks the 50% contribution threshold. Stations are categorized according to their position: oceanic (S01, sea green), marine-influenced (S02–S03), intermediate fluvial influence (S04–S05), and strong fluvial influence (S06–S07).
Water 17 02820 g003
Figure 4. Scatterplots illustrating key relationships between optical absorption components and environmental indicators in surface waters (n = 21). Panels show: (a) aCDOM(440) vs. salinity, (b) ap(440) vs. salinity, (c) ap(440) vs. turbidity, (d), and at(440) vs. turbidity, (e) chlorophyll-a vs. ap(440). Each point represents a sampling station, color-coded by campaign. Station labels are displayed for spatial reference. The Spearman correlation coefficient (rs) is indicated in each panel. Statistically significant associations are those where |rs| > 0.433 (n = 21, α = 0.05) are panels (ae).
Figure 4. Scatterplots illustrating key relationships between optical absorption components and environmental indicators in surface waters (n = 21). Panels show: (a) aCDOM(440) vs. salinity, (b) ap(440) vs. salinity, (c) ap(440) vs. turbidity, (d), and at(440) vs. turbidity, (e) chlorophyll-a vs. ap(440). Each point represents a sampling station, color-coded by campaign. Station labels are displayed for spatial reference. The Spearman correlation coefficient (rs) is indicated in each panel. Statistically significant associations are those where |rs| > 0.433 (n = 21, α = 0.05) are panels (ae).
Water 17 02820 g004
Figure 5. Longitudinal transects of ap(440) across sampling campaigns. Panels (ac) show the spatial distribution of the particulate absorption coefficient at 440 nm (ap(440), m−1) along a longitudinal transect from the Canal del Dique outlet to offshore waters, during the sampling campaigns of September 2021 (a), February 2022 (b), and June 2022 (c). For each campaign, values are shown for both surface and bottom layers across seven sampling stations (S01–S07). Panel (d) displays the bathymetric profile used as spatial reference for the transect, oriented from east (A) to west (A′). The profile is visualized from a south-to-north perspective, meaning that stations located to the south of the transect line are fully visible, while those situated to the north (e.g., S02 and S05) may lie behind the bathymetric profile. A shaded area is used to illustrate the hidden portion of the transect, indicating that these stations are positioned beyond the visible relief in the current viewing angle. Color scales represent absorption intensity.
Figure 5. Longitudinal transects of ap(440) across sampling campaigns. Panels (ac) show the spatial distribution of the particulate absorption coefficient at 440 nm (ap(440), m−1) along a longitudinal transect from the Canal del Dique outlet to offshore waters, during the sampling campaigns of September 2021 (a), February 2022 (b), and June 2022 (c). For each campaign, values are shown for both surface and bottom layers across seven sampling stations (S01–S07). Panel (d) displays the bathymetric profile used as spatial reference for the transect, oriented from east (A) to west (A′). The profile is visualized from a south-to-north perspective, meaning that stations located to the south of the transect line are fully visible, while those situated to the north (e.g., S02 and S05) may lie behind the bathymetric profile. A shaded area is used to illustrate the hidden portion of the transect, indicating that these stations are positioned beyond the visible relief in the current viewing angle. Color scales represent absorption intensity.
Water 17 02820 g005
Figure 6. Chromophoric dissolved organic matter absorption coefficient at 440 nm (aCDOM(440)), for the three sampling campaigns. The transect location and orientation are the same as in Figure 5, with end points A and A′ corresponding to the transect illustrated in Figure 5d. The color scale is adjusted to the observed values of aCDOM(440), ranging from 0 to 0.8 m−1. (a) September 2021; (b) February 2022; (c) June 2022.
Figure 6. Chromophoric dissolved organic matter absorption coefficient at 440 nm (aCDOM(440)), for the three sampling campaigns. The transect location and orientation are the same as in Figure 5, with end points A and A′ corresponding to the transect illustrated in Figure 5d. The color scale is adjusted to the observed values of aCDOM(440), ranging from 0 to 0.8 m−1. (a) September 2021; (b) February 2022; (c) June 2022.
Water 17 02820 g006
Figure 7. Daily averaged sea surface temperature (SST, °C) and surface wind speed (m·s−1) from ERA5 during the three monitoring campaigns: (a) 8 September 2021; (b) 18 February 2022; (c) 23 June 2022.
Figure 7. Daily averaged sea surface temperature (SST, °C) and surface wind speed (m·s−1) from ERA5 during the three monitoring campaigns: (a) 8 September 2021; (b) 18 February 2022; (c) 23 June 2022.
Water 17 02820 g007
Figure 8. Sea level time series measured at the CIOH tide gauge station. The gray zones indicate the monitoring dates: (a) 8 September 2021; (b) 18 February 2022; (c) 23 June 2022.
Figure 8. Sea level time series measured at the CIOH tide gauge station. The gray zones indicate the monitoring dates: (a) 8 September 2021; (b) 18 February 2022; (c) 23 June 2022.
Water 17 02820 g008
Figure 9. (a) Hovmöller diagram of monthly rainfall accumulation (mm) from ERA5 along the Canal del Dique region from 2013 to 2022. Black stars mark the dates of the three monitoring campaigns. (b) Temperature–salinity (T–S) diagram for in situ measurements collected during each campaign: 8 September 2021 (green), 18 February 2022 (blue), and 23 June 2022 (red).
Figure 9. (a) Hovmöller diagram of monthly rainfall accumulation (mm) from ERA5 along the Canal del Dique region from 2013 to 2022. Black stars mark the dates of the three monitoring campaigns. (b) Temperature–salinity (T–S) diagram for in situ measurements collected during each campaign: 8 September 2021 (green), 18 February 2022 (blue), and 23 June 2022 (red).
Water 17 02820 g009
Table 1. Mean values of environmental and optical variables measured at surface (1 m) and bottom layers (10–30 m) during the three sampling campaigns. ZSD = Secchi disk depth; Kd PAR = Diffuse Attenuation Coefficient for Downward Photosynthetically Active Radiation; ap = Particulate absorption; aCDOM = Chromophoric Dissolved Organic Matter absorption; at = Total absorption.
Table 1. Mean values of environmental and optical variables measured at surface (1 m) and bottom layers (10–30 m) during the three sampling campaigns. ZSD = Secchi disk depth; Kd PAR = Diffuse Attenuation Coefficient for Downward Photosynthetically Active Radiation; ap = Particulate absorption; aCDOM = Chromophoric Dissolved Organic Matter absorption; at = Total absorption.
VariableUnitSept 2021 SurfaceSept 2021 BottomFeb 2022 SurfaceFeb 2022 BottomJun 2022 SurfaceJun 2022 Bottom
Temperature°C30.229.328.727.630.529.1
SalinityPSS26.934.530.235.523.335.3
TurbidityNTU11.13.46.7 3.610.11.6
Chlorophyll-aµg L−12.31.42.70.86.20.6
ap(440)m−10.4660.0750.2850.2890.9440.096
aCDOM(440)m−10.3680.0210.1110.0470.5520.038
at(440)m−10.8480.1110.4110.3511.5110.149
ZSDm0.63.01.9
Kd PARm−12.631.131.08
Table 2. Spearman correlation coefficients (rs) between surface variables (n = 21). Significant correlations (|rs| > 0.433, α = 0.05) are shown in bold.
Table 2. Spearman correlation coefficients (rs) between surface variables (n = 21). Significant correlations (|rs| > 0.433, α = 0.05) are shown in bold.
Variable Pairrs
Salinity vs. aCDOM(440)−0.827
Salinity vs. ap(440)−0.696
Salinity vs. at(440)−0.768
Salinity vs. Chl-a−0.638
Turbidity vs. ap(440)0.635
Turbidity vs. aCDOM(440)0.503
Turbidity vs. at(440)0.648
Turbidity vs. Salinity−0.429
Chl-a vs. ap(440)0.531
Chl-a vs. at(440)0.573
Chl-a vs. Turbidity0.219
Table 3. Spearman correlation coefficients (rs) between bottom variables (n = 21). No statistically significant correlations were found at α = 0.05 (rs = ±0.433).
Table 3. Spearman correlation coefficients (rs) between bottom variables (n = 21). No statistically significant correlations were found at α = 0.05 (rs = ±0.433).
Variable Pairrs
Turbidity vs. at(440)0.417
Turbidity vs. ap(440)0.404
Otros pares<
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Betancur-Turizo, S.P.; Mejía-Trejo, A.; Santamaria-del-Angel, E.; Santos-Barrera, Y.; Mayo-Mancebo, G.; Rivero-Hernández, J.P. Potential Applications of Light Absorption Coefficients in Assessing Water Optical Quality: Insights from Varadero Reef, an Extreme Coral Ecosystem. Water 2025, 17, 2820. https://doi.org/10.3390/w17192820

AMA Style

Betancur-Turizo SP, Mejía-Trejo A, Santamaria-del-Angel E, Santos-Barrera Y, Mayo-Mancebo G, Rivero-Hernández JP. Potential Applications of Light Absorption Coefficients in Assessing Water Optical Quality: Insights from Varadero Reef, an Extreme Coral Ecosystem. Water. 2025; 17(19):2820. https://doi.org/10.3390/w17192820

Chicago/Turabian Style

Betancur-Turizo, Stella Patricia, Adán Mejía-Trejo, Eduardo Santamaria-del-Angel, Yerinelys Santos-Barrera, Gisela Mayo-Mancebo, and Joaquín Pablo Rivero-Hernández. 2025. "Potential Applications of Light Absorption Coefficients in Assessing Water Optical Quality: Insights from Varadero Reef, an Extreme Coral Ecosystem" Water 17, no. 19: 2820. https://doi.org/10.3390/w17192820

APA Style

Betancur-Turizo, S. P., Mejía-Trejo, A., Santamaria-del-Angel, E., Santos-Barrera, Y., Mayo-Mancebo, G., & Rivero-Hernández, J. P. (2025). Potential Applications of Light Absorption Coefficients in Assessing Water Optical Quality: Insights from Varadero Reef, an Extreme Coral Ecosystem. Water, 17(19), 2820. https://doi.org/10.3390/w17192820

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop