Hydrochemical Controlling Factors and Spatial Distribution Characteristics of Shallow Groundwater in Agricultural Regions of Central-Eastern Henan Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Data Processing and Statistical Analysis
3. Results
3.1. Sample Classification and Descriptive Statistical Analysis
3.2. Analysis of Hydrochemical Characteristics
3.3. Analysis of Hydrogeochemical Processes
3.4. Analysis of Human Activity Inputs
3.5. Spatial Distribution Characteristics of Major Ions
4. Discussion
4.1. Influence of Agricultural Activities on the Controlling Factors of Groundwater Hydrochemistry in Plain Areas
4.2. Influencing Factors of the Spatial Differentiation of Major Ions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, P.; Li, R.; Guo, J.; Xiao, Z.; Fu, H.; Guo, T.; Wang, T.; Zhang, X.; Song, X. Spatiotemporal dynamics of groundwater in Henan Province, Central China and their driving factors. Ecol. Indic. 2024, 166, 112372. [Google Scholar] [CrossRef]
- Zhu, M.; Chen, J.; He, C.; Ren, S.; Liu, G. Multi-method characterization of groundwater nitrate and sulfate contamination by karst mines in southwest China. Sci. Total Environ. 2024, 946, 174375. [Google Scholar]
- Cheng, W.; Feng, Q.; Xi, H.; Yin, X.; Sindikubwabo, C.; Habiyakare, T.; Chen, Y.; Zhao, X. Spatiotemporal variability and controlling factors of groundwater depletion in endorheic basins of Northwest China. J. Environ. Manag. 2023, 344, 118468. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Huo, Z. Optimizing irrigation and drainage by considering agricultural hydrological process in arid farmland with shallow groundwater. J. Hydrol. 2020, 585, 124785. [Google Scholar] [CrossRef]
- Choudhary, S.; Rao, N.S.; Chaudhary, M.; Das, R. Assessing sources of groundwater quality and health risks using graphical, multivariate, and index techniques from a part of Rajasthan, India. Groundw. Sustain. Dev. 2024, 27, 101356. [Google Scholar] [CrossRef]
- Chen, J.; Yan, B.; Xu, T.; Xia, F. Hydrochemical evolution characteristics and mechanism of groundwater funnel areas under artificial governance in Hengshui City, North China. Ecol. Indic. 2023, 148, 110059. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.; Zhang, S.; Zhang, X.; Chen, D.; Zhou, J. Hydrochemical evolution characteristics, controlling factors, and high nitrate hazards of shallow groundwater in a typical agricultural area of Nansi Lake Basin, North China. Environ. Res. 2023, 223, 115430. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, J.; Ye, M.; Tang, Z.; Dong, J.; Xing, T. Using one-way clustering and co-clustering methods to reveal spatio-temporal patterns and controlling factors of groundwater geochemistry. J. Hydrol. 2021, 603, 127085. [Google Scholar]
- Yang, J.; Ye, M.; Tang, Z.; Jiao, T.; Song, X.; Pei, Y.; Liu, H. Using cluster analysis for understanding spatial and temporal patterns and controlling factors of groundwater geochemistry in a regional aquifer. J. Hydrol. 2020, 583, 124594. [Google Scholar] [CrossRef]
- Li, X.; Yan, B.; Wang, Y.; Wang, X.; Li, Y.; Gai, J. Study of the interaction between Yellow River Water and groundwater in henan province, China. Sustainability 2022, 14, 8301. [Google Scholar] [CrossRef]
- Gao, Y.; Qian, H.; Ren, W.; Wang, H.; Liu, F.; Yang, F. Hydrogeochemical characterization and quality assessment of groundwater based on integrated-weight water quality index in a concentrated urban area. J. Clean. Prod. 2020, 260, 121006. [Google Scholar] [CrossRef]
- Cao, W.; Gao, Z.; Guo, H.; Pan, D.; Qiao, W.; Wang, S.; Ren, Y.; Li, Z. Increases in groundwater arsenic concentrations and risk under decadal groundwater withdrawal in the lower reaches of the Yellow River basin, Henan Province, China. Environ. Pollut. 2022, 296, 118741. [Google Scholar] [CrossRef]
- Savard, M.M.; Somers, G.; Smirnoff, A.; Paradis, D.; van Bochove, E.; Liao, S. Nitrate isotopes unveil distinct seasonal N-sources and the critical role of crop residues in groundwater contamination. J. Hydrol. 2010, 381, 134–141. [Google Scholar] [CrossRef]
- Ren, Y.; Cao, W.; Zhao, L.; Wang, S.; Pan, D.; Zhang, L.; Li, X.; Xiao, S.; Li, Z. Environmental Factors Influencing Groundwater Quality and Health Risks in Northern Henan Plain, China. In Exposure and Healt; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–16. [Google Scholar]
- Zhang, M.; Wang, L.; Zhao, Q.; Wang, J.; Sun, Y. Hydrogeochemical and anthropogenic controls on quality and quantitative source-specific risks of groundwater in a resource-based area with intensive industrial and agricultural activities. J. Clean. Prod. 2024, 440, 140911. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Selvakumar, S.; Chandrasekar, N.; Kumar, G. Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India. Water Resour. Ind. 2017, 17, 26–33. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupre, B.; Louvat, P.; Allegre, C. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Lu, S.; Chen, J.; Zheng, X.; Liang, Y.; Jia, Z.; Li, X. Hydrogeochemical characteristics of karst groundwater in Jinci spring area, north China. Carbonates Evaporites 2020, 35, 68. [Google Scholar] [CrossRef]
- Liu, P.; Hoth, N.; Drebenstedt, C.; Sun, Y.; Xu, Z. Hydro-geochemical paths of multi-layer groundwater system in coal mining regions-Using multivariate statistics and geochemical modeling approaches. Sci. Total Environ. 2017, 601, 1–14. [Google Scholar] [CrossRef]
- Magaritz, M.; Nadler, A.; Koyumdjisky, H.; Dan, J. The use of Na-Cl ratios to trace solute sources in a semi-arid zone. Water Resour. Res. 1981, 17, 602–608. [Google Scholar] [CrossRef]
- Tran, D.A.; Tsujimura, M.; Vo, L.; Nguyen, V.; Kambuku, D.; Dang, D. Hydrogeochemical characteristics of a multi-layered coastal aquifer system in the Mekong Delta, Vietnam. Environ. Geochem. Health 2020, 42, 661–680. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, C.; Sun, B.; Geng, F.; Gao, S.; Lv, M.; Ma, X.; Li, H.; Xing, L. Groundwater hydrogeochemical formation and evolution in a karst aquifer system affected by anthropogenic impacts. Environ. Geochem. Health 2020, 42, 2609–2626. [Google Scholar] [CrossRef]
- Xiao, J.; Jin, Z.D.; Wang, J.; Zhang, F. Hydrochemical characteristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau. Quat. Int. 2015, 380, 237–246. [Google Scholar] [CrossRef]
- El Ghali, T.; Marah, H.; Qurtobi, M.; Raibi, F.; Bellarbi, M.; Amenzou, M.; EI Mansouri, B. Geochemical and isotopic characterization of groundwater and identification of hydrogeochemical processes in the Berrechid aquifer of central Morocco. Carbonates Evaporites 2020, 35, 37. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. User’s Guide to PHREEQC (Version 2)—A Computer Program for Speciation, Batch-Reaction One-Dimensional Transport, and Inverse Geochemical Calculations; Water-resources Investigations Report; United States Geological Survey: Reston, VA, USA, 1999; pp. 99–4259.
- Shvartsev, S.L. Self-organizing abiogenic dissipative structures in the geologic history of the Earth. Earth Sci. Front. 2009, 16, 257–275. [Google Scholar] [CrossRef]
- Malov, A.I. The Conditions for the Formation of Strontium in the Water of Ancient Silicate Deposits Near the Arctic Coast of Russia. Water 2024, 16, 2369. [Google Scholar] [CrossRef]
- Zhu, X.; Miao, P.; Qin, J.; Li, W.; Wang, L.; Chen, Z.; Zhou, J. Spatio-temporal variations of nitrate pollution of groundwater in the intensive agricultural region: Hotspots and driving forces. J. Hydrol. 2023, 623, 129864. [Google Scholar] [CrossRef]
- Liu, J.; Lou, K.; Gao, Z.; Wang, Y.; Li, Q.; Tan, M. Comprehending hydrochemical fingerprint, spatial patterns, and driving forces of groundwater in a topical coastal plain of Northern China based on hydrochemical and isotopic evaluations. J. Clean. Prod. 2024, 461, 142640. [Google Scholar] [CrossRef]
- Li, C.; Gao, Z.; Chen, H.; Wang, J.; Liu, J.; Li, C.; Teng, Y.; Liu, C.; Xu, C. Hydrochemical analysis and quality assessment of groundwater in southeast North China Plain using hydrochemical, entropy-weight water quality index, and GIS techniques. Environ. Earth Sci. 2021, 80, 523. [Google Scholar] [CrossRef]
- Lawniczak, A.E.; Zbierska, J.; Nowak, B.; Achtenberg, K.; Grześkowiak, A.; Kanas, K. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environ. Monit. Assess. 2016, 188, 172. [Google Scholar] [CrossRef]
- Liu, G.; Wang, C.; Wang, X.; Huo, Z.; Liu, J. Growing season water and salt migration between abandoned lands and adjacent croplands in arid and semi-arid irrigation areas in shallow water table environments. Agric. Water Manag. 2022, 274, 107968. [Google Scholar] [CrossRef]
- Miranda, J.; Antunes, M.; Ribeiro, C.A. Groundwater Modeling from Urban Areas (NW Portugal): An Integrated Hydrological-Hydrogeological Approach. In Earth Systems and Environment; Springer: Berlin/Heidelberg, Germany, 2025; pp. 1–18. [Google Scholar]
- Zeng, S.; Liu, Z.; Jiang, Y.; Goldscheider, N.; Yang, Y.; Zhao, M.; Sun, H.; He, H.; Shao, M.; Shi, L. A greening Earth has reversed the trend of decreasing carbonate weathering under a warming climate. Nat. Commun. 2025, 16, 2583. [Google Scholar] [CrossRef]
- te Wierik, S.A.; Cammeraat, E.L.H.; Gupta, J.; Artzy-Randrup, Y.A. Reviewing the impact of land use and land-use change on moisture recycling and precipitation patterns. Water Resour. Res. 2021, 57, e2020WR029234. [Google Scholar]
- Foster, S.S.D.; Chilton, P.J. Groundwater: The processes and global significance of aquifer degradation. Philosophical Transactions of the Royal Society of London. Ser. B Biol. Sci. 2003, 358, 1957–1972. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.A.; Hoffmann, S.; Lüthi, C.; Truffer, B.; Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 2016, 352, 928–933. [Google Scholar] [CrossRef]
Index | Average Value (mg/L) | Maximum Value (mg/L) | Minimum Value (mg/L) | Standard Deviation(mg/L) | Coefficient of Variation | |
---|---|---|---|---|---|---|
C1 | HCO3− | 275.1 | 375.3 | 180.0 | 61.6 | 0.22 |
SO42− | 203.9 | 348.6 | 93.9 | 101.3 | 0.50 | |
Cl− | 187.8 | 250.0 | 115.5 | 49.4 | 0.26 | |
Ca2+ | 43.7 | 63.3 | 31.1 | 12.8 | 0.29 | |
Mg2+ | 75.2 | 110.0 | 51.9 | 19.5 | 0.26 | |
K+ | 8.9 | 38.3 | 0.4 | 13.1 | 1.47 | |
Na+ | 90.3 | 128.9 | 0.0 | 46.3 | 0.51 | |
NO3− | 18.6 | 45.6 | 1.0 | 20.3 | 1.09 | |
pH | 8.36 | 9.00 | 7.70 | 0.48 | 0.06 | |
TDS | 937.8 | 1189.3 | 694.6 | 164.3 | 0.18 | |
TH | 418.7 | 610.8 | 318.6 | 107.1 | 0.26 | |
C2 | HCO3− | 189.6 | 392.3 | 15.1 | 81.0 | 0.43 |
SO42− | 42.6 | 121.8 | 6.6 | 30.6 | 0.72 | |
Cl− | 39.2 | 106.2 | 6.1 | 28.6 | 0.73 | |
Ca2+ | 23.4 | 58.0 | 0.7 | 17.8 | 0.76 | |
Mg2+ | 14.3 | 33.8 | 0.0 | 10.1 | 0.71 | |
K+ | 1.9 | 6.9 | 0.4 | 1.8 | 0.93 | |
Na+ | 40.5 | 104.1 | 5.5 | 28.7 | 0.71 | |
NO3− | 17.9 | 158.8 | 0.0 | 38.3 | 2.14 | |
pH | 8.70 | 9.40 | 7.90 | 0.29 | 0.03 | |
TDS | 371.1 | 675.7 | 130.2 | 129.9 | 0.35 | |
TH | 117.5 | 227.2 | 2.0 | 76.9 | 0.65 | |
C3 | HCO3− | 162.4 | 420.3 | 74.9 | 75.2 | 0.46 |
SO42− | 64.9 | 188.1 | 19.9 | 45.1 | 0.69 | |
Cl− | 61.2 | 148.4 | 6.3 | 36.9 | 0.60 | |
Ca2+ | 68.1 | 159.5 | 20.8 | 34.3 | 0.50 | |
Mg2+ | 19.6 | 45.3 | 0.0 | 13.3 | 0.68 | |
K+ | 2.2 | 9.4 | 0.4 | 2.0 | 0.90 | |
Na+ | 28.4 | 85.4 | 2.5 | 22.4 | 0.79 | |
NO3− | 21.5 | 133.1 | 0.1 | 34.3 | 1.60 | |
pH | 7.96 | 8.70 | 7.18 | 0.41 | 0.05 | |
TDS | 428.7 | 713.3 | 185.7 | 138.1 | 0.32 | |
TH | 250.5 | 584.7 | 100.4 | 98.0 | 0.39 |
Hydrochemical Parameters | Factor | ||
---|---|---|---|
1 | 2 | 3 | |
pH | −0.09 | 0.62 | 0.17 |
Ca2+ | 0.04 | −0.85 | 0.00 |
Mg2+ | 0.89 | −0.12 | 0.13 |
K+ | 0.20 | 0.13 | 0.91 |
Na+ | 0.76 | 0.26 | 0.31 |
HCO3− | 0.60 | 0.44 | −0.26 |
SO42− | 0.86 | −0.10 | 0.10 |
Cl− | 0.84 | −0.33 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, P.; Chen, S.; Luo, X.; Hu, K.; Li, B. Hydrochemical Controlling Factors and Spatial Distribution Characteristics of Shallow Groundwater in Agricultural Regions of Central-Eastern Henan Province, China. Water 2025, 17, 2815. https://doi.org/10.3390/w17192815
Guo P, Chen S, Luo X, Hu K, Li B. Hydrochemical Controlling Factors and Spatial Distribution Characteristics of Shallow Groundwater in Agricultural Regions of Central-Eastern Henan Province, China. Water. 2025; 17(19):2815. https://doi.org/10.3390/w17192815
Chicago/Turabian StyleGuo, Peng, Shaoqing Chen, Xiaosheng Luo, Kelin Hu, and Baoguo Li. 2025. "Hydrochemical Controlling Factors and Spatial Distribution Characteristics of Shallow Groundwater in Agricultural Regions of Central-Eastern Henan Province, China" Water 17, no. 19: 2815. https://doi.org/10.3390/w17192815
APA StyleGuo, P., Chen, S., Luo, X., Hu, K., & Li, B. (2025). Hydrochemical Controlling Factors and Spatial Distribution Characteristics of Shallow Groundwater in Agricultural Regions of Central-Eastern Henan Province, China. Water, 17(19), 2815. https://doi.org/10.3390/w17192815