Application of Electrodialysis for Concentration and Desalination of Monovalent Salts
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Reagents
2.2. Measurement of Polar Plate Voltage
2.3. Desalination Experiment
2.4. Concentration Experiment
2.5. Evaluation of Operational Performance
2.5.1. Salt Concentration
2.5.2. Current Density
2.5.3. Stack Voltage and Membrane Pair Voltage
2.5.4. Energy Consumption
2.5.5. Current Efficiency (η)
2.5.6. Unit Production Capacity (Q)
2.5.7. Desalination Rate (ηsalt)
3. Results and Discussion
3.1. Calculation of the Plate Voltage
3.2. Comparative Analysis of Time-Dependent Desalination/Concentration Efficiencies
3.2.1. Current Density J
3.2.2. Power Variation
3.2.3. Energy Consumption
3.3. Comparison of Desalination–Concentration Behaviors in Monovalent Salt Electrodialysis
3.3.1. Fundamental Data
3.3.2. Water Loss Discrepancies
3.3.3. Species-Dependent Energy–Productivity Trade-offs
3.3.4. Cell Pair Voltage and Current Density
3.3.5. Current Efficiency Mechanisms
3.3.6. Desalination Rate and Concentration Factor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.F.; Geng, Q.J.; Yang, J.M.; Liu, Y.; Chen, L. Hybrid system of flocculation–photocatalysis for the decolorization of crystal violet, reactive red X-3B, and acid orange II dye. ACS Omega 2020, 5, 31137–31145. [Google Scholar] [CrossRef]
- Yang, J.M.; Geng, Q.J.; Zhou, Y.B.; Wang, Y.F.; Li, Z.H.; Liu, Y. Optimization of Experimental Procedure for Determining Azelaic Acid in Cosmetics by Gas Chromatography Derivatized Through Ethanol. ACS Omega 2022, 7, 15647–15656. [Google Scholar] [CrossRef]
- Pan, X.R.; Ji, J.H.; Zhang, N.N.; Xing, M.Y. Research progress of graphene-based nanomaterials for the environmental remediation. Chin. Chem. Lett. 2020, 31, 1462–1473. [Google Scholar] [CrossRef]
- Zhang, C.; Quan, B.; Tang, J.; Cheng, K.; Tang, Y.; Shen, W.; Zhang, C. China’s wastewater treatment: Status quo and sustainability perspectives. J. Water Process. Eng. 2023, 53, 103708. [Google Scholar] [CrossRef]
- Wu, J. Study on Treatment of Chemical Salt-Containing Wastewater by Bipolar Membrane Electrodialysis Technology. Master’s Thesis, Chang’an University, Xi’an, China, 2022. (In Chinese). [Google Scholar]
- Scarazzato, T.; Panossian, Z.; Tenório, J.A.S.; Perez-Herranz, V.; Espinosa, D.C.R. A review of cleaner production inelectroplating industries using electrodialysis. J. Clean. Prod. 2017, 168, 1590–1602. [Google Scholar] [CrossRef]
- Wu, Q.; Li, J.; Wu, T.; Ji, L.; Zhang, R.; Jiang, P.; Chen, H.; Zhao, R.; Asiri, A.M.; Sun, X. One-step preparation of cobalt-nanoparticle-embedded carbon for effective water oxidation electrocatalysis. ChemElectroChem 2019, 6, 1996–1999. [Google Scholar] [CrossRef]
- Tan, M.; Zhao, J.; Liu, Y.; Liu, F.; Zhang, Y. Enhanced separation of monovalent and divalent ions in high salinity wastewater by selective electrodialysis: Experimental investigation and performance prediction. Sci. Total Environ. 2024, 946, 174103. [Google Scholar] [CrossRef]
- Lv, R.; Wu, D.; Ding, J.; Yuan, X.; Zhou, G.; Zhang, Y.; Kong, Q.; Zhao, C.; Du, Y.; Xu, F.; et al. Long-term performance and microbial mechanism in intertidal wetland sediment introduced constructed wetlands treating saline wastewater. J. Clean. Prod. 2021, 310, 127409. [Google Scholar] [CrossRef]
- Zhao, D.; Xue, J.; Li, S.; Sun, H.; Zhang, Q. Theoretical analyses of thermal and economical aspects of multi-effect distillation desalination dealing with high-salinity wastewater. Desalination 2011, 273, 292–298. [Google Scholar] [CrossRef]
- Zeng, W.L.; Wang, X.; Zhang, Y.J. Synthesis, Crystal Structures, and Density Functional Theory Studies of Two Salt Cocrystals Containing Meldrum’s Acid Group. ACS Omega 2022, 7, 25132–25139. [Google Scholar] [CrossRef]
- Ahmad, N.N.R.; Ang, W.L.; Leo, C.P.; Mohammad, A.W.; Hilal, N. Current advances in membrane technologies for saline wastewater treatment: A comprehensive review. Desalination 2021, 517, 115170. [Google Scholar] [CrossRef]
- Srimuk, P.; Su, X.; Yoon, J.; Aurbach, D.; Presser, V. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat. Rev. Mater. 2020, 5, 517–538. [Google Scholar] [CrossRef]
- Yan, H.; Wang, Y.; Wu, L.; Shehzad, M.A.; Jiang, C.; Fu, R.; Liu, Z.; Xu, T. Multistage-batch electrodialysis to concentrate high-salinity solutions: Process optimisation, water transport, and energy consumption. J. Membr. Sci. 2019, 570–571, 245–257. [Google Scholar] [CrossRef]
- Zou, D.; Zhou, Y.; Yan, W.; Zhou, Y.; Gao, C. Boric acid-loosened polyvinyl alcohol/glutaraldehyde membrane with high flux and selectivity for monovalent/divalent salt separation. J. Membr. Sci. 2022, 662, 120954. [Google Scholar] [CrossRef]
- Goh, K.S.; Chen, Y.; Ng, D.Y.F.; Chew, J.W.; Wang, R. Organic solvent forward osmosis membranes for pharmaceutical concentration. J. Membr. Sci. 2022, 642, 119965. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, J.; Ji, Z.; Wang, B.; Hao, Y.; Guo, X. Concentrating brine from seawater desalination process by nanofiltration–electrodialysis integrated membrane technology. Desalination 2016, 390, 53–61. [Google Scholar] [CrossRef]
- Al-Amshawee, S.; Yunus, M.Y.B.M.; Azoddein, A.A.M.; Hassell, D.G.; Dakhil, I.H.; Hasan, H.A. Electrodialysis desalination for water and wastewater: A review. Chem. Eng. J. 2020, 380, 122231. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, Y.; Sun, L.; Gu, Y.; Zhao, Y.; Xia, L.; Liu, Y.; Bruggen, B.V.; Zhang, Y. Vanadium recovery by electrodialysis using polymer inclusion membranes. J. Hazard. Mater. 2022, 436, 129315. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Mao, Y.; Li, Y. Systematic research on the bipolar membrane reverse electrodialysis performance and its application in electrodialysis desalination. Sep. Purif. Technol. 2022, 290, 120909. [Google Scholar] [CrossRef]
- Si, Z.; Han, D.; Gu, J.; Song, Y.; Liu, Y. Exergy analysis of a vacuum membrane distillation system integrated with mechanical vapor recompression for sulfuric acid waste treatment. Appl. Therm. Eng. 2020, 178, 115516. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, C.; Wu, L.; Xue, D. Contentration of ammonia chloride by membrane integrating technology. Technol. Water Treat. 2005, 8, 38–39. (In Chinese) [Google Scholar]
- Zhao, Y.; Wang, X.; Yuan, J. An efficient electrodialysis metathesis route to recover concentrated NaOH-NH4Cl products from simulated ammonia and saline wastewater in coal chemical industry. Sep. Purif. Technol. 2022, 301, 122042. [Google Scholar] [CrossRef]
- Xing, H.; Yang, J. Effect of Electrodialysis on Liquid Separation and Concentration of Lithium-Ion Intermediate Products. Chem. Eng. Manag. 2022, 8, 143–146. (In Chinese) [Google Scholar]
- Sun, H.; Li, A.; Shi, P.; Cao, X.; Wang, C.; Cheng, S. Separation of NaCl and humic substances in anion exchange spent brine with electrodialysis. Desalination 2022, 523, 115442. [Google Scholar] [CrossRef]
- Melnikov, S.S.; Mugtamov, O.A.; Zabolotsky, V.I. Study of electrodialysis concentration process of inorganic acids and salts for the two-stage conversion of salts into acids utilizing bipolar electrodialysis. Sep. Purif. Technol. 2020, 235, 116198. [Google Scholar] [CrossRef]
- Wang, W.; Liu, R.; Tan, M.; Sun, H.; Niu, Q.J.; Xu, T.; Nikonenko, V.; Zhang, Y. Evaluation of the ideal selectivity and performance of selectrodialysis by using TFC ion exchange membranes. J. Membr. Sci. 2019, 582, 236–245. [Google Scholar] [CrossRef]
- Tanaka, Y.; Reig, M.; Casas, S.; Aladjem, C.; Cortina, J.L. Computer simulation of ion-exchange membrane electrodialysis for salt concentration and reduction of RO discharged brine for salt production and marine environment conservation. Desalination 2015, 367, 76–89. [Google Scholar] [CrossRef]
- Nie, X.Y.; Sun, S.Y.; Sun, Z.; Song, X.; Yu, J.G. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination 2017, 403, 128–135. [Google Scholar] [CrossRef]
- Yan, J.; Wang, H.; Fu, R.; Fu, R.Q.; Li, R.; Chen, B.; Jiang, C.; Ge, L.; Liu, Z.; Wang, Y.; et al. Ion exchange membranes for acid recovery: Diffusion Dialysis (DD) or Selective Electrodialysis (SED)? Desalination 2022, 531, 115690. [Google Scholar] [CrossRef]
- Yan, H.Y.; Li, W.; Wang, Y.; Wu, L.; Nikonenko, V.; Pismenskaya, N.; Xu, T. Electrodialysis to concentrate high-salinity solutions: The matching relation between cation- and anion-exchange membranes. J. Univ. Sci. Technol. China 2021, 51, 103–110. [Google Scholar]
- Banasiak, L.J.; Kruttschnitt, T.W.; Schäferc, A.I. Desalination using electrodialysis as a function of voltage and salt concentration. Desalination 2007, 205, 38–46. [Google Scholar] [CrossRef]
- Tanaka, Y. Current density distribution, limiting current density and saturation current density in an ion-exchange membrane electrodialyzer. J. Membr. Sci. 2007, 308, 136–145. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Hashaikeh, R.; Hilal, N. Hybrid technologies: The future of energy efficient desalination—A review. Desalination 2020, 495, 114659. [Google Scholar] [CrossRef]
- Ruleva, V.D.; Ponomar, M.A.; Gorobchenko, A.D.; Moroz, I.A.; Shkirskaya, S.A.; Kononenko, N.A.; Wang, Y.; Jiang, C.; Xu, T.; Nikonenko, V.V. Electrodialysis of moderately concentrated solutions: Experiment and modeling based on a simplified characterization of ion-exchange membranes. Desalination 2024, 580, 117533. [Google Scholar] [CrossRef]
- Marcus, Y. Effect of ions on the structure of water. Chem. Rev. 2010, 40, 1346–1370. [Google Scholar] [CrossRef]
- Tanaka, Y. Ion-Exchange Membrane Electrodialysis for Saline Water Desalination and Its Application to Seawater Concentration. Ind. Eng. Chem. Res. 2011, 50, 195–204. [Google Scholar] [CrossRef]
- Nightingale, E.R.J. Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions. J. Phys. Chem. C 1959, 63, 1381–1387. [Google Scholar] [CrossRef]
- Tansel, B.; Sager, J.; Rector, T.; Garland, J.; Strayer, R.F.; Levine, L.; Roberts, M.; Hummerick, M.; Bauer, J. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol. 2006, 51, 40–47. [Google Scholar] [CrossRef]
- Ruan, H.; Lu, H.; Wang, J.; Shi, J.; Zhang, Z.; Liao, J.; Ang, E.H.; Shen, J. Transforming waste into value: Efficient recycling of KCl and NH4F via electrodialysis metathesis. Desalination 2025, 600, 118424. [Google Scholar] [CrossRef]
- Goh, P.S.; Wong, K.C.; Ismail, A.F. Membrane technology: A versatile tool for saline wastewater treatment and resource recovery. Desalination 2022, 521, 115377. [Google Scholar] [CrossRef]
- Guo, C.; Wu, Y.; Zhang, L.; Liu, F.; Guo, X.; Ge, D. Reuse of rare- earth wastewater by ion exchange membrane technique. In Proceedings of the 5th National Symposium on the Application of Membrane Separation Technology in the Metallurgical Industry, Kunming, China, 22–24 August 2016; pp. 32–39. [Google Scholar]
- Korngold, E.; Aronov, L.; Belayev, N.; Kock, K. Electrodialysis with brine solutions oversaturated with calcium sulfate. Desalination 2005, 172, 63–75. [Google Scholar] [CrossRef]
- Ye, W.; Liu, R.; Chen, X.; Chen, Q.; Lin, J.; Lin, X.; Van der Bruggen, B.; Zhao, S. Loose nanofiltration-based electrodialysis for highly efficient textile wastewater treatment. J. Membr. Sci. 2020, 608, 118182. [Google Scholar] [CrossRef]
- Berkessa, Y.W.; Lang, Q.; Yan, B.; Kuang, S.; Mao, D.; Shu, L.; Zhang, Y. Anion exchange membrane organic fouling and mitigation in salt valorization process from high salinity textile wastewater by bipolar membrane electrodialysis. Desalination 2019, 465, 94–103. [Google Scholar] [CrossRef]
- Tamersit, S.; Bouhidel, K.E.; Zidani, Z. Investigation of electrodialysis anti-fouling configuration for desalting and treating tannery unhairing wastewater: Feasibility of by-products recovery and water recycling. J. Environ. Manag. 2018, 207, 334–340. [Google Scholar] [CrossRef]
- Ma, P.; Hao, X.; Galia, A.; Scialdone, O. Development of a process for the treatment of synthetic wastewater without energy inputs using the salinity gradient of wastewaters and a reverse electrodialysis stack. Chemosphere 2020, 248, 125994. [Google Scholar] [CrossRef] [PubMed]
- Lafi, R.; Gzara, L.; Lajimi, R.H.; Hafiane, A. Treatment of textile wastewater by a hybrid ultrafiltration/electrodialysis process. Chem. Eng. Process. Process Intensif. 2018, 132, 105–113. [Google Scholar] [CrossRef]
- Deghles, A.; Kurt, U. Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process. Chem. Eng. Process. Process Intensif. 2016, 104, 43–50. [Google Scholar] [CrossRef]
Monovalent Salt | Mass Concentration | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.5% | 1% | 2% | 5% | 10% | 15% | 20% | 25% | 30% | 40% | |
NaCl | 8.2 | 16.0 | 30.3 | 70.1 | 126.0 | 171.0 | 204.0 | 222.0 | ||
KCl | 8.2 | 15.7 | 29.5 | 71.9 | 143.0 | 208.0 | ||||
NH4Cl | 10.5 | 20.4 | 40.3 | 95.3 | 180.0 | |||||
NaNO3 | 5.4 | 10.6 | 20.4 | 46.2 | 82.6 | 111.0 | 134.0 | 152.0 | 165.0 | 178.0 |
Salt Solution (w/w) | Fitted Equation | Adjusted R2 |
---|---|---|
NaCl (2%) | Y = 0.675X + 2.871 | 0.99 |
NH4Cl (2%) | Y = 0.632X + 2.633 | 0.99 |
NaNO3 (2%) | Y = 0.933X + 2.531 | 0.99 |
KCl (2%) | Y = 0.667X + 2.589 | 0.99 |
Na2SO4 (2%) | Y = 0.984X + 2.702 | 0.99 |
Phase | 1% Salt Desalination | 3% Salt Concentration | ||||||
---|---|---|---|---|---|---|---|---|
Monovalent salt | NaCl | NH4Cl | KCl | NaNO3 | NaCl | NH4Cl | KCl | NaNO3 |
Operational time, min | 85 | 80 | 65 | 70 | 110 | 80 | 80 | 80 |
Final diluate conductivity, mS/cm | 0.91 | 0.98 | 0.96 | 1.15 | 6.27 | 26.03 | 8.96 | 4.31 |
Salt concentration in the dilute compartment, g/L | 0.48 | 1.94 | 0.50 | 1.05 | 3.76 | 12.829 | 5.51 | 3.95 |
Final concentrate conductivity, mS/cm | 56.91 | 74.93 | 61.45 | 38.23 | 160.70 | 223.70 | 227.20 | 131.40 |
Final concentrate concentration, g/L | 40.08 | 38.89 | 42.6 | 38.05 | 138.56 | 160 | 164.77 | 194.35 |
Dilute water loss, % | 2 | 4 | 2 | 2 | 10.00 | 7.5 | 7.5 | 5 |
Concentrate water loss, % | −16 | −12 | −12 | −8.8 | −195.00 | −150 | −145 | −125 |
Average J, A/m2 | 186.14 | 220.98 | 188.05 | 144.73 | 345.02 | 396.43 | 385.34 | 328.27 |
Average Vc, V | 0.955 | 0.912 | 0.947 | 1.021 | 0.682 | 0.478 | 0.688 | 0.883 |
Dilute η ± SD, % | 98.55 ± 0.91 | 82.36 ± 0.26 | 99.96 ± 0.39 | 99.72 ± 0.15 | 91.80 ± 0.069 | 81.84 ± 0.015 | 83.03 ± 0.27 | 90.04 ± 0.31 |
concentrate η ± SD, % | 94.35 ± 0.82 | 84.90 ± 0.32 | 99.10 ± 0.44 | 87.25 ± 0.13 | 65.32 ± 0.052 | 83.49 ± 0.01 | 62.30 ± 0.20 | 69.86 ± 0.24 |
Eu ± SD, kWh/t | 4.23 ± 0.032 | 4.51 ± 0.017 | 3.24 ± 0.014 | 2.90 ± 0.05 | 9.06 ± 0.009 | 5.30 ± 0.001 | 7.43 ± 0.011 | 8.12 ± 0.015 |
Q, L/(h·m2) | 42.02 | 44.64 | 54.95 | 51.02 | 25.97 | 35.71 | 35.71 | 35.71 |
Process | Feed | Product and Removal Parameters | Operating Conditions | Ref. |
---|---|---|---|---|
ED | ~6% NH4Cl | 10–12% NH4Cl | >2h | [22] |
ED | 1.2% NH4Cl | 15% NH4Cl | [42] | |
ED | 3% NH4Cl | 16% NH4Cl | 80 min | This work |
ED | 0.4~1.8% brine solution | 12–20% | Energy consumption of 1.5–7.1 kWh/m3 | [43] |
Nanofiltration (NF) membrane enabled the ED | Synthetic textile wastewater | Salt rejection: 98.9% Dye recovery: 99.4% | [44] | |
Heterogeneous bipolar membrane | Synthetic saline wastewater | Desalination rate: 74.4% Na conversion: 72.2% | [45] | |
Ultrafiltration (UF) membrane as AEM shield | Real tannery wastewater | Removal efficiency: Calcium: 62.5% Sulfide: 72.3% Chlorine: 67% | [46] | |
reverse ED | Synthetic saline wastewater | TOC removal: 70%/h | [47] | |
UF-ED | Real textile wastewater | UF Rejection: COD: 54.5% | [48] | |
EC-ED | Real tannery wastewater | Combined removal: COD: 92% NH3-N: 100% Cr: 100% Color: 100% | Current density: 14 mA/cm2 ion exchange capacity: CEM = 1 meq/g, AEM = 1.5 meq/g | [49] |
ED | 1% synthetic saline wastewater | Desalination rate NaCl: 95.2% NH4Cl: 80.6% KCl: 95.3% NaNO3: 89.5% | η NaCl: 98.55% NH4Cl: 82.36% KCl: 99.96% NaNO3: 99.72% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Geng, Q.; Hao, X.; Chen, L.; Lian, W. Application of Electrodialysis for Concentration and Desalination of Monovalent Salts. Water 2025, 17, 2779. https://doi.org/10.3390/w17182779
Yang J, Geng Q, Hao X, Chen L, Lian W. Application of Electrodialysis for Concentration and Desalination of Monovalent Salts. Water. 2025; 17(18):2779. https://doi.org/10.3390/w17182779
Chicago/Turabian StyleYang, Jinmei, Qijin Geng, Xinxin Hao, Linna Chen, and Wenyu Lian. 2025. "Application of Electrodialysis for Concentration and Desalination of Monovalent Salts" Water 17, no. 18: 2779. https://doi.org/10.3390/w17182779
APA StyleYang, J., Geng, Q., Hao, X., Chen, L., & Lian, W. (2025). Application of Electrodialysis for Concentration and Desalination of Monovalent Salts. Water, 17(18), 2779. https://doi.org/10.3390/w17182779