Micro-Nano Aeration Oxygenation Irrigation Has Increased Soil Nitrogen and Cotton Yield in Arid Areas
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Materials
2.1.1. Overview of the Experimental Zone
2.1.2. Test Materials
2.1.3. Experimental Design
2.1.4. Data Statistical Analysis
2.2. Measurement Indicators and Methods
2.2.1. Soil Enzyme Activity and Total Nitrogen Content
2.2.2. PCR Amplification and High-Throughput Sequencing
2.2.3. Cotton Growth and Yield Indicators
- Plant height and stem diameter: During the seedling stage, bud stage, flower stalk stage, and mature stage of the cotton, measure the highest point from the base to the top of the six cotton plants in each treatment with a tape measure to obtain the plant height data. The stem thickness was obtained by measuring the base of the cotton with a vernier caliper at the same time.
- Relative chlorophyll content: Use the chlorophyll meter SPAD-502 to measure the SPAD of four fallen leaves of cotton. Read each leaf three times and take the average as the SPAD value of the plant’s leaves.
- Dry matter accumulation: Take six cotton plants from each treatment at each stage of maturity, blanch them in a 105 °C oven for 30 min, then dry them at 75 °C until a constant weight is achieved. After cooling, weigh them and record the dry matter accumulation.
- Determination of cotton yield: During the boll-opening period, take the number of bolls from each treatment, collect the bolls, dry them, and calculate the boll weight. Then, the formula for calculating seed cotton yield is as follows: seed cotton yield (kg·hm−2) × number of bolls per plant (pieces) × weight of bolls per plant (g).
3. Research Results
3.1. The Influence of Micro-Nano Aeration Oxygenation Irrigation on Total Nitrogen in Soil
3.2. The Response of Soil Enzyme Activity to Micro-Nano Aeration and Oxygenation Irrigation
3.3. The Changes in Soil Microbial Activity
3.4. The Response of Soil Environment Improvement to Cotton Growth and Yield
3.5. Correlation Analysis of Microorganisms with Cotton Yield and Soil Properties Under Micro-Nano Aeration Oxygenation Irrigation Conditions
4. Discussion
4.1. The Regulatory Mechanism of Micro-Nano Aeration and Oxygenation Irrigation on Soil Nitrogen and Enzyme Activity
4.2. The Driving Factors and Ecological Functions of Soil Microbial Activity
4.3. Soil-Crop Synergy Effect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Yang, R.; Zhang, Z.; Geng, Y.; Zhu, J.; Sun, J. Effects of Oxygenated Irrigation on Root Morphology, Fruit Yield, and Water–Nitrogen Use Efficiency of Tomato (Solanum lycopersicum L.). J. Soil Sci. Plant Nutr. 2023, 23, 5582–5593. [Google Scholar] [CrossRef]
- Ouyang, Z.; Tian, J.; Yan, X.; Yang, Z. Micro-nano oxygenated irrigation improves the yield and quality of greenhouse cucumbers under-film drip irrigation. Sci. Rep. 2023, 13, 19453. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Wang, T.; Pan, J.; Zhou, B.; Muhammad, T.; Zhou, C.; Li, Y. Micro-nano bubble water oxygation: Synergistically improving irrigation water use efficiency, crop yield and quality. J. Clean. Prod. 2019, 222, 835–843. [Google Scholar] [CrossRef]
- Li, R.; Han, Q.; Dong, C.; Nan, X.; Li, H.; Sun, H.; Li, H.; Li, P.; Hu, Y. Effect and Mechanism of Micro-Nano Aeration Treatment on a Drip Irrigation Emitter Based on Groundwater. Agriculture 2023, 13, 2059. [Google Scholar] [CrossRef]
- Zhu, Y.; Dyck, M.; Cai, H.-J.; Song, L.-B.; Chen, H. The effects of aerated irrigation on soil respiration, oxygen, and porosity. J. Integr. Agric. 2019, 18, 2854–2868. [Google Scholar] [CrossRef]
- Bian, Q.; Dong, Z.; Zhao, Y.; Feng, Y.; Fu, Y.; Wang, Z.; Zhu, J. Phosphorus Supply Under Micro-Nano Bubble Water Drip Irrigation Enhances Maize Yield and Phosphorus Use Efficiency. Plants 2024, 13, 3046. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, P.; Deng, Y.; Sun, C.; Tian, X.; Si, B.; Li, B.; Guo, X.; Liu, F.; Zhang, Z. Study on Regulation Mechanism of Tomato Root Growth in Greenhouse under Cycle Aerated Subsurface Drip Irrigation. Agronomy 2022, 12, 2609. [Google Scholar] [CrossRef]
- Dong, Y.; Lei, H.; Xiao, Z.; Jin, C.; Lian, Y.; Pan, H.; Zhang, Z.; Yin, C.; Sun, K. Aerated Drip Irrigation: A Sustainable Approach to Improving Soil Environment, Crop Growth, Quality, and Yield in Greenhouse Cultivation. J. Soil Sci. Plant Nutr. 2025, 25, 3427–3442. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, H.; Hou, F.; Khan, A.; Luo, H. Pre-Sowing Irrigation Plus Surface Fertilization Improves Morpho-Physiological Traits and Sustaining Water-Nitrogen Productivity of Cotton. Agronomy 2019, 9, 772. [Google Scholar] [CrossRef]
- Ouyang, Z.; Tian, J.; Yan, X.; Shen, H. Effects of different concentrations of dissolved oxygen on the growth, photosynthesis, yield and quality of greenhouse tomatoes and changes in soil microorganisms. Agric. Water Manag. 2021, 245, 106579. [Google Scholar] [CrossRef]
- Al-Ghobari, H.M.; Dewidar, A.Z. Integrating deficit irrigation into surface and subsurface drip irrigation as a strategy to save water in arid regions. Agric. Water Manag. 2018, 209, 55–61. [Google Scholar] [CrossRef]
- Wu, Q. Study on the Application Technology of Bio-Organic Fertilizer from Farming Manure Source Based on Rice Fields in Taizhou Area to Replace Chemical Fertilizer. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2021. [Google Scholar] [CrossRef]
- Silva, J.; Arias-Torres, L.; Carlesi, C.; Aroca, G. Use of Nanobubbles to Improve Mass Transfer in Bioprocesses. Processes 2024, 12, 1227. [Google Scholar] [CrossRef]
- Akshit, F.N.U.; Mao, T.; Mohan, M.S. Future perspective of nanobubble technology in dairy processing Applications. Trends Food Sci. Technol. 2024, 147, 104420. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, Y.; Yu, Q.; Qian, S.; Shi, Y.; Zhang, N.; Michelsen, A.; Zhang, J.; Müller, C.; Li, S.; et al. Bacillus velezensis SQR9-induced ammonia-oxidizing bacteria stimulate gross nitrification rates in acidic Soils. Appl. Soil Ecol. 2024, 201, 105503. [Google Scholar] [CrossRef]
- Joshi, R.; Kasi, M.; Wadhawan, T.; Khan, E. Production and removal of soluble organic nitrogen by nitrifying Biofilm. J. Environ. Chem. Eng. 2021, 9, 105440. [Google Scholar] [CrossRef]
- Fu, W.; Song, G.; Wang, Y.; Wang, Q.; Duan, P.; Liu, C.; Zhang, X.; Rao, Z. Advances in Research Into and Applications of Heterotrophic Nitrifying and Aerobic Denitrifying Microorganisms. Front. Environ. Sci. 2022, 10, 887093. [Google Scholar] [CrossRef]
- Guo, J.; Rao, Z.; Yang, T.; Man, Z.; Xu, M.; Zhang, X.; Yang, S.-T. Cloning and identification of a novel tyrosinase and its overexpression in Streptomyces kathirae SC-1 for enhancing melanin Production. FEMS Microbiol. Lett. 2015, 362, fnv041. [Google Scholar] [CrossRef]
- Willetts, A. The Role of Dioxygen in Microbial Bio-Oxygenation: Challenging Biochemistry, Illustrated by a Short History of a Long Misunderstood Enzyme. Microorganisms 2024, 12, 389. [Google Scholar] [CrossRef]
- Sheng, Y.; Hu, J.; Kukkadapu, R.; Guo, D.; Zeng, Q.; Dong, H. Inhibition of Extracellular Enzyme Activity by Reactive Oxygen Species upon Oxygenation of Reduced Iron-Bearing Minerals. Environ. Sci. Technol. 2023, 57, 3425–3433. [Google Scholar] [CrossRef]
- Heng, T.; Ma, Y.; Ai, P.; Liu, Z.; Wu, M.; Liu, C. The Effects of Soil Salt Stress on the Nitrogen Uptake, Yield Response and Nitrogen Use Efficiency of Cotton in Arid Areas. Agronomy 2024, 14, 229. [Google Scholar] [CrossRef]
- Wu, H.; Xing, Z.; Zhan, G. Dissolved oxygen drives heterotrophic microorganism succession to regulate low carbon source wastewater treatment enhanced by Slurry. J. Environ. Manag. 2024, 366, 121804. [Google Scholar] [CrossRef]
- Liang, X.; Sun, L.-Q.; Zhang, X.; Zhang, J.; Fu, P.-Y. Mechanism of Inorganic Nitrogen Transformation and Identification of Nitrogen Sources in Water and Soil. J. Environ. Sci. China 2020, 41, 4333–4344. [Google Scholar]
- Mao, L.; He, X.; Ye, S.; Wang, S. Soil Aggregate-Associated Carbon-Cycle and Nitrogen-Cycle Enzyme Activities as Affected by Stand Age in Chinese Fir Plantations. J. Soil Sci. Plant Nutr. 2023, 23, 4361–4372. [Google Scholar] [CrossRef]
- Kästner, M.; Maskow, T.; Miltner, A.; Lorenz, M.; Thiele-Bruhn, S. Assessing Energy Fluxes and Carbon Use in Soil as Controlled by Microbial Activity—A Thermodynamic Perspective A Perspective Paper. J. Soil Biol. Biochem. 2024, 193, 109403. [Google Scholar] [CrossRef]
- Yee, M.O.; Deutzmann, J.; Spormann, A.; Rotaru, A.E. Cultivating electroactive microbes—From field to bench. Nanotechnology 2020, 31, 174003. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lu, X.; Mori, T.; Mao, Q.; Zhou, K.; Zhou, G.; Nie, Y.; Mo, J. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a Nitrogen-rich tropical Forest. Soil Biol. Biochem. 2018, 121, 103–112. [Google Scholar] [CrossRef]
- Jobard, M.; Pessiot, J.; Nouaille, R.; Fonty, G.; Sime-Ngando, T. Microbial diversity in support of anaerobic biomass Valorization. Crit. Rev. Biotechnol. 2015, 37, 1–10. [Google Scholar] [CrossRef]
- Ardestani, M.M.; Kukla, J.; Cajthaml, T.; Baldrian, P.; Frouz, J. Microbial Diversity Drives Decomposition More than Advantage of Home Environment—Evidence from a Manipulation Experiment with Leaf Litter. Microorganisms 2025, 13, 351. [Google Scholar] [CrossRef]
- Ali, S.; Dongchu, L.; Jing, H.; Ahmed, W.; Abbas, M.; Qaswar, M.; Anthonio, C.K.; Lu, Z.; Boren, W.; Yongmei, X.; et al. Soil microbial biomass and extracellular enzymes regulate nitrogen mineralization in a Wheat-maize cropping system after three decades of fertilization in a Chinese Ferrosol. J. Soils Sediments 2020, 21, 281–294. [Google Scholar] [CrossRef]
- Raza, T.; Qadir, M.F.; Khan, K.S.; Eash, N.S.; Yousuf, M.; Chatterjee, S.; Manzoor, R.; Rehman, S.U.; Oetting, J.N. Unraveling the potential of microbes in decomposition of organic matter and release of carbon in the Ecosystem. J. Environ. Manag. 2023, 344, 118529. [Google Scholar] [CrossRef]
- Schroeter, S.A.; Eveillard, D.; Chaffron, S.; Zoppi, J.; Kampe, B.; Lohmann, P.; Jehmlich, N.; von Bergen, M.; Sanchez-Arcos, C.; Pohnert, G.; et al. Microbial community functioning during plant litter Decomposition. J. Sci. Rep. 2022, 12, 7451. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, C.E.; Larkin, O.J.; Anthony, P.; Davey, M.R.; Eaves, L.; Rees, C.E.D.; Hill, R.J.A. Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen Availability. J. R. Soc. Interface 2010, 8, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Rangel, L.I.; Hamilton, O.; de Jonge, R.; Bolton, M.D. Fungal social influencers: Secondary metabolites as a platform for shaping the plant-associated Community. Plant J. 2021, 108, 632–645. [Google Scholar] [CrossRef]
- Xu, C.; Chen, L.; Chen, S.; Chu, G.; Wang, D.; Zhang, X. Rhizosphere Aeration Improves Nitrogen Transformation in Soil, and Nitrogen Absorption and Accumulation in Rice Plants. Rice Sci. 2020, 27, 162–174. [Google Scholar] [CrossRef]
- Rippel, T.M.; Iosue, C.L.; Succi, P.J.; Wykoff, D.D.; Chapman, S.K. Comparing the impacts of an invasive grass on nitrogen cycling and Ammonia-oxidizing prokaryotes in high-nitrogen forests, open fields, and Wetlands. Plant Soil 2020, 449, 65–77. [Google Scholar] [CrossRef]
- Liu, G.; Li, Y.; Alva, A.K.; Porterfield, D.M.; Dunlop, J. Enhancing nitrogen use efficiency of potato and cereal crops by optimizing temperature, moisture, balanced nutrients and oxygen bioavailability. J. Plant Nutr. 2012, 35, 428–441. [Google Scholar] [CrossRef]
- Yadav, M.; Kumar, R.; Parihar, C.; Yadav, R.; Jat, S.; Ram, H.; Meena, R.; Singh, M.; Verma, A.; Kumar, U.; et al. Strategies for improving nitrogen use efficiency: A review. J. Agric. Rev. 2017, 38, 29–40. [Google Scholar] [CrossRef]
- Marschner, P. Plant-Microbe Interactions in the Rhizosphere and Nutrient Cycling; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2007; pp. 159–182. [Google Scholar]
- Nurbaiti, S.; Milasari, A.F.; Wibowo, W.A.; Nilamsari, E.I.; Rachmawati, D. Assessing Foliar Chlorophyll Content with SPAD-502 Chlorophyll Meter: A Comparison with Spectrophotometer Method in Various Plants. J. Ris. Biol. Dan Apl. 2025, 7, 50–56. [Google Scholar] [CrossRef]
pH | Water-Soluble Salt (g/kg) | Hydrolyzed Nitrogen (mg/kg) | Available Phosphorus (mg/kg) | Nitrate Nitrogen (mg/kg) | Ammonia Nitrogen (mg/kg) | Total Nitrogen (g/kg) | Organic Matter (g/kg) |
---|---|---|---|---|---|---|---|
8.12 | 0.9 | 36.3 | 22.5 | 409 | 27.2 | 0.61 | 10.03 |
Name | Chao1 | Observed Features | Pielou | Shannon | Simpson | |
---|---|---|---|---|---|---|
N0 | C | 1709 ± 221.82 d | 1607 ± 136.45 e | 0.838 ± 0.07 b | 8.921 ± 0.36 c | 0.987 ± 0.00010 a |
Y | 1767 ± 158.36 d | 1729 ± 189.24 d | 0.899 ± 0.05 ab | 9.629 ± 0.67 b | 0.997 ± 0.00081 a | |
NL | C | 1797 ± 149.63 d | 1722 ± 165.25 d | 0.885 ± 0.03 b | 9.673 ± 0.77 b | 0.998 ± 0.00006 a |
Y | 2080 ± 225.45 b | 1998 ± 188.45 c | 0.895 ± 0.04 ab | 9.865 ± 0.63 b | 0.998 ± 0.00013 a | |
NM | C | 1950 ± 188.65 c | 1760 ± 168.58 d | 0.897 ± 0.03 ab | 9.675 ± 0.45 b | 0.998 ± 0.00010 a |
Y | 3426 ± 296.25 a | 3118 ± 277.48 a | 0.9 ± 0.07 a | 10.432 ± 0.87 a | 0.998 ± 0.00021 a | |
NH | C | 1817 ± 145.25 cd | 1885 ± 166.75 c | 0.893 ± 0.06 ab | 9.631 ± 0.96 b | 0.997 ± 0.00008 a |
Y | 2247 ± 200.24 b | 2107 ± 212.78 b | 0.9 ± 0.04 a | 9.859 ± 0.74 b | 0.998 ± 0.00031 a |
Factor | Number of Bells | Single Bell Weight | Yield | Ginning Outturn | |
---|---|---|---|---|---|
Manage | |||||
N0 | C | 3.1667 ± 0.21 d | 2.6383 ± 0.21 f | 3224.6783 ± 288.42 h | 31.1683 ± 2.58 f |
Y | 3.3333 ± 0.11 d | 3.515 ± 0.22 e | 3691.53 ± 267.86 g | 32.14 ± 3.65 e | |
NL | C | 3.3333 ± 0.36 d | 3.6233 ± 0.31 de | 4360.4383 ± 365.78 f | 33.7733 ± 3.45 d |
Y | 4.3333 ± 0.37 c | 4.345 ± 0.38 c | 5031.6033 ± 356.26 d | 34.7233 ± 4.25 c | |
NM | C | 4.5 ± 0.26 c | 4.2733 ± 0.33 c | 5304.795 ± 456.12 c | 35.2067 ± 3.26 bc |
Y | 6.5 ± 0.49 a | 5.5367 ± 0.47 a | 6722.8717 ± 557.45 a | 36.6167 ± 2.89 a | |
NH | C | 4.1667 ± 0.41 c | 3.8583 ± 0.46 d | 4551.325 ± 489.68 e | 33.8433 ± 3.33 d |
Y | 5.3333 ± 0.43 b | 4.81 ± 0.40 b | 5584.4133 ± 447.25 b | 35.395 ± 2.78 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Chai, Q.; Wang, Z.; Fu, Y.; Wang, Z.; Bian, Q.; Cheng, J.; Zhao, Y.; Zhu, J.; Wei, Y. Micro-Nano Aeration Oxygenation Irrigation Has Increased Soil Nitrogen and Cotton Yield in Arid Areas. Water 2025, 17, 2778. https://doi.org/10.3390/w17182778
Wang J, Chai Q, Wang Z, Fu Y, Wang Z, Bian Q, Cheng J, Zhao Y, Zhu J, Wei Y. Micro-Nano Aeration Oxygenation Irrigation Has Increased Soil Nitrogen and Cotton Yield in Arid Areas. Water. 2025; 17(18):2778. https://doi.org/10.3390/w17182778
Chicago/Turabian StyleWang, Jiayue, Qiqi Chai, Ze Wang, Yanbo Fu, Zhiguo Wang, Qingyong Bian, Junhui Cheng, Yupeng Zhao, Jinquan Zhu, and Yanhong Wei. 2025. "Micro-Nano Aeration Oxygenation Irrigation Has Increased Soil Nitrogen and Cotton Yield in Arid Areas" Water 17, no. 18: 2778. https://doi.org/10.3390/w17182778
APA StyleWang, J., Chai, Q., Wang, Z., Fu, Y., Wang, Z., Bian, Q., Cheng, J., Zhao, Y., Zhu, J., & Wei, Y. (2025). Micro-Nano Aeration Oxygenation Irrigation Has Increased Soil Nitrogen and Cotton Yield in Arid Areas. Water, 17(18), 2778. https://doi.org/10.3390/w17182778