Evaluating the Long-Term Effectiveness of Marsh Terracing for Conservation with Integrated Geospatial and Wetland Simulation Modeling
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Modeling Approach
2.2.1. Elevation Data
2.2.2. Wetland Data and Land Cover Classification
2.2.3. Sediment Change Rates
2.2.4. Sea Level Rise and Tidal Parameters
2.2.5. Simulation Setup and Protection Scenario
2.3. Geospatial Processing and Terrace Design Integration
2.3.1. Wetland Zone Classification
2.3.2. Interpolation and DEM Modification
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CoNED | Coastal National Elevation Dataset |
DEM | Digital Elevation Model |
Ha | Hectares |
FWS | Fish and Wildlife Service |
LiDAR | Light Detection And Ranging |
MHHW | Mean Higher High Water tidal datum |
km2 | Square kilometers |
MTL | Mean Tide Level |
NAVD88 | North American Vertical Datum 1988 |
NGS | National Geodetic Survey |
NOAA | National Oceanographic and Atmospheric Administration |
NWI | National Wetland Inventory |
RSLR | Relative Sea Level Rise |
SLAMM | Sea Level Affecting Marshes wetland simulation model |
USGS | United States Geological Survey |
VDATUM | Vertical Datum Transformation software |
Appendix A. NAVD88-to-MTL Conversion
SLAMM Class | SLAMM Category | NWI Wetland Class Description |
---|---|---|
1 | Developed Land | Dry upland and developed/impervious areas. Requires manual delineation with a separate dataset from NWI. By default, SLAMM assumes that developed land will be defended against sea level rise unless otherwise specified. |
2 | Undeveloped Land | Dry upland and undeveloped areas. Requires manual delineation with a separate dataset from NWI. |
3 | Non-Tidal Swamp | Palustrine non-tidal water regimes with forest and scrub-shrub (living or dead) cover. |
4 | Cypress Swamp | Palustrine non-tidal water regimes with needle-leaved deciduous forest and scrub-shrub (living or dead) cover. |
5 | Non-Tidal Inland Freshwater Marsh | Non-tidal water regimes; palustrine with emergent cover, and lacustrine and riverine systems with non-persistent emergent vegetation cover. |
6 | Tidally Influenced Freshwater Marsh | Palustrine and riverine freshwater tidal water regimes with emergent vegetation cover. |
7 | Transitional Saltmarsh/Scrub Shrub | Marsh border; Estuarine intertidal water regimes with scrub-shrub and forest cover. |
8 | Regularly-Flooded Saltmarsh | Low marsh; Estuarine regularly flooded intertidal water regimes with emergent marsh vegetation cover. |
10 | Estuarine Beach | Estuarine intertidal water regimes with unconsolidated shores. |
11 | Tidal Flat | Estuarine intertidal water regimes with unconsolidated shores (mud or organic) and aquatic beds, and marine intertidal water regimes with aquatic beds. |
12 | Ocean Beach | Marine intertidal water regimes with unconsolidated shores (cobble-gravel, sand). |
13 | Ocean Flat | Marine intertidal water regimes with unconsolidated shores (mud or organic), low energy coastline. |
15 | Inland Open Water | Palustrine, lacustrine, and riverine systems with unconsolidated bottoms and aquatic beds. |
16 | Riverine Tidal | Open water riverine systems. |
17 | Estuarine Open Water | Estuarine subtidal open water regimes. |
18 | Tidal Creek | Estuarine intertidal water regimes with streambeds. |
19 | Open Ocean | Marine subtidal and intertidal water regimes with aquatic beds and reefs. |
20 | Irregularly-Flooded Saltmarsh | High marsh; Estuarine irregularly flooded intertidal water regimes with emergent marsh vegetation cover. |
22 | Inland Shore | Shoreline not pre-processed using tidal range elevations; Palustrine, lacustrine, and riverine systems with unconsolidated bottoms, rocky shores, and streambeds. |
23 | Tidally Influenced Swamp | Palustrine tidally influenced swamp water regimes with scrub-shrub and forest cover. |
Appendix B. National Wetlands Inventory (NWI) Collection and Translation
Appendix C
Appendix C.1. Inundation Frequency Analysis
Appendix C.2. Relative Sea Level Rise (RSLR) Values
Year | NOAA RSLR (m, NAVD88) |
---|---|
2020 | 0.19 |
2030 | 0.33 |
2040 | 0.49 |
2050 | 0.68 |
2060 | 0.90 |
2070 | 1.14 |
2080 | 1.42 |
2090 | 1.71 |
2100 | 2.04 |
Appendix D
Appendix D.1. Geospatial Processing Workflow
Appendix D.2. Wetland Zone Classification
Appendix D.3. Interpolation and DEM Modification
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Booi, S.; Mishi, S.; Andersen, O. Ecosystem Services: A Systematic Review of Provisioning and Cultural Ecosystem Services in Estuaries. Sustainability 2022, 14, 7252. [Google Scholar] [CrossRef]
- Zu Ermgassen, P.S.; Baker, R.; Beck, M.W.; Dodds, K.; zu Ermgassen, S.O.; Mallick, D.; Turner, R.E. Ecosystem Services: Delivering Decision-Making for Salt Marshes. Estuaries Coasts 2021, 44, 1691–1698. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Farber, S.; Turner, R.K. Changes in the Global Value of Ecosystems. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- NOAA OCM. Fast Facts: Economics and Demographics, Estimated from US Decennial Census 2020 American Community Survey of Coastal Counties. 2025. Available online: https://coast.noaa.gov/states/fast-facts/economics-and-demographics.html (accessed on 1 March 2025).
- Lotze, H.K.; Lenihan, H.S.; Bourque, B.J.; Bradbury, R.H.; Cooke, R.G.; Kay, M.C.; Kidwell, S.M.; Kirby, M.X.; Peterson, C.H.; Jackson, J.B.C. Depletion, Degradation, and Recovery Potential of Estuaries and Coastal Seas. Science 2006, 312, 1806–1809. [Google Scholar] [CrossRef] [PubMed]
- Worm, B.; Barbier, E.B.; Beaumont, N.; Duffy, J.E.; Folke, C.; Halpern, B.S.; Jackson, J.B.C.; Lotze, H.K.; Micheli, F.; Palumbi, S.R.; et al. Impacts of Biodiversity Loss on Ocean Ecosystem Services. Science 2006, 314, 787–790. [Google Scholar] [CrossRef]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A Global Map of Human Impact on Marine Ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef]
- Valiela, I.; Bowen, J.L.; York, J.K. Mangrove Forests: One of the World’s Threatened Major Tropical Environments. BioScience 2001, 51, 807–815. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis; Island Press: Washington, DC, USA, 2005; Available online: https://www.millenniumassessment.org/documents/document.356.aspx.pdf (accessed on 1 February 2025).
- Orth, R.J.; Carruthers, T.J.B.; Dennison, W.C.; Duarte, C.M.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R.; Kendrick, G.A.; Kenworthy, W.J.; Olyarnik, S.; et al. A Global Crisis for Seagrass Ecosystems. BioScience 2006, 56, 987–996. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Marine and Coastal Ecosystems and Human Well-being: A Synthesis Report Based on the Findings of the Millennium Ecosystem Assessment; UNEP: Nairobi, Kenya, 2006; Available online: https://www.unep.org/resources/report/marine-and-coastal-ecosystems-and-human-well-being-synthesis-report-based-findings (accessed on 1 March 2025).
- Waycott, M.; Duarte, C.M.; Carruthers, T.J.B.; Orth, R.J.; Dennison, W.C.; Olyarnik, S.; Calladine, A.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R.; et al. Accelerating Loss of Seagrasses Across the Globe Threatens Coastal Ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12377–12381. [Google Scholar] [CrossRef]
- Braatz, S.; Fortuna, S.; Broadhead, J.; Leslie, R. Coastal Protection in the Aftermath of the Indian Ocean Tsunami: What Role for Forests and Trees? Food and Agriculture Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Cochard, R.; Ranamukhaarachchi, S.L.; Shipin, O.V.; Edwards, P.J.; Seeland, K.T.; Kua, H.W. The 2004 Tsunami in Aceh and Southern Thailand: A Review on Coastal Ecosystems, Wave Hazards and Vulnerability. Perspect. Plant Ecol. Evol. Syst. 2008, 10, 3–40. [Google Scholar] [CrossRef]
- Koch, E.W.; Barbier, E.B.; Silliman, B.R.; Reed, D.J.; Perillo, G.M.E.; Hacker, S.D.; Granek, E.F.; Primavera, J.H.; Muthiga, N.; Polasky, S.; et al. Non-Linearity in Ecosystem Services: Temporal and Spatial Variability in Coastal Protection. Front. Ecol. Environ. 2009, 7, 29–37. [Google Scholar] [CrossRef]
- Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, A.T.; Gregory, J.M.; Kitoh, A.; Knutti, R.; Murphy, J.M.; Noda, A.; et al. Global Climate Projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 747–845. [Google Scholar]
- Nevermann, H.; AghaKouchak, A.; Shokri, N. Sea Level Rise Implications on Future Inland Migration of Coastal Wetlands. Glob. Ecol. Conserv. 2023, 43, e02421. [Google Scholar] [CrossRef]
- Molino, G.D.; Carr, J.A.; Ganju, N.K.; Kirwan, M.L. Variability in Marsh Migration Potential Determined by Topographic Rather than Anthropogenic Constraints in the Chesapeake Bay Region. Limnol. Oceanogr. Lett. 2022, 7, 321–331. [Google Scholar] [CrossRef]
- Adams, J.B.; Raw, J.L.; Riddin, T.; Wasserman, J.; Van Niekerk, L. Salt Marsh Restoration for the Provision of Multiple Ecosystem Services. Diversity 2021, 13, 680. [Google Scholar] [CrossRef]
- O’Connell, J.L.; Nyman, J.A. Marsh Terraces in Coastal Louisiana Increase Marsh Edge and Densities of Waterbirds. Wetlands 2010, 30, 125–135. [Google Scholar] [CrossRef]
- Brasher, M.G. Salt Marsh Restoration: A Guide for the Gulf of Mexico Region; Gulf Coast Joint Venture: Lafayette, LA, USA, 2015. [Google Scholar]
- Rozas, L.P.; Minello, T.J. Marsh Terracing as a Wetland Restoration Tool for Creating Fishery Habitat. Wetlands 2001, 21, 327–341. [Google Scholar] [CrossRef]
- Osorio, R.J.; Linhoss, A.; Dash, P. Evaluation of Marsh Terraces for Wetland Restoration: A Remote Sensing Approach. Water 2020, 12, 336. [Google Scholar] [CrossRef]
- Osorio, R.J.; Linhoss, A.; Skarke, A.; Brasher, M.G.; French, J.; Baghbani, R. Modeling Wave Climates and Wave Energy Attenuation in Marsh Terrace Environments in the Northern Gulf of Mexico. Ecol. Eng. 2022, 176, 106529. [Google Scholar] [CrossRef]
- Keller, K.A.; Hu, K.; Meselhe, E.A. Numerical Investigation of Marsh Terracing Design Parameters to Optimize Performance as a Coastal Restoration Technique. Coast. Eng. 2023, 180, 104276. [Google Scholar] [CrossRef]
- Dewberry; Moss, A.; Sangameswaran, S.; Batten, B. Analysis of Marsh Response to Sea Level Rise: City of Virginia Beach, Virginia; Virginia Beach Sea Level Wise Adaptation Strategy Appendices; Rosenberg, S., Ed.; Prepared for City of Virginia Beach Department of Public Works by Dewberry Engineers Inc.: Virginia Beach, VA, USA, 2018; pp. 196–259. Available online: https://s3.us-east-1.amazonaws.com/virginia-beach-departments-docs/pw/Stormwater-Planning/Sea-Level-Rise/Virginia-Beach-Sea-Level-Wise-Adaptation-Strategy-Appendices-March-2020.pdf (accessed on 28 May 2024).
- Familkhalili, R.; Davis, J.; Currin, C.A.; Heppe, M.E.; Cohen, S. Quantifying the Benefits of Wetland Restoration under Projected Sea Level Rise. Front. Mar. Sci. 2023, 10, 1187276. [Google Scholar] [CrossRef]
- Gore, J. Application of Sea Level Affecting Marshes Model (SLAMM) to the Georgia Coast; Georgia Department of Natural Resources, Coastal Resources Division: Brunswick, GA, USA, 2012. [Google Scholar]
- Zhi, L.; Gou, M.; Li, X.; Bai, J.; Cui, B.; Zhang, Q.; Wang, G.; Bilal, H.; Abdullahi, U. Effects of Sea Level Rise on Land Use and Ecosystem Services in the Liaohe Delta. Water 2022, 14, 841. [Google Scholar] [CrossRef]
- Callahan, K. SLAMM: Modeling Future Tidal Wetland Conditions to Support Present Day Decisions; Great Bay National Estuarine Research Reserve, New Hampshire Department of Fish and Game: Greenland, NH, USA, 2023. Available online: https://greatbay.org/sea-levels-marsh-migration/ (accessed on 15 December 2024).
- Marshall, H.G.; Norman, M.D. (Eds.) Proceedings of the Back Bay Ecological Symposium; Old Dominion University: Norfolk, VA, USA, 1991. [Google Scholar]
- Buzzanell, B.J.; McGinty, H.K., III. Environmental Problems in the Coastal and Wetland Ecosystems of Virginia Beach, Virginia; U.S. Geological Survey Report: Reston, VA, USA, 1975. [CrossRef]
- WHRO Public Media. Virginia Beach Marsh Terrace Project in Back Bay Will Be the First on East Coast. Available online: https://www.whro.org/environment/2024-05-09/virginia-beach-marsh-terrace-project-in-back-bay-will-be-the-first-on-east-coast (accessed on 9 May 2024).
- Priest, W.I.; Dewing, S. The Marshes of Back Bay, Virginia. In Proceedings of the Back Bay Ecological Symposium; Marshall, H.G., Norman, M.D., Eds.; Old Dominion University: Norfolk, VA, USA, 1991; pp. 222–248. Available online: https://digitalcommons.odu.edu/backbay1990_flora/3/ (accessed on 9 May 2024).
- Ohenhen, L.O.; Shirzaei, M.; Barnard, P.L. Slowly but Surely: Exposure of Communities and Infrastructure to Subsidence on the US East Coast. PNAS Nexus 2024, 3, pgad426. [Google Scholar] [CrossRef] [PubMed]
- CO-OPS; OCM. Virginia Coastal Master Plan. In Benefits of Ocean Observing Catalog (BOOC); Center for the Blue Economy, Middlebury Institute of International Studies at Monterey: Monterey, CA, USA, 2022; Volume 2, p. 24. Available online: https://cbe.miis.edu/booc/vol2/iss1/24 (accessed on 1 March 2024).
- National Geodetic Survey. NOAA NGS Continually Updated Shoreline Product (CUSP). 15 August 2023. Available online: https://www.fisheries.noaa.gov/inport/item/60812 (accessed on 28 May 2024).
- Warren Pinnacle Consulting, Inc; Polaczyk, A.; Propato, M.; Brennan, M.; Battalio, B. SLAMM 6.7 Beta; User’s Manual; Warren Pinnacle Consulting, Inc.: Warren, VT, USA, 2016; Available online: https://warrenpinnacle.com/prof/SLAMM6/SLAMM_6.7_Users_Manual.pdf (accessed on 28 May 2024).
- National Geodetic Survey. 2019–2020 NOAA NGS Topobathy Lidar: Coastal VA, NC, SC. 27 February 2024. Available online: https://www.fisheries.noaa.gov/inport/item/66707 (accessed on 28 May 2024).
- NOAA OCM Partners. 1859–2015 USGS CoNED Topobathy DEM (Compiled 2016): Chesapeake Bay. 10 January 2024. Available online: https://www.fisheries.noaa.gov/inport/item/55321 (accessed on 28 May 2024).
- Chesapeake Bay Program. Chesapeake Bay Land Use and Land Cover (LULC) Database 2022 Edition; 2023. Available online: https://www.sciencebase.gov/catalog/item/633302d8d34e900e86c61f81 (accessed on 4 March 2024).
- Dewitz, J. National Land Cover Database (NLCD) 2021 Products; U.S. Geological Survey Data Release: Reston, VA, USA, 2023. [CrossRef]
- U.S. Fish and Wildlife Service; Diggs, B.; Fuhrman, N.; Herman, J.; Klopfer, S.; McGuckin, K.; Orndorff, D. Back Water National Wildlife Refuge. 2012. Available online: https://documentst.ecosphere.fws.gov/wetlands/data/SupMapInf/R05Y12P10.pdf (accessed on 1 May 2024).
- U.S. Fish and Wildlife Service. National Wetlands Inventory; U.S. Department of Interior: Washington, DC, USA, 2024. Available online: https://www.fws.gov/program/national-wetlands-inventory/wetlands-data (accessed on 1 May 2024).
- Warren Pinnacle Consulting, Inc.; Clough, J.S.; Park, R.A.; Propato, M.; Polaczyk, A.; Brennan, M.; Behrens, D.; Battalio, B. SLAMM 6.7 Technical Documentation; Warren Pinnacle Consulting, Inc.: Warren, VT, USA, 2016; Available online: https://warrenpinnacle.com/prof/SLAMM6/SLAMM_6.7_Technical_Documentation.pdf (accessed on 28 May 2024).
- NOAA NGS; NOAA OCS; NOAA CO-OPS. NOAA VDatum 4.6.1. 7 September 2023. Available online: https://vdatum.noaa.gov/welcome.html (accessed on 28 May 2024).
- U.S. Fish and Wildlife Service; National Wildlife Refuge System; Division of Natural Resources and Conservation Planning; Warren Pinnacle Consulting, Inc. Application of the Sea-Level Affecting Marshes Model (SLAMM 6) to Back Bay NWR; U.S. Fish and Wildlife Service: Washington, DC, USA, 2011. Available online: https://warrenpinnacle.com/prof/SLAMM/USFWS/SLAMM_Back_Bay.pdf (accessed on 10 October 2023).
- NOAA CO-OPS. Datums for 8638610, Sewells Point VA. NOAA Tides & Currents. 25 July 2013. Available online: https://tidesandcurrents.noaa.gov/datums.html?id=8638610 (accessed on 28 May 2024).
- Sweet, W.V.; Kopp, R.E.; Weaver, C.P.; Obeysekera, J.; Horton, R.M.; Thieler, E.R.; Zervas, C. Global and Regional Sea Level Rise Scenarios for the United States; NOAA Technical Report NOS CO-OPS 083; NOAA: Silver Spring, MD, USA, 2017. Available online: https://tidesandcurrents.noaa.gov/publications/techrpt83_Global_and_Regional_SLR_Scenarios_for_the_US_final.pdf (accessed on 1 April 2024).
- Milligan, D.A.; Wilcox, C.; Hardaway, C.S.; Cox, M.C. Shoreline Evolution: City of Virginia Beach, Virginia, Chesapeake Bay, Lynnhaven River, Broad Bay, and Atlantic Ocean Shorelines. 2012. Available online: https://scholarworks.wm.edu/items/d43470fd-bdb3-4916-a693-ef6892e2cc14 (accessed on 28 May 2024).
- U.S. Army Corps of Engineers. Sea-Level Change Curve Calculator (Version (2022.72)); U.S. Army Corps of Engineers: Washington, DC, USA, 2022.
- Dewberry; Tillar, D.B.; Edwards, G.P. Marsh Restoration in Back Bay: 95% Design Set Not for Construction; Department of Public Works Engineering Group: Virginia Beach, VA, USA, 2022.
- Dewberry; Miesse, T.; Gangai, J.; Chan, M.; Shillingsford, A. Numerical Modeling of Back Bay Marsh Terrace Project; Moss, A., Ed.; Prepared for City of Virginia Beach Department of Public Works by Dewberry Engineers Inc.: Fairfax, VA, USA, 2022. Available online: https://pw.virginiabeach.gov/stormwater/flood-protection-program/stormwater-green-infrastructure/marsh-restoration-in-back-bay (accessed on 1 February 2024).
- Dewberry; Dietrich, A.; Feulner, B.; Hull, T.; Larkin, K.; Moss, A.; Shillingsford, A.; Stahl, D.; Villhauer, D.; Williams, A.; et al. Project Alternative Screening Analysis: Initial Feasibility Assessment of Alternatives for Flood Risk Reduction in Back Bay, Southern Rivers Watershed, Virginia Beach; Prepared for City of Virginia Beach Department of Public Works by Dewberry Engineers Inc.: Fairfax, VA, USA, 2022. Available online: https://pw.virginiabeach.gov/stormwater/flood-protection-program/southern-rivers-watershed (accessed on 1 February 2024).
- Kim, H.; Jung, H.; Di Leonardo, D.; Carruthers, T. Modeling Potential Benefits of Fragmented Marsh Terrace Restoration in Terrebonne Bay, Louisiana: Sediment Processes Interacting with Vegetation and Potential Submerged Aquatic Vegetation Habitat. Front. Environ. Sci. 2024, 12, 1432732. [Google Scholar] [CrossRef]
- Gamblin, A.E.; Darrah, A.J.; Woodrey, M.S.; Iglay, R.B. Coastal Bird Community Response to Dredge-Spoil Tidal Marsh Restoration at New Round Island, Mississippi, USA. Restor. Ecol. 2023, 31, e13775. [Google Scholar] [CrossRef]
- Billah, M.M.; Bhuiyan, M.K.A.; Islam, M.A.; Das, J.; Hoque, A.R. Salt Marsh Restoration: An Overview of Techniques and Success Indicators. Environ. Sci. Pollut. Res. 2022, 29, 15347–15363. [Google Scholar] [CrossRef]
- Mogensen, L.A.; Rogers, K. Validation and Comparison of a Model of the Effect of Sea-Level Rise on Coastal Wetlands. Sci. Rep. 2018, 8, 1369. [Google Scholar] [CrossRef]
- Wu, W.; Yeager, K.M.; Peterson, M.S.; Fulford, R.S. Neutral Models as a Way to Evaluate the Sea Level Affecting Marshes Model (SLAMM). Ecol. Model. 2015, 303, 55–69. [Google Scholar] [CrossRef]
- Park, R.A.; Lee, J.K.; Mausel, P.W.; Howe, R.C. Using Remote Sensing for Modeling the Impacts of Sea Level Rise. World Resour. Rev. 1991, 3, 184–205. [Google Scholar]
- Lee II, H.; Reusser, D.A.; Frazier, M.R.; McCoy, L.M.; Clinton, P.J.; Clough, J.S. Sea Level Affecting Marshes Model (SLAMM)-New Functionality for Predicting Changes in Distribution of Submerged Aquatic Vegetation in Response to Sea Level Rise; US Environmental Protection Agency: Washington, DC, USA, 2014. Available online: https://pubs.usgs.gov/publication/70137955 (accessed on 1 February 2024).
- Tosi, L.; Da Lio, C.; Cosma, M.; Donnici, S. Vulnerability of Tidal Morphologies to Relative Sea-level Rise in the Venice Lagoon. Sci. Total Environ. 2024, 931, 173006. [Google Scholar] [CrossRef]
Data Input | Source(s) | Description/Processing Summary |
---|---|---|
Digital Elevation Model (DEM) File | National Geodetic Survey [40] NOAA OCM Partners [41] | Chesapeake Bay USGS topobathy 1 m DEM in deep water and upland areas overlaid with 1 m 2019 topobathy LiDAR survey raster for low elevation coastal dry land, wetlands, and shallow waters (<~4 m depth) with newer, high-quality data. Both DEMs were downloaded in NAVD88. |
SLAMM Categories File | Chesapeake Bay Program [42] Dewitz [43] U.S. Fish and Wildlife Service [44,45] Warren Pinnacle Consulting, Inc. et al. [46] | The lookup table provided in the SLAMM 6.7 program files was used to assign SLAMM codes based on National Wetland Index (NWI) categories for wetland polygons in the study area. The remaining unjoined NWI polygons were manually updated in the lookup table using the naming scheme provided in the SLAMM Technical Documentation. Dry upland (developed and undeveloped) classes were delineated using the Chesapeake Bay Foundation and National Land Cover Database LULC data products. |
SLOPE File | DEM derivative grid | Derived a slope angle raster from the input DEM file, indicating each cell’s slope in degrees. |
VDATUM File | DEM File NOAA NGS et al. [47] | To adjust the original DEM from geodetic vertical datum NAVD88 to the Mean Tide Level (MTL) for SLAMM modeling, the NOAA NGS VDATUM tool was used. VDATUM generated a raster of correction values by subtracting the MTL VDATUM output from the original NAVD88 DEM. Areas outside of interpolated tidal correction coverage used parameter MTL-NAVD88 (−0.083 m) as a constant correction. |
Site-Specific Parameters | Dewberry et al. [27] U.S. FWS [48] | Previous SLAMM studies in the Back Bay National Wildlife Refuge (NWR) determined the parameter values for erosion, accretion, and historical SLR rates. |
Tidal Datum and Water Level Parameters | NOAA NGS et al. [47] NOAA CO-OPS [49] | SLAMM parameters great diurnal tide range and MTL datum elevations relative to NAVD88 were derived from a reference NOAA tide gauge. The Sewells Point, VA, tide gauge (ID 8638610) station was selected for its proximity to the study area, its long-term establishment, and availability of tidal datum adjustments to NAVD88. Salt elevation and water level changes relative to MTL are also derived from inundation frequency data analysis measured at this gauge. |
Sea Level Rise Projections | NOAA CO-OPS Sweet et al. [50] U.S. Army Corps of Engineers [51] | Sea level rise projections customized for the study site were based on Sewell’s Point and NAVD88 datum [49]. |
Parameter | Value | Source Summary | |
---|---|---|---|
NWI Photo Date (YYYY) | 2009 | True Color, 1 m, 2009 U.S. National Agriculture Imagery Program (NAIP) Source Imagery for U.S. FWS NWI dataset within the study area [44]. | |
DEM Date (YYYY) | 2019 | 2019–2020 NOAA NGS Topo-bathy Lidar DEM: Coastal VA, NC, SC [40] | |
Direction Offshore [n,s,e,w] | East | Direction of open ocean water from shoreline | |
Erosion Rate (Horizontal m/yr) | Marsh | 0.06 | The value used by Dewberry et al. [27] for the Back Bay NWR based on an averaged long-term marsh erosion value obtained from the Virginia Institute of Marine Science (VIMS) Shoreline Evolution study of the City of Virginia Beach [51]. |
Swamp | |||
Tidal Flat | |||
Accretion rate (mm/yr) | Reg. Flooded Marsh | 3.7 | The value from Dewberry et al. [27] and the U.S. FWS [48] for the Back Bay NWR based on Sedimentation Erosion Table (SET) data collected in Cedar Island, NC. |
Irreg. Flooded Marsh | |||
Tidal-Fresh Marsh | |||
Inland Fresh Marsh | |||
Tidal Swamp | 1.1 | The value used by the U.S. FWS [48] for the Back Bay NWR based on an average of fresh wetland accretion rates within the region. | |
Swamp | 0.3 | ||
Beach Sedimentation Rate (mm/yr) | 0.5 | The value used by Dewberry et al. [27] and the U.S. FWS [48] for the Back Bay NWR. Also a commonly used average beach sedimentation rate in SLAMM applications. | |
Historic SLR Trend (mm/yr) | 3.29 | The value used by the U.S. FWS [48] for the Back Bay NWR based on average values recorded at the Portsmouth, VA, and Oregon Inlet, NC Tide gauges. | |
MTL to NAVD88 (m) | −0.083 | Sewells Point, VA NOAA station tidal elevation and datum values relative to NAVD88. | |
Great Diurnal Tide Range (m) | 0.841 | Estimated from Corolla Sound, NC, and Beggars Creek Bridge and Sewells Point, VA. | |
Salt Elevation (m above MTL) | 0.928 | Inundation frequency analysis using ~20 years (2003 to 2023) of monthly highest recorded water levels. |
Cover Class | km2 by Decade | % Change by Decade | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2040 | 2050 | 2070 | 2090 | 2100 | 2040 | 2050 | 2070 | 2090 | 2100 | |
Low Tidal Zone and Mud Flats | 0.294 | 1.952 | 0.536 | 0.069 | 0.008 | <0.001 | 563.9 | 82.3 | 76.5 | 97.3 | 99.9 |
Irregularly Flooded Marsh | 1.074 | 0.007 | 0.004 | 0 | 0 | 0 | 99.3 | 99.6 | 100 | 100 | 100 |
Regularly Flooded Marsh | 1.094 | 0.113 | 0.074 | 0.044 | 0.002 | <0.001 | 89.7 | 93.2 | 95.9 | 99.8 | 99.9 |
Transition Salt Marsh | 0.197 | 0.082 | 0.051 | <0.001 | 0 | 0 | 58.4 | 74.1 | 99.9 | 100 | 100 |
Cover Class | km2 by Decade | % Change by Decade | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2040 | 2050 | 2070 | 2090 | 2100 | 2040 | 2050 | 2070 | 2090 | 2100 | |
Low Tidal Zone and Mud Flats | 0.329 | 1.980 | 0.562 | 0.094 | 0.025 | 0.017 | 501.8 | 70.8 | 97.1 | 99.2 | 99.4 |
Irregularly Flooded Marsh | 1.110 | 0.042 | 0.039 | 0.017 | 0.003 | 0.003 | 96.2 | 96.5 | 98.5 | 99.7 | 99.7 |
Regularly Flooded Marsh | 1.139 | 0.153 | 0.103 | 0.061 | 0.021 | 0.055 | 86.5 | 90.9 | 64.6 | 98.2 | 95.2 |
Transition Salt Marsh | 0.265 | 0.151 | 0.120 | 0.069 | 0.050 | 0.003 | 43 | 54.7 | 63.8 | 81.1 | 98.8 |
Cover Type | Scenario | 2020 | 2050 | 2080 | 2100 |
---|---|---|---|---|---|
Irregularly Flooded Marsh | No Restoration | 107.4 | 0.44 | 0 | 0 |
Restoration | 111 | 3.9 | 0.3 | 0 | |
% Change | 3.4 | 786.4 | |||
Regularly Flooded Marsh | No Restoration | 109.4 | 7.4 | 0.2 | 0 |
Restoration | 113.9 | 10.1 | 1.8 | 5.2 | |
% Change | 4.12 | 36.5 | 800 | ||
Tidal Flat | No Restoration | 26.8 | 53.6 | 6.5 | 0 |
Restoration | 30.3 | 56.1 | 8.7 | 1.4 | |
% Change | 13.1 | 4.7 | 33.8 | ||
Transition Salt Marsh | No Restoration | 19.7 | 5.1 | 0 | 0 |
Restoration | 26.5 | 11.9 | 6.3 | 0.003 | |
% Change | 34.5 | 133.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carpenter, N.; Costadone, L.; Allen, T.R. Evaluating the Long-Term Effectiveness of Marsh Terracing for Conservation with Integrated Geospatial and Wetland Simulation Modeling. Water 2025, 17, 2769. https://doi.org/10.3390/w17182769
Carpenter N, Costadone L, Allen TR. Evaluating the Long-Term Effectiveness of Marsh Terracing for Conservation with Integrated Geospatial and Wetland Simulation Modeling. Water. 2025; 17(18):2769. https://doi.org/10.3390/w17182769
Chicago/Turabian StyleCarpenter, Nick, Laura Costadone, and Thomas R. Allen. 2025. "Evaluating the Long-Term Effectiveness of Marsh Terracing for Conservation with Integrated Geospatial and Wetland Simulation Modeling" Water 17, no. 18: 2769. https://doi.org/10.3390/w17182769
APA StyleCarpenter, N., Costadone, L., & Allen, T. R. (2025). Evaluating the Long-Term Effectiveness of Marsh Terracing for Conservation with Integrated Geospatial and Wetland Simulation Modeling. Water, 17(18), 2769. https://doi.org/10.3390/w17182769