A Comparison of Characteristics of Infilling Sediments in Three Mud-Capped Dredge Pits on the Louisiana Continental Shelf
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Data Acquisition
2.2. Grain Size, Organic Matter and Carbonate
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Comparisons of Sediment Grain Sizes
4.2. Correlations Among Grain Size, Organic Matter and Carbonate
4.3. Sources and Transport of Sediment
4.4. Sources and Transport of Organic Matter and Carbonate
5. Conclusions
- (1)
- The inner Louisiana continental shelf is silt-dominated. Its sand composition is controlled by its proximity to sandy shoals and paleo-river channels and the extreme weather conditions are the driving forces for sand portion transport. Hurricanes transport the sandy sediment to its ambient muddy environment, while the dredging activities create a trap for sediment infilling.
- (2)
- Organic matter and grain size (phi) have a strong correlation in the sediment from the Sandy Point dredge pit (R2 = 0.834). Since grain size (phi) and grain size (um) are inversely related, the finer the grain size in um, the higher the organic matter content. The gamma density data from outside these three dredge pits are similar; however, the gamma density data inside the pits are different.
- (3)
- The PCA results confirm two principal components that account for more than 95% of the total grain size variance. Overall, the regression analysis demonstrated that specific variables—namely standard deviation and skewness—consistently played key roles in predicting grain size, with variations in their strength and direction across positions. Skewness emerged as a prominent factor in the RI and SP, while standard deviation was the most influential factor in the PC. Density was found to be particularly important in the PC, highlighting the varying influence of density on grain size in different environments. Moreover, organic matter and carbonate play a crucial role in increasing the grain size in RI, corresponding to specific geological settings.
- (4)
- Our results enhance the scientific community’s ability to make informed plans and decisions that support the safe, environmentally responsible and efficient management of offshore mud and sand resources in and around dredge pits, while also protecting environmental assets and minimizing potential conflicts with energy infrastructure.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Presley, B.J.; Trefry, J.H.; Shokes, R.F. Heavy metal inputs to Mississippi Delta sediments: A historical view. Water Air Soil Pollut. 1980, 13, 481–494. [Google Scholar] [CrossRef]
- Duxbury, J.; Bentley, S.J.; Xu, K.; Jafari, N.H. Temporal scales of mass wasting sedimentation across the Mississippi River Delta Front delineated by 210Pb/137Cs Geochronology. J. Mar. Sci. Eng. 2024, 12, 1644. [Google Scholar] [CrossRef]
- Frazier, D.E. Recent deltaic deposits of the Mississippi River: Their development and chronology. Trans. Gulf Coast Assoc. Geol. Soc. 1967, 17, 287–315. [Google Scholar]
- Coleman, J.M.; Roberts, H.H. Sedimentary development of the Louisiana continental shelf related to sea level cycles: Part I—Sedimentary sequences. Geo-Mar. Lett. 1988, 8, 63–108. [Google Scholar] [CrossRef]
- Mohrig, D.; Heller, P.L.; Paola, C.; Lyons, W.J. Interpreting avulsion process from ancient alluvial sequences: Guadalope-Matarranya system (northern Spain) and Wasatch Formation (western Colorado). Geol. Soc. Am. Bull. 2000, 112, 1787–1803. [Google Scholar] [CrossRef]
- Jerolmack, D.J.; Mohrig, D. Conditions for branching in depositional rivers. Geology 2007, 35, 463–466. [Google Scholar] [CrossRef]
- Chadwick, A.J.; Lamb, M.P.; Ganti, V. Accelerated river avulsion frequency on low-gradient fans due to base-level rise. Geophys. Res. Lett. 2020, 47, e2019GL086200. [Google Scholar]
- Nienhuis, J.H.; Ashton, A.D.; Edmonds, D.A.; Hoitink, A.J.F.; Kettner, A.J.; Rowland, J.C.; Törnqvist, T.E. Global-scale human impact on delta morphology has led to net land area gain. Nature 2020, 577, 514–518. [Google Scholar] [CrossRef]
- Giosan, L.; Syvitski, J.; Constantinescu, S.; Day, J. Protect the world’s deltas. Nature 2014, 516, 31–33. [Google Scholar] [CrossRef]
- Allison, M.A.; Meselhe, E.A.; Mossa, J. Sediment dynamics and geomorphic effects of dredging and navigation on the Louisiana shelf and delta. In Proceedings of the 9th International Coastal Symposium (ICS 2009), Praia da Rocha, Portugal, 13–18 April 2009; Journal of Coastal Research: Coconut Creek, FL, USA, 2010. Special Issue No.56. pp. 37–40. [Google Scholar]
- Syvitski, J.P.M.; Saito, Y. Morphodynamics of deltas under the influence of humans. Glob. Planet. Change 2007, 57, 261–282. [Google Scholar] [CrossRef]
- Syvitski, J.P.; Kettner, A.J.; Overeem, I.; Hutton, E.W.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Wright, K.; Hiatt, M.; Passalacqua, P. Hydrological connectivity in river deltas: The first-order importance of channel-island exchange. Water Resour. Res. 2018, 54, 2124–2148. [Google Scholar]
- Ribberink, J.S.; Roos, P.C.; Hulscher, S.J. Morphodynamics of Trenches and Pits under the Influence of Currents and Waves—Simple Engineering Formulas. In Coastal Dynamics 2005: State of the Practice; American Society of Civil Engineers: Reston, VA, USA, 2005; pp. 1–13. [Google Scholar]
- Van Run, L.C.; Soulsby, R.L.; Hoekstra, P.; Davies, A.G. SANDPIT: Sand Transport and Morphology of Offshore Sand Mining Pits. In Process Knowledge and Guidelines for Coastal Management; End document May 2005, EC Framework V Project No. EVK3-2001-00056; Aqua Publications: Amsterdam, The Netherlands.
- Kennedy, A.B.; Slatton, K.C.; Starek, M.; Kampa, K.; Cho, H.C. Hurricane response of nearshore borrow pits from airborne bathymetric lidar. J. Waterw. Port Coast. Ocean Eng. 2010, 136, 46–58. [Google Scholar] [CrossRef]
- Xue, Z.; Wilson, C.A.; Xu, K.H.; Bentley, S.J.; Liu, H. Sandy Borrow Area Sedimentation—Characteristics and Processes Within South Pelto Dredge Pit on Ship Shoal, Louisiana Shelf, USA. Estuaries Coasts 2022, 45, 658–676. [Google Scholar] [CrossRef]
- O’Connor, M.C. Mud-Capped Dredge Pit Evolution in Two Northern Gulf of Mexico Sites: What They Add to Our Understanding of Continental Shelf Sedimentation. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 2017. [Google Scholar]
- Nairn, R.B.; Langendyk, S.K.; Michel, J. Preliminary Infrastructure Stability Study Offshore Louisiana; OCS Study, MMS 2005-043; U.S. Department of Interior, Minerals Management Service, Gulf of Mexico Region: New Orleans, LA, USA, 2004; 179p.
- Nairn, R.B.; Lu, Q.; Langendyk, S.K. A study to Address the Issue of Seafloor Stability and the Impact on Oil and Gas Infrastructure in the Gulf of Mexico; OCS Study MMS; US Department of the Interior, MMS, Gulf of Mexico OCS Region: New Orleans, LA, USA, 2005; Volume 43, p. 179.
- Robichaux, P.; Xu, K.; Bentley, S.J.; Miner, M.D.; Xue, Z.G. Morphological evolution of a mud-capped dredge pit on the Louisiana shelf: Nonlinear infilling and continuing consolidation. Geomorphology 2020, 354, 107030. [Google Scholar] [CrossRef]
- Broussard, L.; Boustany, R. Restoration of a Louisiana barrier island: Raccoon Island case study. In Proceedings of the 14th Biennial Coastal Zone Conference, New Orleans, LA, USA, 18–21 July 2005; Volume 17. [Google Scholar]
- Zhang, W.; Xu, K.; Alawneh, O.; Jafari, N. Hurricane Induced Deposition and Erosion: A Case Study Near a Dredge Pit on Inner Louisiana Shelf. Presented at the BOEM Sand Management Working Group Meeting, New Orleans, LA, USA; 2024. [Google Scholar]
- Obelcz, J.; Xu, K.H.; Bentley, S.J.; O’Connor, M.; Miner, M. Mud-capped dredge pits: An experiment of opportunity for characterizing cohesive sediment transport and slope stability in the northern Gulf of Mexico. Estuar. Coast. Shelf Sci. 2018, 208, 161–169. [Google Scholar] [CrossRef]
- Xu, G.; Liu, J.; Liu, S.; Wang, Z.; Hu, G.; Kong, X. Modern muddy deposit along the Zhejiang coast in the East China Sea: Response to large-scale human projects. Cont. Shelf Res. 2016, 130, 68–78. [Google Scholar] [CrossRef]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Williams, S.J.; Arsenault, M.A.; Buczkowski, B.J.; Reid, J.A.; Flocks, J.G.; Kulp, M.A.; Penland, S.; Jenkins, C.J. Surficial Sediment Character of the Louisiana Offshore Continental Shelf Region: A GIS Compilation. U.S. Geological Survey Open-File Report 2006-1195; U.S. Geological Survey: Reston, VA, USA, 2006. Available online: https://pubs.usgs.gov/of/2006/1195/ (accessed on 6 September 2025).
- Duquesne, A.; Carozza, J.M. Improving grain size analysis to characterize sedimentary processes in a low-energy river: A case study of the Charente River (Southwest France). Appl. Sci. 2023, 13, 8061. [Google Scholar] [CrossRef]
- Flood, R.P.; Orford, J.D.; McKinley, J.M.; Roberson, S. Effective grain size distribution analysis for interpretation of tidal–deltaic facies: West Bengal Sundarbans. Sediment. Geol. 2015, 318, 58–74. [Google Scholar] [CrossRef]
- Xu, K.H.; Wang, J.; Li, C.; Bentley, S.; Miner, M. Geomorphic and Hydrodynamic Impacts on Sediment Transport on the Inner Louisiana Shelf. Geomorphology 2022, 398, 108022. [Google Scholar] [CrossRef]
- Gloor, G.B.; Macklaim, J.M.; Pawlowsky-Glahn, V.; Egozcue, J.J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 2017, 8, 294209. [Google Scholar] [CrossRef] [PubMed]
- Denommee, K.C.; Bentley, S.J.; Harazim, D.; Macquaker, J.H.S. Hydrodynamic controls on muddy sedimentary-fabric development on the Southwest Louisiana subaqueous delta. Mar. Geol. 2016, 382, 162–175. [Google Scholar] [CrossRef]
- Hedges, J.I.; Keil, R.G. Sedimentary organic matter preservation: An assessment and speculative synthesis. Mar. Chem. 1995, 49, 81–115. [Google Scholar] [CrossRef]
- Bomer IV, E.J. Coupled Landscape and Channel Dynamics Across the Ganges-Brahmaputra Tidal-Fluvial Continuum, Southwest Bangladesh. Ph.D. Thesis, Louisiana State University and Agricultural & Mechanical College, Baton Rouge, LA, USA, 2019. [Google Scholar]
- Goñi, M.A.; Ruttenberg, K.C.; Eglinton, T.I. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico. Mar. Geol. 1998, 152, 105–121. [Google Scholar] [CrossRef]
- Vincent, S.; Wilson, C.; Snedden, G.A.; Quirk, T. Time-Varying Rates of Organic and Inorganic Mass Accumulation in Southeast Louisiana Marshes: Relationships to Sea-Level Anomalies and Tropical Storms. J. Coast. Res. 2025, 41, 452–467. [Google Scholar] [CrossRef]
- Roberts, H.H.; Sassen, R.; Aharon, P. Carbonates of the Louisiana continental slope. In Proceedings of the Offshore Technology Conference, OTC, Houston, TX, USA, 1–4 May 1987; p. OTC–5463. [Google Scholar]
- Liu, H.; Xu, K.; Wilson, C. Sediment infilling and geomorphological change of a mud-capped Raccoon Island dredge pit near Ship Shoal of Louisiana shelf. Estuar. Coast. Shelf Sci. 2020, 245, 106979. [Google Scholar] [CrossRef]
Core Name | Date | Latitude (Degree N) | Longitude (Degree W) | Length (m) |
---|---|---|---|---|
RI1 | 19 August 2020 | 28.9831 | 90.9212 | 1.97 |
RI2 | 19 August 2020 | 28.9784 | 90.9225 | 2.63 |
RI3 | 19 August 2020 | 28.9774 | 90.9223 | 3.01 |
RI4 | 19 August 2020 | 28.9762 | 90.9221 | 3.31 |
RI5 * | 19 August 2020 | 28.9814 | 90.9235 | 3.78 |
RI9 * | 19 August 2020 | 28.9814 | 90.9241 | 3.28 |
PC3 | 15 July 2021 | 29.6959 | 93.54651 | 3.14 |
PC4 | 15 July 2021 | 29.6955 | 93.5469 | 3.25 |
PC5 | 15 July 2021 | 29.6952 | 93.5472 | 3.21 |
PC6 | 15 July 2021 | 29.6950 | 93.5476 | 3.19 |
PC8 * | 15 July 2021 | 29.6919 | 93.5500 | 2.32 |
PC9 | 15 July 2021 | 29.6939 | 93.5435 | 2.54 |
PC10 | 15 July 2021 | 29.6933 | 93.5439 | 2.42 |
SP2 | 9 December 2022 | 29.1042 | 89.51 | 2.51 |
SP11 * | 9 December 2022 | 29.1384 | 89.519 | 4.17 |
SP12 | 9 December 2022 | 29.0979 | 89.5106 | 3.13 |
SP22 | 9 December 2022 | 29.1031 | 89.512 | 3.9 |
SP23 | 9 December 2022 | 29.099 | 89.5105 | 2.43 |
Class | Grain Size Interval (φ) |
---|---|
A | 12.02–10.99 |
B | 10.99–9.99 |
C | 9.99–8.97 |
D | 8.97–8.00 |
E | 8.00–7.00 |
F | 7.00–6.00 |
G | 6.00–5.00 |
H | 5.00–4.76 |
I | 4.76–4.61 |
J | 4.61–4.24 |
K | 4.24–4.00 |
L | 4.00–1.00 |
Pit | Grain Size | Depth | SD | Skew | Kurt | Organic Matter | Carbonate | Density | Intercept | RMSE | R-Square |
---|---|---|---|---|---|---|---|---|---|---|---|
PC | −0.81 | −0.63 | −0.15 | 0 | 0 | −0.10 | 0 | 0.0822 | 0.9861 | ||
RI | −0.33 | −0.60 | −0.53 | 0.18 | 0.10 | 0 | 0 | 0.3678 | 0.8706 | ||
SP | 0.26 | −0.76 | 0 | 0 | 0 | 0 | 0 | 0.9242 | 0.7798 |
Grain Size | RI_in | RI_out | PC_in | PC_out | SP_in | SP_out | SP_edge |
---|---|---|---|---|---|---|---|
RI_in | 0.3072 | 0.4814 | <0.0001 | 0.0035 | 0.0881 | 0.0188 | 0.2223 |
RI_out | 0.4814 | 0.7744 | 0.0004 | 0.2967 | 0.0306 | 0.138 | 0.1422 |
PC_in | <0.0001 | 0.0004 | 0.0046 or 0.6835 | 2.2184 | 1.199 | 0.0492 | 0.0009 |
PC_out | 0.0035 | 0.2967 | 2.2184 | / | 0.0141 | 0.6808 | 0.0047 |
SP_in | 0.13712 | 0.0306 | 1.199 | 0.0141 | k/ | 0.0573 | 0.818 |
SP_out | 0.0188 | 0.138 | 0.0492 | 0.6808 | 0.0573 | / | 0.0012 |
SP_edge | 0.2223 | 0.1422 | 0.0009 | 0.0047 | 0.818 | 0.0012 | 0.8905 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Xu, K.; Jia, C.; Gartelman, A.; Alawneh, O.; Jafari, N.; Herke, C.; Liotta, M.; Bentley, S.J. A Comparison of Characteristics of Infilling Sediments in Three Mud-Capped Dredge Pits on the Louisiana Continental Shelf. Water 2025, 17, 2643. https://doi.org/10.3390/w17172643
Zhang W, Xu K, Jia C, Gartelman A, Alawneh O, Jafari N, Herke C, Liotta M, Bentley SJ. A Comparison of Characteristics of Infilling Sediments in Three Mud-Capped Dredge Pits on the Louisiana Continental Shelf. Water. 2025; 17(17):2643. https://doi.org/10.3390/w17172643
Chicago/Turabian StyleZhang, Wenqiang, Kehui Xu, Chaochen Jia, Adam Gartelman, Omar Alawneh, Navid Jafari, Colin Herke, Madison Liotta, and Samuel J. Bentley. 2025. "A Comparison of Characteristics of Infilling Sediments in Three Mud-Capped Dredge Pits on the Louisiana Continental Shelf" Water 17, no. 17: 2643. https://doi.org/10.3390/w17172643
APA StyleZhang, W., Xu, K., Jia, C., Gartelman, A., Alawneh, O., Jafari, N., Herke, C., Liotta, M., & Bentley, S. J. (2025). A Comparison of Characteristics of Infilling Sediments in Three Mud-Capped Dredge Pits on the Louisiana Continental Shelf. Water, 17(17), 2643. https://doi.org/10.3390/w17172643