Flood Frequency Analysis and Trend Detection in the Brisbane River Basin, Australia
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Discussion
Our Finding | Agreeing Studies | Contradicting Studies | Research Gap Addressed |
---|---|---|---|
LP3 as the best-fit probability distribution for the Brisbane River basin | [42,45,50] | [46,51] | Regional distribution suitability |
Insignificant AMF trends | [52] | [53] | Trend heterogeneity by region |
Quantile estimates under non-stationary conditions | [54,55] | ARR 2019 stationarity assumptions [2] | Non-stationary FFA |
5. Conclusions
- The LP3 distribution is the most suitable probability distribution for FFA in the Brisbane River basin, followed by the GP distribution.
- The 2011 flood across 26 stations within the basin is generally below the 100-year flood level.
- Goodness-of-fit test results are sensitive to the highest three values of the AMF series and can significantly alter 100-year flood estimates. This suggests that the occurrence of future extreme floods could substantially revise current extreme flood (100-year return level) estimates, necessitating updated FFA after every major flood event to minimize infrastructure and community risks.
- The trend in the AMF data within the Brisbane River basin is not statistically significant.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OQCS. Understanding Flood, Office of the Queensland Chief Scientist, Australia 2016. 2016. Available online: www.chiefscientist.qld.gov.au/publications/understanding-floods/flood-consequences (accessed on 12 January 2025).
- Ball, J.; Babister, M.; Nathan, R.; Weeks, W.; Weinmann, P.E.; Retallick, M.; Testoni, I. (Eds.) Australian Rainfall and Runoff: A Guide to Flood Estimation; Commonwealth of Australia: Barton, ACT, Australia, 2019. [Google Scholar]
- Kidson, R.; Richards, K.S. Flood frequency analysis: Assumptions and alternatives. Prog. Phys. Geogr. 2005, 29, 392–410. [Google Scholar] [CrossRef]
- Haktanir, T. Comparison of various flood frequency distributions using annual flood peaks data of rivers in Anatolia. J. Hydrol. 1992, 136, 1–31. [Google Scholar] [CrossRef]
- Rahman, A.; Haque, M.M.; Haddad, K.; Rahman, A.S.; Kuczera, G.; Weinmann, P.E. Assessment of the Impacts of Rating Curve Uncertainty on At-Site Flood Frequency Analysis: A Case Study for New South Wales, Australia. In Hydrology and Water Resources Symposium, Perth, 35th ed.; Engineers Australia: Barton, ACT, Australia, 2014; pp. 962–969. [Google Scholar]
- Bobee, B.; Cavadias, G.; Ashkar, F.; Bernier, J.; Rasmussen, P. Towards a systematic approach to comparing distributions used in flood frequency analysis. J. Hydrol. 1993, 142, 121–136. [Google Scholar] [CrossRef]
- Valentini, M.H.K.; Beskow, S.; Beskow, T.L.C.; de Mello, C.R.; Cassalho, F.; da Silva, M.E.S. At-site flood frequency analysis in Brazil. Nat. Hazards 2024, 120, 601–618. [Google Scholar] [CrossRef]
- Ahmad, I.; Tang, D.; Wang, T.; Wang, M.; Wagan, B. Precipitation trends over time using Mann-Kendall and spearman’s rho tests in swat river basin, Pakistan. Adv. Meteorol. 2015, 2015, 431860. [Google Scholar] [CrossRef]
- Khan, Z.; Rahman, A.; Karim, F. An assessment of uncertainties in flood frequency estimation using bootstrapping and Monte Carlo simulation. Hydrology 2023, 10, 18. [Google Scholar] [CrossRef]
- Anghel, C.G.; Ianculescu, D. An In-Depth Statistical Analysis of the Pearson Type III Distribution Behavior in Modeling Extreme and Rare Events. Water 2025, 17, 1539. [Google Scholar] [CrossRef]
- Rizwan, M.; Guo, S.; Xiong, F.; Yin, J. Evaluation of various probability distributions for deriving design flood featuring right-tail events in pakistan. Water 2018, 10, 1603. [Google Scholar] [CrossRef]
- Chen, J.; Sayama, T.; Yamada, M.; Sugawara, Y. Regional event-based flood quantile estimation method for large climate projection ensembles. Prog. Earth Planet. Sci. 2024, 11, 16. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, D.; Wu, J. Evaluating the three methods of goodness of fit test for frequency analysis. J. Risk Anal. Crisis Response 2015, 5, 178–187. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, D.; Wu, J. Comparisons of methods of goodness of fit tests in hydrologic analysis. In Emerging, Economies, Risk and Development and Intelligent Technology; Huang, C., Lyhyaoui, A., Zhai, G., Benhayoun, N., Eds.; CRC Press: Leiden, The Netherlands, 2015. [Google Scholar]
- Rahman, A.; Weinmann, P.E.; Hoang, T.M.T.; Laurenson, E.M. Monte Carlo simulation of flood frequency curves from rainfall. J. Hydrol. 2002, 256, 196–210. [Google Scholar] [CrossRef]
- Gilroy, K.L.; McCuen, R.H. A nonstationary flood frequency analysis method to adjust for future climate change and urbanization. J. Hydrol. 2012, 414, 40–48. [Google Scholar] [CrossRef]
- Mondal, A.; Mujumdar, P.P. Hydrologic extremes under climate change: Non-stationarity and uncertainty. In Sustainable Water Resources Planning and Management Under Climate Change; Springer: Singapore, 2017; pp. 39–60. [Google Scholar]
- Meresa, H.; Zhang, Y.; Tian, J.; Ma, N.; Zhang, X.; Heidari, H.; Naeem, S. An integrated modeling framework in projections of hydrological extremes. Surv. Geophys. 2023, 44, 277–322. [Google Scholar] [CrossRef]
- Khaliq, M.N.; Ouarda, T.B.M.J.; Ondo, J.C.; Gachon, P.; Bobée, B. Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review. J. Hydrol. 2006, 329, 534–552. [Google Scholar] [CrossRef]
- Yegin, M.; Karakaya, G.; Kentel, E. Nonstationary Frequency Analysis of Annual Maximum Flow Series: Climate Change Versus Land Use/Land Cover Change. In Water Resources Management; Springer: Manhattan, NY, USA, 2025. [Google Scholar] [CrossRef]
- Deloitte. Building Resilience to Natural Disasters in Our States and Territories. 2017. Available online: https://www2.deloitte.com/au/en/pages/economics/articles/building-australias-natural-disasterresilience.htm (accessed on 12 January 2025).
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Chapter 11: Australasia. 2022. Available online: https://www.ipcc.ch/report/ar6/wg2/chapter/chapter-11/ (accessed on 12 January 2025).
- Boon, H.J.; Cottrell, A.; King, D. Disasters and Social Resilience: A bioecological Approach; Routledge: London, UK, 2016. [Google Scholar]
- ICA, Insurance Council of Australia. Insurance Catastrophe Resilience Report 2021–2022; Insurance Council of Australia Limited: Sydney, Australia, 2022; p. 22. Available online: https://insurancecouncil.com.au/news-hub/cur-rent-catastrophes/ (accessed on 13 June 2023).
- CSIRO and Bureau of Meteorology (BoM). State of the Climate 2020. 2020. Available online: https://www.csiro.au/en/Showcase/state-of-the-climate (accessed on 12 January 2025).
- Kundzewicz, Z.W.; Januchta-Szostak, A.; Nachlik, E.; Pińskwar, I.; Zaleski, J. Challenges for flood risk reduction in Poland’s changing climate. Water 2023, 15, 2912. [Google Scholar] [CrossRef]
- van den Honert, R.C.; McAneney, J. The 2011 Brisbane floods: Causes, impacts and implications. Water 2011, 3, 1149–1173. [Google Scholar] [CrossRef]
- Mathwave. EasyFit, version 6.5; version 6.5; MathWave Technologies: Plymouth, IN, USA, 2017. Available online: https://www.mathwave.com (accessed on 12 January 2025).
- Antony, D. Director, EasyFit Software; MathWave Technologies: Plymouth, IN, USA, 2018; Available online: https://www.mathwave.com (accessed on 12 January 2025).
- Kuczera, G.; Franks, S. Chapter 2. At-Site Flood Frequency Analysis. In Australia Rainfall and Runoff: A Guide to Flood Estimation; Commonwealth of Australia: Barton, ACT, Australia, 2019. [Google Scholar]
- Canterford, R.P.; Pescod, N.R.; Pearce, H.J.; Turner, L.H.; Atkinson, R.J. Frequency analysis of Australian rainfall data as used for flood analysis and design. In Hydrologic Frequency Modeling, Proceedings of the International Symposium on Flood Frequency and Risk Analyses, Baton Rouge, LA, USA, 14–17 May 1986; Springer: Dordrecht, The Netherlands, 1987; pp. 293–302. [Google Scholar]
- Atroosh, K.B.; Moustafa, A.T. An estimation of the probability distribution of Wadi Bana flow in the Abyan Delta of Yemen. J. Agric. Sci. 2012, 4, 80. [Google Scholar] [CrossRef]
- Sarauskiene, D.; Kriauciuniene, J. Flood frequency analysis of Lithuanian rivers. In Environmental Engineering, Proceedings of the International Conference on Environmental Engineering, Vilnius, Lithuania, 19–20 May 2011; Vilnius Gediminas Technical University, Department of Construction Economics & Property: Vilnius, Lithuania, 2011; Volume 8, p. 666. [Google Scholar]
- Singo, L.R.; Kundu, P.M.; Odiyo, J.O.; Mathivha, F.I.; Nkuna, T.R. Flood frequency analysis of annual maximum stream flows for Luvuvhu River Catchment, Limpopo Province, South Africa. In Proceedings of the 16th SANCIAHS National Hydrology Symposium, Pretoria, South Africa, 1–3 October 2012. [Google Scholar]
- Kamal, V.; Mukherjee, S.; Singh, P.; Sen, R.; Vishwakarma, C.A.; Sajadi, P.; Asthana, H.; Rena, V. Flood frequency analysis of Ganga River at Haridwar and Garhmukteshwar. Appl. Water Sci. 2017, 7, 1979–1986. [Google Scholar] [CrossRef]
- Sharma, P.J.; Patel, P.L.; Jothiprakash, V. At-site flood frequency analysis for upper Tapi Basin, India. In Proceedings of the 21st HYDRO—2016 International, Pune, India, 8–10 December 2016. [Google Scholar]
- Solaiman, T.A. Uncertainty Estimation of Extreme Precipitations Under Climate Change: A Non-Parametric Approach. Ph.D. Thesis, The University of Western, London, ON, Cannada, 2011. [Google Scholar]
- Wijesekera, N.T.S.; Perera, L.R.H. Key Issues of Data and Data Checking for Hydrological Analyses-Case Study of Rainfall Data in the Attanagalu Oya Basin of Sri Lanka. Eng. J. Inst. Eng. Sri Lanka 2012, 45, 1–12. [Google Scholar] [CrossRef]
- eWater Innovation Centre: University of Canberra, ACT 2601, Australia. 2018. Available online: www.ewater.com.au (accessed on 12 January 2025).
- Francis, C. Trend User Guide; CRC for Catchment Hydrology: Parkville, Australia, 2005. [Google Scholar]
- Hossain, S.A.; Rahman, A. Trend Analysis in Flood Data in the Brisbane River Catchment, Australia. In Proceedings of the 2nd International Conference on Water and Environmental Engineering (iCWEE-2019, Dhaka), Dhaka, Bangladesh, 19–22 January 2019; Volume 19. [Google Scholar]
- Pilgrim, D.H. (Ed.) Australian Rainfall and Runoff: A Guide to Flood Estimation; Revised Edition 1987 (Reprinted Edition 1998); Commonwealth of Australia: Barton, ACT, Australia, 1987; Volume 1. [Google Scholar]
- Halgamuge, M.N.; Nirmalathas, A. Analysis of large flood events: Based on flood data during 1985–2016 in Australia and India. Int. J. Disaster Risk Reduct. 2017, 24, 1–11. [Google Scholar] [CrossRef]
- Zaman, M.A.; Rahman, A.; Haddad, K.; Hagare, D. Identification of the best-fit probability distributions in at-site flood frequency analysis: A case study for Australia using 127 stations. In Hydrology and Water Resources Symposium; Engineers Australia: Barton, ACT, Australia, 2012; p. 939. [Google Scholar]
- Rahman, A.; Haddad, K.; Rahman, A.S.; Haque, M.M.; Kuczera, G.; Weinmann, E. An overview of preparation of streamflow database for ARR project 5 regional flood method. In Hydrology and Water Resources Symposium; Engineers Australia: Barton, ACT, Australia, 2014; p. 678. [Google Scholar]
- Haddad, K.; Rahman, A. Selection of the best fit flood frequency distribution and parameter estimation procedure: A case study for Tasmania in Australia. Stoch. Environ. Res. Risk Assess. 2011, 25, 415–428. [Google Scholar] [CrossRef]
- Robson, A.J.; Jones, T.K.; Reed, D.W.; Bayliss, A.C. A study of national trend and variation in UK floods. Int. J. Climatol. J. R. Meteorol. Soc. 1998, 18, 165–182. [Google Scholar] [CrossRef]
- Pan, X.; Rahman, A.; Haddad, K.; Ouarda, T.B. Peaks-over-threshold model in flood frequency analysis: A scoping review. Stoch. Environ. Res. Risk Assess. 2022, 36, 2419–2435. [Google Scholar] [CrossRef]
- McCuen, R.H.; Galloway, K.E. Record length requirements for annual maximum flood series. J. Hydrol. Eng. 2010, 15, 704–707. [Google Scholar] [CrossRef]
- Queensland Government. Queensland Procurement Policy 2023. 2023. Available online: https://www.forgov.qld.gov.au/finance-procurement-and-travel/procurement/procurement-resources/procurement-policies-and-frameworks/queensland-procurement-policy-2023 (accessed on 10 January 2025).
- DELWP (Department of Energy, Environment and Climate Action (Victoria)). Government Environmental Reporting and Circular Economy Risk Framework. 2024. Available online: https://www.climatechange.vic.gov.au/victorian-government-action-on-climate-change/government-environmental-reporting (accessed on 10 January 2025).
- Boretti, A. Utilizing past data to improve forecasting of future rainfall trends. Sustain. Water Resour. Manag. 2025, 11, 39. [Google Scholar] [CrossRef]
- Wasko, C.; Nathan, R.; Peel, M.C. Changes in flood risk across Australia: A new perspective using a non-stationary approach. Water Resour. Res. 2023, 59, e2022WR033079. [Google Scholar]
- Kousar, S.; Khan, A.R.; Ul Hassan, M.; Noreen, Z.; Bhatti, S.H. Some best-fit probability distributions for at--site flood frequency analysis of the Ume River. J. Flood Risk Manag. 2020, 13, e12640. [Google Scholar] [CrossRef]
- Zalnezhad, A.; Rahman, A.; Ahamed, F.; Vafakhah, M.; Samali, B. Design flood estimation at ungauged catchments using index flood method and quantile regression technique: A case study for South East Australia. Nat. Hazards 2023, 119, 1839–1862. [Google Scholar] [CrossRef]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Ruane, A.C. Climate Change 2023 Synthesis Report Summary for Policymakers; CLIMATE CHANGE 2023 Synthesis Report: Summary for Policymakers; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
Test | Type | Key Feature | Merits | Demerits |
---|---|---|---|---|
Mann–Kendall | Non-parametric | Rank-based monotonic trend | Robust, handles missing data | Sensitive to autocorrelation |
Spearman’s Rho | Non-parametric | Rank correlation | Simple, robust | Less powerful for small datasets |
Rank-Sum | Non-parametric | Two-sample shift test | Detects shifts, robust | Cannot detect gradual trends |
Rank Difference | Non-parametric | Rank changes over time | Simple, small-sample friendly | Low power |
Turning Point | Non-parametric | Randomness test | Easy, detects irregular patterns | Poor for monotonic trends |
Distribution-Free CUSUM | Non-parametric | Cumulative deviation from the median | Detects small shifts | Sensitive to autocorrelation |
Median Crossing | Non-parametric | Counts median crossings | Very simple | No trend magnitude |
Linear Regression | Parametric | Fits straight line | Magnitude and direction | Assumption-heavy |
Autocorrelation | Parametric | Lagged correlation | Detects persistence | Not a trend test itself |
Student’s t | Parametric | Mean comparison | Simple, powerful | Needs normality |
Worsley Likelihood Ratio | Parametric | Change-point detection | Powerful | Complex |
Cumulative Deviation | Parametric | Cumulative deviation from the mean | Visual + statistical | Sensitive to outliers |
Analysis | Software/Method | Reason |
---|---|---|
Goodness-of-fit test (Anderson–Darling (A-D) test, Chi-Squared (C-S) test, and Kolmogorov–Smirnov (K-S)) | EasyFit | A widely used software tool used to carry out goodness-of-fit tests involving numerous probability distributions |
Flood frequency analysis (FFA): Lognormal (LN), LP3, Gumbel (Extreme Value Type I), GP, and GEV | FLIKE (Release_x86_5.0.306.0) | This is the recommended software in ARR 2019 [2] |
Trend analysis (Mann–Kendall, Spearman’s Rho, Rank-Sum, Rank Difference, Turning Point, distribution-free CUSUM and Median Crossing non-parametric tests; linear regression, autocorrelation, Student’s t, Worsley Likelihood Ratio, and cumulative deviation parametric tests for trend analysis) | TREND (Version 1.0.2) | This is widely used in Australia for trend detection in hydrological time series |
Sensitivity analysis | Excel | Easy to use |
Distribution | Kolmogorov–Smirnov (K-S) | Anderson– Darling | Chi-Squared | Avg. Rank | |||
---|---|---|---|---|---|---|---|
Statistics | Rank | Statistics | Rank | Statistics | Rank | ||
Log Pearson Type III | 0.0709 | 1 | 0.4011 | 1 | 0.8621 | 1 | 1.0 |
Lognormal | 0.0753 | 2 | 0.4232 | 2 | 1.1246 | 2 | 2.0 |
Generalized Pareto | 0.1541 | 4 | 1.5218 | 3 | 3.5449 | 3 | 3.3 |
Gen. Extreme Value | 0.1450 | 3 | 1.7200 | 4 | 3.6029 | 4 | 3.7 |
Gumbel | 0.3079 | 5 | 7.1698 | 5 | 14.5870 | 5 | 5.0 |
Station | Probability Distribution Corresponding to Ranks of the A-D GoF Test | ||
---|---|---|---|
I | II | III | |
143001C | GP | LP3 | Lognormal |
143007A | LP3 | Lognormal | GP |
143009A | LP3 | Lognormal | GP |
143010B | LP3 | Lognormal | GP |
143015B | LP3 | Lognormal | GP |
143028A | LP3 | GEV | Lognormal |
143032A | GP | LP3 | GEV |
143033A | GP | LP3 | Lognormal |
143107A | LP3 | GEV | Lognormal |
143108A | LP3 | GEV | Lognormal |
143110A | LP3 | GEV | Lognormal |
143113A | LP3 | Lognormal | GEV |
143203C | LP3 | GEV | Lognormal |
143207A | LP3 | Lognormal | GP |
143209B | GP | GEV | LP3 |
143212A | LP3 | Lognormal | GP |
143219A | LP3 | Lognormal | GP |
143229A | LP3 | Lognormal | GP |
143303A | GEV | LP3 | Gumbel |
143921A | LP3 | Lognormal | GP |
143210B | GP | GEV | LP3 |
143306A | GP | LP3 | GEV |
143213C | LP3 | Lognormal | GP |
143232A | LP3 | GEV | Gumbel |
143233A | LP3 | GP | GEV |
143307A | GP | LP3 | Lognormal |
Probability Distribution | K-S GoF Test | A-D GoF Test | C-S Test | All Stations |
---|---|---|---|---|
Method | Number of Stations with GoF Test, Rank 1 | Avg. No. of Stations | ||
Log Pearson Type III | 7 | 18 | 7 | 11 |
Lognormal | 1 | 0 | 5 | 2 |
Gumbel | 1 | 0 | 0 | 0 |
Generalized Pareto | 11 | 7 | 5 | 8 |
Gen. Extreme Value | 6 | 1 | 9 | 5 |
Probability Distribution | K-S GoF Test | A-D GoF Test | C-S GoF Test | K-S GoF Test | A-D GoF Test | C-S GoF Test | K-S Gof Test | A-D GoF Test | C-S GoF Test | All Stations |
---|---|---|---|---|---|---|---|---|---|---|
Method | Number of Stations with GoF Test Rank 1 | Number of Stations with GoF Test Rank 2 | Number of Stations with GoF Test Rank 3 | Avg. No. of Stations | ||||||
Weight = 3 | Weight = 2 | Weight = 1 | ||||||||
LP3 | 21 | 54 | 21 | 28 | 12 | 16 | 4 | 2 | 10 | 10 |
LN | 3 | 0 | 15 | 14 | 22 | 6 | 5 | 8 | 6 | 4 |
Gumbel | 3 | 0 | 0 | 2 | 0 | 6 | 1 | 2 | 2 | 1 |
GP | 33 | 21 | 15 | 4 | 2 | 10 | 6 | 10 | 5 | 6 |
GEV | 18 | 3 | 21 | 4 | 16 | 14 | 10 | 4 | 3 | 5 |
ARI (year) | Quantile Estimate AMF (m3/s)—LP3 | Quantile Estimate AMF (m3/s)—LN | Quantile Estimate AMF (m3/s)—Gumbel | Quantile Estimate AMF (m3/s)—Generalized Pareto | Quantile Estimate AMF (m3/s)—GEV |
---|---|---|---|---|---|
2 | 315 | 291 (92%) | 545 (173%) | 366 (116%) | 811 (257%) |
5 | 1549 | 1379 (89%) | 1800 (116%) | 1412 (91%) | 1953 (126%) |
10 | 3067 | 3113 (102%) | 2632 (86%) | 3119 (102%) | 3074 (100%) |
20 | 5020 | 6097 (121%) | 3429 (68%) | 6469 (129%) | 4540 (90%) |
50 | 8134 | 12,991 (160%) | 4461 (55%) | 16,297 (200%) | 7238 (89%) |
100 | 10,784 | 21,512 (199%) | 5235 (49%) | 32,337 (300%) | 10,084 (94%) |
200 | 13,598 | 34,131 (251%) | 6005 (44%) | 63,821 (469%) | 13,892 (102%) |
500 | 17,451 | 59,714 (342%) | 7022 (40%) | 156,166 (895%) | 20,976 (120%) |
Station | Observed Qmax/Q2011 (m3/s) | Estimated Quantile with T = 100 yrs; Q100 (m3/s) | % Difference (Quantile/Observed) |
---|---|---|---|
143203C | 3643 | 1989 | 55 |
143219A | 362 | 348 | 96 |
143108A | 2108 | 2117 | 100 |
143303A | 710 | 721 | 102 |
143107A | 2057 | 2107 | 102 |
143113A | 411 | 434 | 106 |
143001C | 9533 | 10,784 | 113 |
143028A | 133 | 159 | 119 |
143209B | 349 | 416 | 119 |
143207A | 2977 | 3582 | 120 |
143033A | 385 | 469 | 122 |
143010B | 2036 | 2600 | 128 |
143015B | 2335 | 3080 | 132 |
143306A | 175 | 231 | 132 |
143307A | 462 | 624 | 135 |
143210B | 1401 | 1958 | 140 |
143110A | 370 | 520 | 141 |
143232A | 45 | 63 | 141 |
143212A | 1359 | 2213 | 163 |
143032A | 297 | 533 | 179 |
143921A | 590 | 1058 | 179 |
143213C | 511 | 927 | 182 |
143007A | 4404 | 8240 | 187 |
143229A | 1395 | 3606 | 259 |
Station | Full AMF Data | Full AMF Data | 1 Highest AMF Records Removed | 1 Highest AMF Records Removed | 2 Highest AMF Records Removed | 2 Highest AMF Records Removed | 3 Highest AMF Record Removed | 3 Highest AMF Record Removed |
---|---|---|---|---|---|---|---|---|
Q50 m3/s | Q100 m3/s | Q50 m3/s | Q100 m3/s | Q50 m3/s | Q100 m3/s | Q50 m3/s | Q100 m3/s | |
143001C | 8134 | 10,784 | 6766 | 9090 | 3606 | 4033 | 3108 | 3410 |
143007A | 5389 | 8240 | 4252 | 6228 | 3726 | 5408 | 3263 | 4704 |
143009A | 11,842 | 19,085 | 9982 | 15,796 | 8358 | 12,930 | 7001 | 10,607 |
143010B | 1878 | 2600 | 1353 | 1760 | 1267 | 1761 | 980 | 1313 |
143015B | 2205 | 3080 | 1280 | 1581 | 1195 | 1493 | 1006 | 1217 |
143028A | 131 | 159 | 109 | 129 | 97 | 113 | 77 | 85 |
143032A | 379 | 533 | 308 | 422 | 216 | 270 | 186 | 227 |
143033A | 415 | 469 | 370 | 417 | 331 | 370 | 300 | 331 |
143107A | 1671 | 2107 | 1123 | 1271 | 1039 | 1164 | 879 | 937 |
143108A | 1622 | 2117 | 1292 | 1642 | 1114 | 1385 | 913 | 1083 |
143110A | 447 | 520 | 429 | 499 | 410 | 475 | 392 | 455 |
143113A | 369 | 434 | 224 | 235 | 224 | 238 | 225 | 243 |
143203C | 1395 | 1989 | 946 | 1231 | 670 | 745 | 614 | 678 |
143207A | 3009 | 3582 | 2700 | 3173 | 2561 | 3037 | 2327 | 2743 |
143209B | 387 | 416 | 394 | 426 | 366 | 398 | 350 | 379 |
143210B | 1558 | 1958 | 1488 | 2385 | 1111 | 1660 | 820 | 1108 |
143212A | 1696 | 2213 | 1486 | 1939 | 1340 | 1758 | 1224 | 1639 |
143213C | 772 | 927 | 551 | 740 | 336 | 416 | 243 | 302 |
143219A | 212 | 348 | 91 | 123 | 70 | 92 | 60 | 78 |
143229A | 2305 | 3606 | 1134 | 1372 | 685 | 932 | 423 | 493 |
143232A | 55 | 63 | 43 | 47 | 43 | 49 | 41 | 47 |
143233A | 993 | 1645 | 344 | 449 | 346 | 478 | 303 | 432 |
143303A | 658 | 721 | 585 | 625 | 607 | 658 | 563 | 605 |
143306A | 208 | 231 | 214 | 238 | 171 | 186 | 163 | 178 |
143307A | 517 | 624 | 446 | 533 | 380 | 450 | 317 | 356 |
143921A | 758 | 1058 | 641 | 1000 | 208 | 239 | 172 | 199 |
Test Name | Test Statistic for Each Test | Critical Values of Trend Test Statistics for Significance Levels | Critical Values of Trend Test Re-Sampling Statistics for Significance Levels | Result | ||||
---|---|---|---|---|---|---|---|---|
a = 0.1 | a = 0.05 | a = 0.01 | a = 0.1 | a = 0.05 | a = 0.01 | |||
Mann–Kendall | −1.80 | 1.65 | 1.96 | 2.58 | 1.64 | 1.92 | 2.51 | S (0.1) |
Spearman’s Rho | −1.73 | 1.65 | 1.96 | 2.58 | 1.69 | 1.98 | 2.57 | S (0.1) |
Linear regression | 0.28 | 1.68 | 2.01 | 2.69 | 1.72 | 2.09 | 2.75 | NS |
CUSUM | 8.00 | 8.54 | 9.52 | 11.41 | 9.00 | 10.00 | 12.00 | NS |
Cumulative deviation | 0.84 | 1.14 | 1.27 | 1.52 | 1.14 | 1.28 | 1.48 | NS |
Worsley Likelihood Ratio | 2.35 | 2.87 | 3.16 | 3.79 | 3.64 | 5.98 | 7.48 | NS |
Rank-Sum | 1.87 | 1.65 | 1.96 | 2.58 | 1.67 | 1.99 | 2.65 | S (0.1) |
Student’s t | −0.01 | 1.68 | 2.01 | 2.69 | 1.66 | 1.92 | 2.27 | NS |
Median Crossing | 0.58 | 1.65 | 1.96 | 2.58 | 1.73 | 2.02 | 2.31 | NS |
Turning Point | 0.23 | 1.65 | 1.96 | 2.58 | 1.84 | 2.19 | 2.99 | NS |
Rank Difference | −1.07 | 1.65 | 1.96 | 2.58 | 1.61 | 1.85 | 2.61 | NS |
Autocorrelation | 1.22 | 1.65 | 1.96 | 2.58 | 1.50 | 1.77 | 2.71 | NS |
Station Number | Mann-Kendall | Spearman’s Rho | Linear Regression | Cusum | Cumulative Deviation | Worsley Likelihood | Rank Sum | Student’s t | Median Crossing | Turning Point | Rank Difference | Auto Correlation | Linear Regression Slope |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
143001C | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | −Ve |
143007A | NS | NS | NS | NS | NS | NS | S (0.05) | NS | NS | NS | NS | NS | +Ve |
143009A | NS | NS | NS | NS | NS | NS | S (0.1) | NS | NS | NS | NS | NS | −Ve |
143010B | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | +Ve |
143015B | S (0.1) | S (0.1) | NS | NS | NS | NS | S (0.1) | NS | NS | NS | NS | NS | +Ve |
143028A | NS | NS | NS | S (0.1) | S (0.1) | NS | NS | NS | NS | NS | NS | NS | +Ve |
143032A | NS | NS | NS | NS | NS | NS | NS | S (0.1) | NS | NS | NS | NS | −Ve |
143033A | NS | NS | S (0.1) | NS | S (0.05) | S (0.05) | NS | NS | S (0.1) | NS | S (0.1) | NS | +Ve |
143107A | NS | NS | NS | NS | S (0.1) | S (0.1) | NS | NS | NS | NS | NS | NS | +Ve |
143108A | NS | NS | NS | NS | NS | NS | NS | NS | S (0.05) | S (0.1) | S (0.1) | NS | −Ve |
143110A | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | +Ve |
143113A | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | −Ve |
143203C | NS | NS | S (0.1) | NS | NS | NS | NS | S (0.1) | NS | NS | NS | NS | +Ve |
143207A | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | −Ve |
143209B | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | −Ve |
143212A | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | +Ve |
143219A | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | +Ve |
143229A | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | +Ve |
143303A | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | S (0.1) | S (0.1) | −Ve |
143921A | NS | NS | S (0.1) | NS | S (0.05) | NS | NS | NS | NS | NS | NS | NS | +Ve |
143210B | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | −Ve |
143306A | NS | NS | NS | NS | NS | S (0.05) | NS | NS | NS | NS | NS | NS | +Ve |
143213C | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | +Ve |
143232A | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | +Ve |
143233A | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | +Ve |
143307A | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | −Ve |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, S.M.A.; Mim, S.T.; Alim, M.A.; Rahman, A. Flood Frequency Analysis and Trend Detection in the Brisbane River Basin, Australia. Water 2025, 17, 2690. https://doi.org/10.3390/w17182690
Hossain SMA, Mim ST, Alim MA, Rahman A. Flood Frequency Analysis and Trend Detection in the Brisbane River Basin, Australia. Water. 2025; 17(18):2690. https://doi.org/10.3390/w17182690
Chicago/Turabian StyleHossain, S M Anwar, Sadia T. Mim, Mohammad A. Alim, and Ataur Rahman. 2025. "Flood Frequency Analysis and Trend Detection in the Brisbane River Basin, Australia" Water 17, no. 18: 2690. https://doi.org/10.3390/w17182690
APA StyleHossain, S. M. A., Mim, S. T., Alim, M. A., & Rahman, A. (2025). Flood Frequency Analysis and Trend Detection in the Brisbane River Basin, Australia. Water, 17(18), 2690. https://doi.org/10.3390/w17182690