Numerical Study of Hydrodynamics Characteristics of Cylinders with Intermittent Spanwise Arrangements
Abstract
1. Introduction
2. Numerical Model
2.1. Governing Equations
2.2. Definition of Characteristic Coefficients
2.3. Geometric Parameters
2.4. Calculation Domain and Boundary Conditions
2.5. Convergence and Accuracy of the Numerical Model
3. Results and Discussions
3.1. Computational Cases
3.2. Hydrodynamic Coefficients
3.2.1. Mean Drag Coefficient and Mean Lift Coefficient
3.2.2. Root Mean Square of Lift Coefficient and Root Mean Square of Drag Coefficient
3.2.3. Pressure Coefficient
3.3. Characteristics of Flow Field
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LES | Large eddy simulation |
References
- Williamson, C.H.K. Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 1996, 28, 477–539. [Google Scholar] [CrossRef]
- Williamson, C.H.K. Defining a universal and continuous Strouhal–Reynolds number relationship for the laminar vortex shedding of a circular cylinder. Phys. Fluids 1988, 31, 2742–2744. [Google Scholar] [CrossRef]
- Williamson, C.H.K. The existence of two stages in the transition to three-dimensionality of a cylinder wake. Phys. Fluids 1988, 31, 3165–3168. [Google Scholar] [CrossRef]
- Wu, J.; Sheridan, J.; Welsh, M.C.; Hourigan, K. Three-dimensional vortex structures in a cylinder wake. J. Fluid Mech. 1996, 312, 201–222. [Google Scholar] [CrossRef]
- Bearman, P.W.; Zdravkovich, M.M. Flow around a circular cylinder near a plane boundary. J. Fluid Mech. 1978, 89, 33–47. [Google Scholar] [CrossRef]
- Zdravkovich, M.M. Forces on a circular cylinder near a plane wall. Appl. Ocean Res. 1985, 7, 197–201. [Google Scholar] [CrossRef]
- Lei, C.; Cheng, L.; Kavanagh, K. Re-examination of the effect of a plane boundary on force and vortex shedding of a circular cylinder. J. Wind Eng. Ind. Aerodyn. 1999, 80, 263–286. [Google Scholar] [CrossRef]
- Roshko, A.; Steinolfson, A.; Chattoorgoon, V. Flow forces on a cylinder near a wall or near another cylinder. J. Fluid Mech. 1975, 15, 1–3. [Google Scholar]
- Sumer, B.M.; Fredsøe, J. Flow around a cylinder in steady current. In Hydrodynamics Around Cylindrical Structures (Revised Ed.); World Scientific: Singapore, 2006; pp. 1–35. [Google Scholar]
- Ronold, K.O. A probabilistic approach to the lengths of free pipeline spannings. Appl. Ocean Res. 1995, 17, 225–232. [Google Scholar] [CrossRef]
- Buresti, G.; Lanciotti, A. Vortex shedding from smooth and roughened cylinders in cross-flow near a plane surface. Aeronaut. Q. 1979, 30, 305–321. [Google Scholar] [CrossRef]
- Griffiths, T.; Shen, W.; Xu, M.; Leggoe, J. Comparison of recent parametric trenched and partially embedded/spanning pipelines with DNV-RP-F109 load reduction design curves. In Proceedings of the OMAE2012, Rio de Janeiro, Brazil, 1–6 July 2012. [Google Scholar]
- Sollund, H.A.; Vedeld, K.; Hellesland, J.; Fyrileiv, O. Dynamic response of multi-span offshore pipelines. Mar. Struct. 2014, 39, 174–197. [Google Scholar] [CrossRef]
- Teng, Y.; Griffiths, T.; Tang, G.; An, H.; Draper, S.; Cheng, L.; Mohr, H. Peak force coefficients on small-diameter spanning pipelines under waves. Coast. Eng. 2022, 177, 104189. [Google Scholar] [CrossRef]
- Tong, F.; Cheng, L. Numerical study on steady flow around a pipeline laid on seabed with gaps. In Proceedings of the ISOPE PACOMS, Gold Coast, Australia, 4–7 October 2016. [Google Scholar]
- Tong, F.; Cheng, L.; An, H.; Griffiths, T. The hydrodynamic forces on a circular cylinder in proximity to a wall with intermittent contact in steady current. Ocean Eng. 2017, 146, 424–433. [Google Scholar] [CrossRef]
- Rhie, C.M.; Chow, W.L. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. In Proceedings of the 3rd AIAA/ASME Joint Thermophysics and Heat Transfer Conference, St. Louis, MO, USA, 7–11 June 1982. [Google Scholar]
- Germano, M.; Piomelli, U.; Moin, P.; Cabot, W.H. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 1998, 3, 1760–1765. [Google Scholar] [CrossRef]
- Breuer, M. Large eddy simulation of the subcritical flow past a circular cylinder: Numerical and modeling aspects. Int. J. Numer. Methods Fluids 1998, 28, 1281–1302. [Google Scholar] [CrossRef]
- Vreman, B.; Geurts, B.; Kuerten, H. Realizability conditions for the turbulent stress tensor in large-eddy simulation. J. Fluid Mech. 1994, 278, 351–362. [Google Scholar] [CrossRef]
- Balaras, E.; Benocci, C.; Piomelli, U. Two-layer approximate boundary conditions for large-eddy simulations. AIAA J. 1996, 34, 1111–1119. [Google Scholar] [CrossRef]
- Teng, Y.; Cheng, L.; An, H.; Tong, F.; Xiong, Z. Hydrodynamic forces on intermittently spanning pipelines in steady currents. In Proceedings of the ASME OMAE, Glasgow, UK, 9–14 June 2019; pp. 9–14. [Google Scholar]
- Khan, N.B.; Ibrahim, Z.; Badarudin, A.; Jameel, M.; Javed, M.F. Numerical investigation of flow around cylinder at Reynolds number=3900 with large eddy simulation technique: Effect of spanwise length and mesh resolution. Proc. Inst. Mech. Eng. M J. Eng. Marit. Environ. 2019, 233, 417–427. [Google Scholar] [CrossRef]
- Behr, M.; Hastreiter, D.; Mittal, S.; Tezduyar, T.E. Incompressible flow past a circular cylinder: Dependence of the computed flow field on the location of the lateral boundaries. Comput. Methods Appl. Mech. Eng. 1995, 123, 309–316. [Google Scholar] [CrossRef]
NZ | NC | Δ1/D | Number of Mesh (Million) | Δt (s) | CL-rms | ||
---|---|---|---|---|---|---|---|
180 | 160 | 0.0004 | 4.29 | 0.002 | 0.845 | 0.261 | 0.019 |
270 | 160 | 0.0004 | 5.81 | 0.002 | 0.850 | 0.266 | 0.016 |
360 | 160 | 0.0004 | 7.52 | 0.002 | 0.851 | 0.267 | 0.017 |
NZ | NC | Δ1/D | Number of Mesh (Million) | Δt (s) | CL-rms | ||
---|---|---|---|---|---|---|---|
270 | 120 | 0.0004 | 4.38 | 0.002 | 0.846 | 0.259 | 0.016 |
270 | 160 | 0.0004 | 5.81 | 0.002 | 0.850 | 0.266 | 0.016 |
270 | 200 | 0.0004 | 7.18 | 0.002 | 0.850 | 0.268 | 0.016 |
NZ | NC | Δ1/D | Number of Mesh (Million) | Δt (s) | CL-rms | ||
---|---|---|---|---|---|---|---|
270 | 160 | 0.0002 | 6.04 | 0.002 | 0.851 | 0.266 | 0.016 |
270 | 160 | 0.0004 | 5.81 | 0.002 | 0.850 | 0.266 | 0.016 |
NZ | NC | Δ1/D | Number of Mesh (Million) | Δt (s) | CL-rms | ||
---|---|---|---|---|---|---|---|
270 | 160 | 0.0004 | 5.81 | 0.002 | 0.850 | 0.266 | 0.016 |
270 | 160 | 0.0004 | 5.81 | 0.003 | 0.849 | 0.268 | 0.016 |
270 | 160 | 0.0004 | 6.04 | 0.005 | 0.847 | 0.267 | 0.015 |
e/D | L/H | l/D |
---|---|---|
0.1, 0.2, 0.3 | 0 | 0 |
0.25 | 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5 | |
0.5 | 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5 | |
0.75 | 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5 | |
1 | 8.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Zeng, E.; Wang, Y.; Jiao, Z.; He, S.; Tang, G. Numerical Study of Hydrodynamics Characteristics of Cylinders with Intermittent Spanwise Arrangements. Water 2025, 17, 2680. https://doi.org/10.3390/w17182680
Yu S, Zeng E, Wang Y, Jiao Z, He S, Tang G. Numerical Study of Hydrodynamics Characteristics of Cylinders with Intermittent Spanwise Arrangements. Water. 2025; 17(18):2680. https://doi.org/10.3390/w17182680
Chicago/Turabian StyleYu, Songsong, Erxian Zeng, Yadong Wang, Zhihui Jiao, Shunyu He, and Guoqiang Tang. 2025. "Numerical Study of Hydrodynamics Characteristics of Cylinders with Intermittent Spanwise Arrangements" Water 17, no. 18: 2680. https://doi.org/10.3390/w17182680
APA StyleYu, S., Zeng, E., Wang, Y., Jiao, Z., He, S., & Tang, G. (2025). Numerical Study of Hydrodynamics Characteristics of Cylinders with Intermittent Spanwise Arrangements. Water, 17(18), 2680. https://doi.org/10.3390/w17182680