Hydrochemical Characteristics and Formation Mechanism of Neogene Geothermal Water in the Zhangye–Minle Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Methods
2.3. Geological and Well Context
3. Results and Discussion
3.1. Hydrochemical Characteristics of Geothermal Water
3.1.1. Characteristics of Main Chemical Components
3.1.2. Hydrochemical Types of Geothermal Water
3.2. Characteristics of Ground Temperature Variations and Circulation Depth
3.2.1. Temperature Estimation Method
3.2.2. Geothermal Gradient
3.2.3. Temperature Estimation
3.2.4. Reservoir Temperature and Circulation Depth
3.3. Isotopic Caracteristics
3.3.1. Hydrogen and Oxygen Isotopes
3.3.2. Carbon and Tritium Isotopes
3.3.3. Recharge Sources of Geothermal Water
3.3.4. Conceptual Circulation of Geothermal Water
3.4. Hydrogeochemical Formation Mechanism
3.4.1. Gibbs Diagram
3.4.2. Chemical Formation Mechanism
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Z.; Qin, G.; Yan, B.; Han, C. Evaluation of the endowment of geothermal resources and its impact on regional industrial structure: A case study of Qinghai Province (China). Sustainability 2025, 17, 1751. [Google Scholar] [CrossRef]
- Guo, X.; Song, H.; Killough, J.; Du, L.; Sun, P. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: A case study of the Daming Geothermal Field in China. Environ. Sci. Pollut. Res. 2018, 25, 4690–4706. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Yang, K.; Fang, J.; Tang, J.; Wang, Y. Feasibility study of construction of pumped storage power station using abandoned mines: A case study of the Shitai Mine. Energies 2023, 16, 314. [Google Scholar] [CrossRef]
- Liu, D.; Cai, Y.; Feng, Z.; Zhang, Q.; Hu, L.; Li, S. Feasibility study on geothermal dolomite reservoir reinjection with surface water in Tianjin, China. Water 2024, 16, 3144. [Google Scholar] [CrossRef]
- Zhao, Z.; Lin, Y.-F.; Stumpf, A.; Wang, X. Assessing impacts of groundwater on geothermal heat exchangers: A review of methodology and modeling. Renew. Energy 2022, 190, 121–147. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, Z.; Tong, W. Construction and application of decision support indicator system for new energy development in Hexi Corridor. Energy Rep. 2022, 8, 187–193. [Google Scholar] [CrossRef]
- Xue, F.; Tan, H.; Zhang, X.; Su, J. Sources, enrichment mechanisms, and resource effects of rare metal elements-enriched geothermal springs in Xizang, China. Sci. China Ser. D Earth Sci. 2024, 67, 3476–3499. [Google Scholar] [CrossRef]
- Yan, X.; Wei, S.; Zhang, W.; Liu, F.; Liao, Y. Reservoirs and hydrogeochemical characterizations of the Yanggao Geothermal Field in Shanxi Province, China. Water 2024, 16, 669. [Google Scholar] [CrossRef]
- Huang, P.; Hu, Y.; Gao, H.; Su, Q. Dynamic identification and radium–radon response mechanism of floor mixed water source in high ground temperature coal mine. J. Hydrol. 2021, 603, 127045. [Google Scholar] [CrossRef]
- Huang, P.; Gao, H.; Su, Q.; Zhang, Y.; Cui, M.; Chai, S.; Li, Y.; Jin, Y. Identification of mixing water source and response mechanism of radium and radon under mining in limestone of coal seam floor. Sci. Total Environ. 2023, 857, 159666. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, Y.; Zhang, Y.; Wang, L.; Wang, J.; Hu, W.; Liu, G.; Liu, F.; Hao, Q.; Wang, C.; et al. Lithology controls on the mixing behavior and discharge regime of thermal groundwater in the Bogexi Geothermal Field on Tibetan Plateau. J. Hydrol. 2024, 628, 130306. [Google Scholar] [CrossRef]
- Yin, Z.; Li, X.; Huang, C.; Chen, W.; Hou, B.; Li, X.; Han, W.; Hou, P.; Han, J.; Ren, C.; et al. Analysis of the formation mechanism of medium and low-temperature geothermal water in Wuhan based on hydrochemical characteristics. Water 2023, 15, 227. [Google Scholar] [CrossRef]
- Duan, R.; Li, P.; Wang, L.; He, X.; Zhang, L. Hydrochemical characteristics, hydrochemical processes and recharge sources of the geothermal systems in Lanzhou City, northwestern China. Urban Clim. 2022, 43, 101152. [Google Scholar] [CrossRef]
- Yin, Z.; Chen, Q.; He, J.; Wang, C.; Luo, G. Spatial characteristics and genetic mechanism of geothermal resources in Zhangye Basin by multi-source fusion modeling and heat-flow coupling simulation. Bull. Geol. Sci. Technol. 2023, 42, 1–10. [Google Scholar]
- Wen, X.; Wu, J.; Si, J. A GIS-based DRASTIC model for assessing shallow groundwater vulnerability in the Zhangye Basin, northwestern China. Environ. Geol. 2009, 57, 1435–1442. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, F.; Zheng, T. The genesis of saline geothermal groundwater in the coastal area of Guangdong Province: Insight from hydrochemical and isotopic analysis. J. Hydrol. 2021, 605, 127345. [Google Scholar] [CrossRef]
- Wu, C.; Fang, C.; Wu, X.; Zhu, G.; Zhang, Y. Hydrogeochemical characterization and quality assessment of groundwater using self-organizing maps in the Hangjinqi Gasfield Area, Ordos Basin, NW China. Geosci. Front. 2020, 12, 781–790. [Google Scholar] [CrossRef]
- Wang, C.-W.; Wang, J.; Liu, Y.-S.; Li, J.; Peng, X.-L.; Jia, C.-S.; Zhang, L.-H.; Yi, L.-Z.; Liu, J.-Y.; Li, C.-J.; et al. Prediction of the ideal-gas thermodynamic properties for water. J. Mol. Liq. 2021, 321, 114897. [Google Scholar] [CrossRef]
- Chen, H.; Li, J.; Zhao, C.; Wang, C.; Hao, W.; Meng, L.; Huang, T.; Yang, H.; Zhao, K.; Yu, Z.; et al. Seasonal and spatial variations of water recharging in the Yangtze River using hydrogen and oxygen stable isotopes. J. Hydrol. 2024, 639, 129803. [Google Scholar] [CrossRef]
- Elmasry, A.; Mohallel, S.A.; Madani, A.; Saibi, H.; Abdel Zaher, M.; Nassar, T. Geothermal groundwater study and its energetic potential assessment in Abu Gharadig Basin, north western desert, Egypt. J. Afr. Earth Sci. 2023, 202, 104978. [Google Scholar] [CrossRef]
- Bayram, A.F. Hydrogeochemistry and geothermometry of the Ilgın Geothermal Field, Central Turkey. Island Arc 2023, 32, e12456. [Google Scholar] [CrossRef]
- Li, J.; Sagoe, G.; Li, Y. Applicability and limitations of potassium-related classical geothermometers for crystalline basement reservoirs. Geothermics 2019, 84, 101728. [Google Scholar] [CrossRef]
- Steele-MacInnis, M.; Manning, C.E. Hydrothermal properties of geologic fluids. Elements 2020, 16, 375–380. [Google Scholar] [CrossRef]
- Tian, J.; Stefansson, A.; Li, Y.; Li, L.; Xing, L.; Li, Z.; Li, Y.; Zhou, X. Geochemistry of thermal fluids and the genesis of granite-hosted Huangshadong geothermal system, Southeast China. Geothermics 2023, 109, 102502. [Google Scholar] [CrossRef]
- Goswami, S.; Rai, A.K.; Tripathy, S. Re-visiting geothermal fluid circulation, reservoir depth and temperature of geothermal springs of India. J. Hydrol. 2022, 612, 128131. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, Y.; Zhang, X.; Li, Y.; Feng, J. An analysis of the endowment characteristics and geneses of geothermal resources in the Zhangye Basin. Hydrogeol. Eng. Geol. 2023, 50, 168–178. [Google Scholar]
- Heiderscheidt, E.; Tesfamariam, A.; Marttila, H.; Postila, H.; Zilio, S.; Rossi, P.M. Stable water isotopes as a tool for assessing groundwater infiltration in sewage networks in cold climate conditions. J. Environ. Manag. 2022, 302, 114107. [Google Scholar] [CrossRef]
- Rodriguez, N.B.; Pfister, L.; Zehe, E.; Klaus, J. A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using storAge selection functions. Hydrol. Earth Syst. Sci. 2021, 25, 401–428. [Google Scholar] [CrossRef]
- Thaw, M.; GebreEgziabher, M.; Villafañe-Pagán, J.Y.; Jasechko, S. Modern groundwater reaches deeper depths in heavily pumped aquifer systems. Nat. Commun. 2022, 13, 2111. [Google Scholar] [CrossRef]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Tan, H.; Wang, R.; Wen, X. Hydrogen and oxygen isotopic analysis of perennial meteoric water in northwest China. J. China Hydrol. 2015, 35, 33–39. [Google Scholar]
- Wang, S.; Lei, S.; Zhang, M.; Hughes, C.; Crawford, J.; Liu, Z.; Qu, D. Spatial and seasonal isotope variability in precipitation across China: Monthly isoscapes based on regionalized fuzzy clustering. J. Clim. 2022, 35, 3411–3425. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Miao, C.; Si, B.; Lu, Y. Field variation of groundwater recharge and its uncertainty via multiple tracers’ method in deep loess vadose zone. Sci. Total Environ. 2023, 876, 162005. [Google Scholar] [CrossRef]
- Jiang, S.; Rao, W.; Han, L.; Meredith, K.T. Study of groundwater recharge using combined unsaturated- and saturated-zone chloride mass balance methods. Hydrol. Process. 2023, 37, e14744. [Google Scholar] [CrossRef]
- Wang, D.; Li, P.; He, X.; He, S. Exploring the response of shallow groundwater to precipitation in the northern piedmont of the Qinling Mountains, China. Urban Clim. 2022, 47, 101379. [Google Scholar] [CrossRef]
- Elumalai, V.; Rajmohan, N.; Sithole, B.; Li, P.; Uthandi, S.; van Tol, J. Geochemical evolution and the processes controlling groundwater chemistry using ionic ratios, geochemical modelling and chemometric analysis in Umhlathuze Catchment, KwaZulu-Natal, South Africa. Chemosphere 2023, 312, 137201. [Google Scholar] [CrossRef]
- Ma, T.; Weynell, M.; Li, S.-L.; Zhong, J.; Xu, S.; Liu, C.-Q. High-temporal-resolution of lithium isotopes in Yangtze River headwater: Hydrological control on weathering in high-relief catchments. Geochim. Cosmochim. Acta 2023, 879, 258–274. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, H.; Xing, S.; Liu, H. Hydrogeochemical and geothermal controls on the formation of high fluoride groundwater. J. Hydrol. 2021, 598, 126452. [Google Scholar] [CrossRef]
- Luo, X.; Wei, C.; Li, X.; Deng, Z.; Li, M.; Fan, G. Optimization of NaOH–Na2CO3 brine purification method: From laboratory experiments to industrial application. Sep. Purif. Technol. 2022, 296, 121367. [Google Scholar] [CrossRef]
- Cui, G.; Liu, Y.; Tong, S. Hydrogeochemical processes controlling the salinity of surface water and groundwater in an inland saline-alkali wetland in Western Jilin, China. Front. Ecol. Evol. 2022, 10, 917654. [Google Scholar] [CrossRef]
Monitoring Point | Well Depth (m) | T (°C) |
---|---|---|
A1 | 2269.18 | 77 |
A2 | 1567 | 55 |
A3 | 2350.76 | 61 |
A4 | 2357.2 | 57 |
A5 | 1701.75 | 47 |
A6 | 2053.08 | 46 |
A7 | 1500.59 | 45 |
A8 | 2174 | 78 |
A9 | 2601.22 | 56 |
Project | Average | Maximum | Minimum | Standard Deviation | Variance | Coefficient of Variation |
---|---|---|---|---|---|---|
Chemical Composition (mg/L) | ||||||
Na+ | 1341.78 | 1655.00 | 1017.00 | 218.65 | 47,807.51 | 0.16 |
K+ | 26.38 | 61.70 | 8.00 | 16.82 | 283.07 | 0.64 |
Ca2+ | 178.76 | 409.00 | 56.20 | 116.05 | 13,466.64 | 0.65 |
Mg2+ | 67.12 | 123.00 | 35.60 | 30.14 | 908.50 | 0.45 |
HCO3− | 386.97 | 773.10 | 133.00 | 237.95 | 56,620.27 | 0.61 |
Cl− | 1658.22 | 2276.00 | 1285.00 | 377.51 | 142,516.84 | 0.23 |
SO4−2 | 977.69 | 1442.00 | 701.60 | 276.38 | 76,388.29 | 0.28 |
PH | 7.60 | 8.24 | 7.10 | 0.31 | 0.10 | 0.04 |
TDS | 4667.33 | 5810.00 | 3432.00 | 899.65 | 809,367.56 | 0.19 |
Sample Site | T(Na + K + Ca) | T(Na + K) | T(K + Mg) | Tm | (TK-Mg − Tm)/Tm |
---|---|---|---|---|---|
A1 | 66.07 | 150.29 | 79.54 | 77.00 | 3.29 |
A2 | 70.66 | 90.41 | 60.20 | 55.00 | 9.46 |
A3 | −38.54 | 101.38 | 59.32 | 61.00 | −2.76 |
A4 | −40.29 | 100.53 | 59.30 | 57.00 | 4.03 |
A5 | 329.14 | 112.10 | 72.87 | 47.00 | 55.03 |
A6 | −2.49 | 84.00 | 55.96 | 46.00 | 21.65 |
A7 | 82.18 | 65.19 | 46.69 | 45.00 | 3.75 |
A8 | 622.72 | 129.91 | 80.19 | 78.00 | 2.81 |
A9 | 696.03 | 75.19 | 59.13 | 56.00 | 5.59 |
River Water Samples (Labeled as B) | Average | Min | Max |
---|---|---|---|
δ18O (‰) | −8.17 | −9.7 | −6.9 |
δ2H (‰) | −56.33 | −62 | −46 |
Spring water samples (labeled as C) | average | min | max |
δ18O (‰) | −6.70 | −7.4 | −6 |
δ2H (‰) | −50.00 | −53 | −47 |
Groundwater samples (labeled as D) | average | min | max |
δ18O (‰) | −7.37 | −8.2 | −6.5 |
δ2H (‰) | −49.17 | −52 | −44 |
Confined water samples (labeled as E) | average | min | max |
δ18O (‰) | −9.03 | −9.9 | −7.8 |
δ2H (‰) | −59.50 | −63 | −56 |
Sample | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 |
---|---|---|---|---|---|---|---|---|---|
14C (ka) | 29.31 ± 2.72 | 13.29 ± 0.97 | 25.15 ± 3.02 | 40.16 ± 3.74 | 27.85 ± 5.30 | 40.08 ± 4.67 | 29.31 ± 2.72 | 13.29 ± 0.97 | |
3H (TU) | <0.5 | <1 | <1 | <1 | <1 | <0.5 | 1.5 ± 0.7 | 1.3 ± 0.5 | <1 |
Sample Site | 18O(%) | δP(%) | K1 (%/100 m) | K2 (%/100 m) | Wellhead Elevation (m) | H1 (m) | H2 (m) |
---|---|---|---|---|---|---|---|
A1 | −10.3 | −6.3 | −0.12 | −0.24 | 1780 | 5113.33 | 3446.67 |
A2 | −10.4 | −6.3 | −0.12 | −0.24 | 1598 | 5014.67 | 3306.33 |
A3 | −10.1 | −6.3 | −0.12 | −0.24 | 1777.82 | 4944.49 | 3361.15 |
A4 | −10.4 | −6.3 | −0.12 | −0.24 | 1762.29 | 5178.96 | 3470.62 |
A5 | −8.6 | −6.3 | −0.12 | −0.24 | 1538.76 | 3455.43 | 2497.09 |
A6 | −9.5 | −6.3 | −0.12 | −0.24 | 1644 | 4310.67 | 2977.33 |
A7 | −10.5 | −6.3 | −0.12 | −0.24 | 1463 | 4963.00 | 3213.00 |
A8 | −10 | −6.3 | −0.12 | −0.24 | 1536 | 4619.33 | 3077.67 |
A9 | −10.4 | −6.3 | −0.12 | −0.24 | 1487 | 4903.67 | 3195.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Hu, Y.; Ren, T.; Han, X.; Wu, X. Hydrochemical Characteristics and Formation Mechanism of Neogene Geothermal Water in the Zhangye–Minle Basin. Water 2025, 17, 2641. https://doi.org/10.3390/w17172641
Zhang Z, Hu Y, Ren T, Han X, Wu X. Hydrochemical Characteristics and Formation Mechanism of Neogene Geothermal Water in the Zhangye–Minle Basin. Water. 2025; 17(17):2641. https://doi.org/10.3390/w17172641
Chicago/Turabian StyleZhang, Zhen, Yang Hu, Tao Ren, Xiaodong Han, and Xue Wu. 2025. "Hydrochemical Characteristics and Formation Mechanism of Neogene Geothermal Water in the Zhangye–Minle Basin" Water 17, no. 17: 2641. https://doi.org/10.3390/w17172641
APA StyleZhang, Z., Hu, Y., Ren, T., Han, X., & Wu, X. (2025). Hydrochemical Characteristics and Formation Mechanism of Neogene Geothermal Water in the Zhangye–Minle Basin. Water, 17(17), 2641. https://doi.org/10.3390/w17172641