A Decade of Change in the Floodplain Lake: Does Zooplankton Yield or Resist?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Physical and Chemical Analyses
2.3. Biotic Community Analysis
2.4. Statistical Analyses
3. Results
3.1. Environmental Parameters
3.2. Community Diversity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitra, D. WMO Global Annual to Decadal Climate Update 2024–2028; World Meteorological Organization (WMO): Geneva, Switzerland, 2024. [Google Scholar]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Furtak, K.; Wolińska, A. The Impact of Extreme Weather Events as a Consequence of Climate Change on the Soil Moisture and on the Quality of the Soil Environment and Agriculture—A Review. Catena 2023, 231, 107378. [Google Scholar] [CrossRef]
- Leščešen, I.; Basarin, B.; Pavic, D.; Mudelsee, M.; Pekarova, P.; Mészáros, M. Are Extreme Floods in the Danube River Getting More Frequent?: A Case Study of the Bratislava Station. J. Water Clim. Change 2024, 15, 1300–1312. [Google Scholar] [CrossRef]
- Ledvinka, O. Evolution of Low Flows in Czechia Revisited. Proc. IAHS 2015, 369, 87–95. [Google Scholar] [CrossRef]
- Tuytens, K.; Vanschoenwinkel, B.; Waterkeyn, A.; Brendonck, L. Predictions of Climate Change Infer Increased Environmental Harshness and Altered Connectivity in a Cluster of Temporary Pools. Freshw. Biol. 2014, 59, 955–968. [Google Scholar] [CrossRef]
- Floodplains: A Natural System to Preserve and Restore. Available online: https://www.ecrr.org/Publications/id/847 (accessed on 19 September 2024).
- ETC/ICM Report 5/2020: Preliminary Assessment of River Floodplain Condition in Europe. Available online: https://www.eionet.europa.eu/etcs/etc-icm/products/etc-icm-reports/preliminary-assessment-of-river-floodplain-condition-in-europe (accessed on 23 June 2025).
- Sevcsik, A.; Kudich, Z.; Zsirmon, R.; Campbell, A.; Purevjav, B.; Dékány, Z. (Eds.) Naturparadiese an Der Donau: Schutzgebiete von Der Quelle Bis Zum Delta; DANUBEPARKS: Budapest, Hungary, 2014; ISBN 978-615-5241-13-0. [Google Scholar]
- Opperman, J.J.; Luster, R.; McKenney, B.A.; Roberts, M.; Meadows, A.W. Ecologically Functional Floodplains: Connectivity, Flow Regime, and Scale. JAWRA J. Am. Water Resour. Assoc. 2010, 46, 211–226. [Google Scholar] [CrossRef]
- Schiemer, F.; Hein, T. The Ecological Significance of Hydraulic Retention Zones. In Hydroecology and Ecohydrology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 405–420. ISBN 978-0-470-01019-8. [Google Scholar]
- Dickerson, K.D.; Medley, K.A.; Havel, J.E. Spatial Variation in Zooplankton Community Structure Is Related to Hydrologic Flow Units in the Missouri River, USA. River Res. Appl. 2010, 26, 605–618. [Google Scholar] [CrossRef]
- Brunke, M.; Gonser, T. The Ecological Significance of Exchange Processes between Rivers and Groundwater. Freshw. Biol. 1997, 37, 1–33. [Google Scholar] [CrossRef]
- Junk, W.J.; Wantzen, K.M. The Flood Pulse Concept: New Aspects, Approaches and Applications—An Update. In Proceedings of the Second International Symposium on the Management of Large Rivers for Fisherie; Food and Agriculture Organization and Mekong River Commission, FAO Regional Office for Asia and the Pacific: Rome, Italy, 2004; pp. 117–149. [Google Scholar]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The Flood Pulse Concept in River-Floodplain Systems. Available online: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/3349648 (accessed on 10 July 2025).
- Whited, D.C.; Lorang, M.S.; Harner, M.J.; Hauer, F.R.; Kimball, J.S.; Stanford, J.A. Climate, Hydrologic Disturbance, and Succession: Drivers of Floodplain Pattern. Ecology 2007, 88, 940–953. [Google Scholar] [CrossRef]
- Amoros, C.; Bornette, G. Connectivity and Biocomplexity in Waterbodies of Riverine Floodplains. Freshw. Biol. 2002, 47, 761–776. [Google Scholar] [CrossRef]
- Mihaljević, M.; Stević, F. Cyanobacterial Blooms in a Temperate River-Floodplain Ecosystem: The Importance of Hydrological Extremes. Aquat. Ecol. 2011, 45, 335–349. [Google Scholar] [CrossRef]
- Mihaljević, M.; Kajan, K. Disentangling the Effects of Multiple Impacts of Natural Flooding on a Riverine Floodplain Lake by Applying the Phytoplankton Functional Approach. Environments 2024, 11, 216. [Google Scholar] [CrossRef]
- Stanković, I.; Vlahović, T.; Gligora Udovič, M.; Várbíró, G.; Borics, G. Phytoplankton Functional and Morpho-Functional Approach in Large Floodplain Rivers. In Phytoplankton Responses to Human Impacts at Different Scales; Salmaso, N., Naselli-Flores, L., Cerasino, L., Flaim, G., Tolotti, M., Padisák, J., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 217–231. ISBN 978-94-007-5790-5. [Google Scholar]
- Mihaljević, M.; Pfeiffer, T.; Stević, F.; Špoljarić Maronić, D. Dynamics of Phytoplankton and Periphytic Algae in a Danubian Floodplain Lake: A Comparative Study under Altered Hydrological Conditions. Fresenius Environ. Bull. 2013, 22, 2516–2523. [Google Scholar]
- Yanygina, L.V.; Burmistrova, O.S.; Kotovshchikov, A.V.; Schletterer, M. Zooplankton as an Indicator of Hydrological Connectivity of the Main Channel and the Floodplain in a Large River System. Hydrobiologia 2023. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Houser, J.N.; Schuerell, M.D.; Smits, A.P. Warmer Winters Increase the Biomass of Phytoplankton in a Large Floodplain River. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006135. [Google Scholar] [CrossRef]
- Balkić, A.G.; Pfeiffer, T.Ž.; Čmelar, K.; Maronić, D.Š.; Stević, F.; Bek, N.; Martinović, A.; Nikolašević, R. Footprint of the Plastisphere on Freshwater Zooplankton. Environ. Res. 2022, 212, 113563. [Google Scholar] [CrossRef]
- Kim, H.G.; Lim, C.; Kim, T.; Kim, J.-H.; Kim, H.-W. Impact of Discharge Regulation on Zooplankton Communities Regarding Indicator Species and Their Thresholds in the Cascade Weirs of the Yeongsan River. Ecol. Inform. 2024, 84, 102911. [Google Scholar] [CrossRef]
- Galir Balkić, A.; Ternjej, I.; Bogut, I. Impact of Habitat Heterogeneity on Zooplankton Assembly in a Temperate River-Floodplain System. Environ. Monit. Assess. 2018, 190, 143. [Google Scholar] [CrossRef]
- Goździejewska, A.M.; Kruk, M. The Response of Zooplankton Network Indicators to Winter Water Warming Using Shallow Artificial Reservoirs as Model Case Study. Sci. Rep. 2023, 13, 18002. [Google Scholar] [CrossRef] [PubMed]
- Declerck, S.A.J.; De Senerpont Domis, L.N. Contribution of Freshwater Metazooplankton to Aquatic Ecosystem Services: An Overview. Hydrobiologia 2023, 850, 2795–2810. [Google Scholar] [CrossRef]
- Mihaljević, M.; Getz, D.; Tadić, Z.; Živanović, B.; Gucunski, D.; Topić, J.; Kalinović, I.; Mikuska, J. Kopacki Rit—Research Survey and Bibliography; Croatian Academy of Arts and Sciences: Zagreb, Croatia, 1999. [Google Scholar]
- Palijan, G. Određivanje graničnog vodostaja plavljenja Kopačkog rita na primjeru poplave u listopadu-studenom 2009. godine. In Croatian Waters Facing the Challenge of Climate Changes; Hrvatske vode: Zagreb, Hrvatska, 2011; pp. 259–265. [Google Scholar]
- Vidaković, J.; Bogut, I. Periphyton nematode assemblages in association with Myriophyllum spicatum L. in Lake Sakadaš, Croatia. Russ. J. Nematol. 2007, 15, 79. [Google Scholar]
- Mihaljević, M.; Špoljarić, D.; Stević, F.; Žuna Pfeiffer, T. Assessment of Flood-Induced Changes of Phytoplankton along a River–Floodplain System Using the Morpho-Functional Approach. Environ. Monit. Assess. 2013, 185, 8601–8619. [Google Scholar] [CrossRef] [PubMed]
- HRN ISO 7150-1:1998 ISO; Water Quality—Determination of Ammonium—Part 1: Manual Spectrometric Method. ISO: Geneva, Switzerland, 1998.
- HRN EN 26777:1998 ISO; Water Quality—Determination of Nitrite—Molecular Absorption Spectrometric Method. ISO: Geneva, Switzerland, 1998.
- HRN ISO 7890-3:1998 ISO; Water Quality—Determination of Nitrate—Part 3: Spectrometric Method Using Sulfosalicylic Acid. ISO: Geneva, Switzerland, 1998.
- HRN EN 25663:1993 ISO; Water Quality—Determination of Kjeldahl Nitrogen—Method after Mineralization with Selenium. ISO: Geneva, Switzerland, 1993.
- HRN ISO 5663:2001 ISO; Water Quality—Determination of Total Nitrogen—Method after Mineralization with Selenium. ISO: Geneva, Switzerland, 2001.
- HRN ISO 6878:2008 ISO; Water Quality—Determination of Phosphorus—Ammonium Molybdate Spectrometric Method. ISO: Geneva, Switzerland, 2008.
- SCOR-Unesco. Sea-Water. In Monographs on Oceanographic Methodology; UNESCO: Paris, France, 1966; Volume 1, p. 69. [Google Scholar]
- Strickland, J.D.H.; Parsons, T.R. A Practical Handbook of Seawater Analysis, 2nd ed.; Fisheries Research Board of Canada: Ottawa, ON, Canada, 1972; Volume 167, pp. 185–192. [Google Scholar] [CrossRef]
- Edmondson, W.T. Ruttner-Kolisko, A. 1974. Plankton Rotifers. Biology and Taxonomy. English Translation of Die Binnengewasser v. 26, Part 1. 146 p. DM46.80. Limnol. Oceanogr. 1976, 21, 183–184. Available online: https://aslopubs.onlinelibrary.wiley.com/doi/10.4319/lo.1976.21.1.0183b (accessed on 19 September 2024).
- Koste, W.; Voigt, M. Rotatoria: Die Rädertiere Mitteleuropas: Überordnung Monogononta: Ein Bestimmungswerk; Gebrüder Borntraeger: Stuttgart, Germany, 1978; ISBN 978-3-443-39072-3. [Google Scholar]
- Einsle, U. Crustacea, Copepoda, Calanoida und Cyclopoida; Planktology (University of Karachi. Centre of Excellence in Marine Biology); G. Fischer: Stuttgart, Germany, 1993; ISBN 978-3-437-30631-0. [Google Scholar]
- Amoros, C. Introduction Pratique à la Systématique des Organismes des Eaux Continentales Françaises—5. Crustacés Cladocères; Société Linnéenne de Lyon: Lyon, France, 1984. [Google Scholar] [CrossRef]
- Margaritora—Guide Per Il Riconoscimento Delle Specie Animali Delle Acque Interne Italiane. Monografie. CLADOCERI (Crustacea: C—Entomopraxis. Available online: https://books.google.co.in/books/about/Guide_per_il_riconoscimento_delle_specie.html?id=4Y4I0AEACAAJ&redir_esc=y (accessed on 19 September 2024).
- Keckeis, S.; Baranyi, C.; Hein, T.; Holarek, C.; Riedler, P.; Schiemer, F. The Significance of Zooplankton Grazing in a Floodplain System of the River Danube. J. Plankton Res. 2003, 25, 243–253. [Google Scholar] [CrossRef]
- Dumont, H.J.; Van de Velde, I.; Dumont, S. The Dry Weight Estimate of Biomass in a Selection of Cladocera, Copepoda and Rotifera from the Plankton, Periphyton and Benthos of Continental Waters. Oecologia 1975, 19, 75–97. [Google Scholar] [CrossRef] [PubMed]
- Bottrell, H. A Review of Some Problems in Zooplankton Production Studies. Contrib. Plankton Ecol. Group (IBP) 1976, 24, 419–456. [Google Scholar]
- Mccauley, E. The Estimation of the Abundance and Biomass of Zooplankton in Samples. In A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters; Blackwell: Oxford, UK, 1984. [Google Scholar]
- Lawrence, S.G.; Malley, D.F.; Findlay, W.J.; Maciver, M.A.; Delbaere, I.L.; Lawrence, S.G.; Malley, D.F.; Findlay, W.J.; Maciver, M.A.; Delbaere, I.L. Method for Estimating Dry Weight of Freshwater Planktonic Crustaceans from Measures of Length and Shape. Can. J. Fish. Aquat. Sci. 1987, 44, 264–274. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 23 June 2025).
- Wei, T.; Simko, V. Corrplot: Visualization of a Correlation Matrix, Version 0.95. CRAN. 14 October 2024. Available online: https://cran.r-project.org/web/packages/corrplot/corrplot.pdf (accessed on 11 July 2025).
- Villamayor, M.J.G. Onomastic Diversity: Onomastic Diversity Measures 2024. Available online: https://cran.r-project.org/web/packages/OnomasticDiversity/OnomasticDiversity.pdf (accessed on 1 June 2025).
- Patil, I. Visualizations with Statistical Details: The “ggstatsplot” Approach. J. Open Source Softw. 2021, 6, 3167. [Google Scholar] [CrossRef]
- Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics—Ggplot2-Package. Available online: https://ggplot2.tidyverse.org/reference/ggplot2-package.html (accessed on 11 July 2025).
- Hallett, L.; Avolio, M.L.; Carroll, I.T.; Jones, S.K.; MacDonald, A.A.M.; Flynn, D.F.B.; Slaughter, P.; Ripplinger, J.; Collins, S.L.; Gries, C.; et al. Codyn: Community Dynamics Metrics. CRAN. 30 November 2020. Available online: https://cran.radicaldevelop.com/web/packages/codyn/vignettes/codyn_overview.html (accessed on 11 July 2025).
- Karabin, A.; Karabin, A. Pelagic Zooplankton (Rotatoria & Crustacea) Variation in the Process of Lake Eutrophication 1. Structural and Quantitative Features. Ekol. Pol. 1986, 34, 567–616. [Google Scholar]
- Branković, Č.; Patarčić, M.; Güttler, I.; Srnec, L. Near-future climate change over Europe with focus on Croatia in an ensemble of regional climate model simulations. Clim. Res. 2012, 52, 227–251. [Google Scholar] [CrossRef]
- Eriksen, T.E.; Jacobsen, D.; Demars, B.O.L.; Brittain, J.E.; Søli, G.; Friberg, N. Effects of Pollution-Induced Changes in Oxygen Conditions Scaling up from Individuals to Ecosystems in a Tropical River Network. Sci. Total Environ. 2022, 814, 151958. [Google Scholar] [CrossRef]
- Jones, I.D.; Smol, J.P. Wetzel’s Limnology; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 978-0-12-822701-5. [Google Scholar]
- Carter, J.L.; Schindler, D.E.; Francis, T.B. Effects of Climate Change on Zooplankton Community Interactions in an Alaskan Lake. Clim. Change Responses 2017, 4, 3. [Google Scholar] [CrossRef]
- Vadadi-Fülöp, C. Zooplankton (Cladocera, Copepoda) Dynamics in the River Danube Upstream and Downstream of Budapest, Hungary. Opusc. Zool. Bp. 2009, 40, 87–98. [Google Scholar]
- Baranyi, C.; Hein, T.; Schiemer, F. Zooplankton Biomass and Community Structure in a Danube River Floodplain System: Effects of Hydrology. Freshw. Biol. 2002, 47, 473–482. [Google Scholar] [CrossRef]
- Galir Balkić, A.; Ternjej, I.; Špoljar, M. Hydrology Driven Changes in the Rotifer Trophic Structure and Implications for Food Web Interactions. Ecohydrology 2018, 11, e1917. [Google Scholar] [CrossRef]
- Chaparro, G.; O’Farrell, I.; Hein, T. Hydrological Conditions Determine Shifts of Plankton Metacommunity Structure in Riverine Floodplains without Affecting Patterns of Species Richness along Connectivity Gradients. Aquat. Sci. 2023, 85, 41. [Google Scholar] [CrossRef]
- Albini, D. Warming Alters Plankton Body-Size Distributions in a Large Field Experiment. Commun. Biol. 2025, 8, 162. [Google Scholar] [CrossRef]
- Woolway, R.I.; Sharma, S.; Weyhenmeyer, G.A.; Debolskiy, A.; Golub, M.; Mercado-Bettín, D.; Perroud, M.; Stepanenko, V.; Tan, Z.; Grant, L.; et al. Phenological Shifts in Lake Stratification under Climate Change. Nat. Commun. 2021, 12, 2318. [Google Scholar] [CrossRef]
- Kosten, S.; Huszar, V.L.M.; Bécares, E.; Costa, L.S.; van Donk, E.; Hansson, L.-A.; Jeppesen, E.; Kruk, C.; Lacerot, G.; Mazzeo, N.; et al. Warmer Climates Boost Cyanobacterial Dominance in Shallow Lakes. Global Change Biol. 2012, 18, 118–126. [Google Scholar] [CrossRef]
- Taipale, S.J.; Kahilainen, K.K.; Holtgrieve, G.W.; Peltomaa, E.T. Simulated Eutrophication and Browning Alters Zooplankton Nutritional Quality and Determines Juvenile Fish Growth and Survival. Ecol. Evol. 2018, 8, 2671–2687. [Google Scholar] [CrossRef]
- Vadadi-Fülöp, C.; Sipkay, C.; Mészáros, G.; Hufnagel, L. Climate Change and Freshwater Zooplankton: What Does It Boil down To? Aquat. Ecol. 2012, 46, 501–519. [Google Scholar] [CrossRef][Green Version]
- Stević, F.; Mihaljević, M.; Špoljarić Maronić, D.; Žuna Pfeiffer, T.; Zahirović, V. The Decreased Incidence of Raphidiopsis Raciborskii Bloom in a Temperate Floodplain Lake in the Middle Danube Affected by Extreme Hydrological Events. Water 2025, 17, 309. [Google Scholar] [CrossRef]
- Sikora, A.; Dawidowicz, P. Breakage of Cyanobacterial Filaments by Small- and Large-Sized Daphnia: Are There Any Temperature-Dependent Differences? Hydrobiologia 2017, 798, 119–126. [Google Scholar] [CrossRef]
- Won, E.-J.; Kim, D.; Yoo, J.-W.; In, S.; Shin, K.-H.; Lee, Y.-M. Oxidative Stress Responses in Brackish Water Flea Exposed to Microcystin-LR and Algal Bloom Waters from Nakdong River, Republic of Korea. Mar. Pollut. Bull. 2021, 162, 111868. [Google Scholar] [CrossRef]
- Bednarska, A. Food Quantity and Quality Shapes Reproductive Strategies of Daphnia. Ecol. Evol. 2022, 12, e9163. [Google Scholar] [CrossRef]
- Tõnno, I.; Agasild, H.; Kõiv, T.; Freiberg, R.; Nõges, P.; Nõges, T. Algal Diet of Small-Bodied Crustacean Zooplankton in a Cyanobacteria-Dominated Eutrophic Lake. PLoS ONE 2016, 11, e0154526. [Google Scholar] [CrossRef] [PubMed]
- Ger, K.A.; Panosso, R.; Lürling, M. Consequences of Acclimation to Microcystis on the Selective Feeding Behavior of the Calanoid Copepod Eudiaptomus Gracilis. Limnol. Oceanogr. 2011, 56, 2103–2114. [Google Scholar] [CrossRef]
- Mihaljević, M.; Špoljarić Maronić, D.; Stević, F.; Žuna Pfeiffer, T.; Zahirović, V. Maintenance of High Phytoplankton Diversity in the Danubian Floodplain Lake over the Past Half-Century. Plants 2024, 13, 2393. [Google Scholar] [CrossRef]
- Brett, M.; Müller-Navarra, D. The Role of Highly Unsaturated Fatty Acids in Aquatic Foodweb Processes. Freshw. Biol. 1997, 38, 483–499. [Google Scholar] [CrossRef]
- Yang, L.-J.; Tao, Y.; Jiang, X.; Wang, Y.; Li, Y.-H.; Zhou, L.; Wang, P.-Z.; Li, Y.-Y.; Zhao, X.; Wang, H.-J.; et al. Interactive Effects of Nutrients and Salinity on Zooplankton in Subtropical Plateau Lakes with Contrasting Water Depth. Front. Environ. Sci. 2023, 11, 1110746. [Google Scholar] [CrossRef]
- Trommer, G.; Lorenz, P.; Lentz, A.; Fink, P.; Stibor, H. Nitrogen Enrichment Leads to Changing Fatty Acid Composition of Phytoplankton and Negatively Affects Zooplankton in a Natural Lake Community. Sci. Rep. 2019, 9, 16805. [Google Scholar] [CrossRef]
- Lorenz, P.; Trommer, G.; Stibor, H. Impacts of Increasing Nitrogen:Phosphorus Ratios on Zooplankton Community Composition and Whitefish (Coregonus Macrophthalmus) Growth in a Pre-Alpine Lake. Freshw. Biol. 2019, 64, 1210–1225. [Google Scholar] [CrossRef]
- Bergström, A.-K.; Deininger, A.; Jonsson, A.; Karlsson, J.; Vrede, T. Effects of Nitrogen Enrichment on Zooplankton Biomass and N:P Recycling Ratios across a DOC Gradient in Northern-Latitude Lakes. Hydrobiologia 2021, 848, 4991–5010. [Google Scholar] [CrossRef]
- Steinman, A.; Spears, B. Internal Phosphorus Loading in Lakes: Causes, Case Studies, and Management; J. Ross Publishing: Plantation, FL, USA, 2020; ISBN 978-1-60427-144-7. [Google Scholar]
- Hampton, S.E.; Sharma, S.; Brousil, M.R.; Filazzola, A. Winter and Summer Storms Modify Chlorophyll Relationships with Nutrients in Seasonally Ice-Covered Lakes. Ecosphere 2022, 13, e4272. [Google Scholar] [CrossRef]
- Zhang, H.; Hollander, J.; Hansson, L.-A. Bi-Directional Plasticity: Rotifer Prey Adjust Spine Length to Different Predator Regimes. Sci. Rep. 2017, 7, 10254. [Google Scholar] [CrossRef]
- Gilbert, J.J. Food Niches of Planktonic Rotifers: Diversification and Implications. Limnol. Oceanogr. 2022, 67, 2218–2251. [Google Scholar] [CrossRef]
- Napiórkowski, P. The Impact of Catastrophic Flooding on Zooplankton. Pol. J. Environ. Stud. 2014, 23, 409–417. [Google Scholar]
- De Eyto, E.; Irvine, K. The Response of Three Chydorid Species to Temperature, pH and Food. Hydrobiologia 2001, 459, 165–172. [Google Scholar] [CrossRef]
- Kobari, T.; Ban, S. Life Cycles of Two Limnetic Cyclopoid Copepods, Cyclops Vicinus and Thermocyclops Crassus, in Two Different Habitats. J. Plankton Res. 1998, 20, 1073–1086. [Google Scholar] [CrossRef]
- Nunn, A.D.; Harvey, J.P.; Cowx, I.G. The Food and Feeding Relationships of Larval and 0+ Year Juvenile Fishes in Lowland Rivers and Connected Waterbodies. II. Prey Selection and the Influence of Gape. J. Fish Biol. 2007, 70, 743–757. [Google Scholar] [CrossRef]
- Anton-Pardo, M.; Adámek, Z. The Role of Zooplankton as Food in Carp Pond Farming: A Review. J. Appl. Ichthyol. 2015, 31, 7–14. [Google Scholar] [CrossRef]
- Massa, E.A.; Farrell, J.M. Prey Selection by Larval Northern Pike (Esox Lucius) Exposed to Different Zooplankton Assemblages Representing Seasonally Flooded Wetland and Nearshore Bay Habitats. Limnol. Oceanogr. 2019, 64, 1200–1213. [Google Scholar] [CrossRef]
- Gerasimov, Y.V.; Strel’nikova, A.P. Specific Features of Feeding in Underyearlings of Zander (Sander Lucioperca) (Percidae) of the Rybinsk Reservoir in Various Years. J. Ichthyol. 2016, 56, 390–396. [Google Scholar] [CrossRef]
- Duffy, J.E.; Cardinale, B.J.; France, K.E.; McIntyre, P.B.; Thébault, E.; Loreau, M. The Functional Role of Biodiversity in Ecosystems: Incorporating Trophic Complexity. Ecol. Lett. 2007, 10, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Caroni, R.; Piscia, R.; Manca, M. Indicators of Climate-Driven Change in Long-Term Zooplankton Composition: Insights from Lake Maggiore (Italy). Water 2025, 17, 511. [Google Scholar] [CrossRef]
- Padisak, J.; Crossetti, L.; Naselli-Flores, L. Use and Misuse in the Application of the Phytoplankton Functional Classification: A Critical Review with Updates. Hydrobiologia 2009, 621, 1–19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galir, A.; Stević, F.; Čmelar, K.; Špoljarić Maronić, D.; Žuna Pfeiffer, T.; Bek, N. A Decade of Change in the Floodplain Lake: Does Zooplankton Yield or Resist? Water 2025, 17, 2638. https://doi.org/10.3390/w17172638
Galir A, Stević F, Čmelar K, Špoljarić Maronić D, Žuna Pfeiffer T, Bek N. A Decade of Change in the Floodplain Lake: Does Zooplankton Yield or Resist? Water. 2025; 17(17):2638. https://doi.org/10.3390/w17172638
Chicago/Turabian StyleGalir, Anita, Filip Stević, Karla Čmelar, Dubravka Špoljarić Maronić, Tanja Žuna Pfeiffer, and Nikolina Bek. 2025. "A Decade of Change in the Floodplain Lake: Does Zooplankton Yield or Resist?" Water 17, no. 17: 2638. https://doi.org/10.3390/w17172638
APA StyleGalir, A., Stević, F., Čmelar, K., Špoljarić Maronić, D., Žuna Pfeiffer, T., & Bek, N. (2025). A Decade of Change in the Floodplain Lake: Does Zooplankton Yield or Resist? Water, 17(17), 2638. https://doi.org/10.3390/w17172638