Low-Cost Adsorbents for the Removal of Pharmaceuticals from Surface Waters
Abstract
1. Introduction
2. Pharmaceuticals in Water
2.1. Occurrence of Pharmaceuticals in Surface Waters
2.2. The Impact of Pharmaceuticals on the Environment and Human Health
3. Adsorption
3.1. Classification of Adsorbents
3.1.1. Low-Cost Adsorbents
Lignin
Hemicellulose
Cellulose
Agricultural Wastes
Biochar
Clay
4. Physico-Chemical Factors Affecting Adsorption
4.1. Effect of Temperature
4.2. Effect of pH
4.3. Effect of the Adsorbate Initial Concentration
4.4. Effect of Adsorbent Dosage
4.5. Effect of Contact Time
5. Adsorption Mechanisms
5.1. Hydrogen Bonding
5.2. π-π Electron–Donor–Acceptor Interactions
5.3. Hydrophobic Interactions
5.4. Electrostatic Interactions
6. Surface Modification of Adsorbents
6.1. Chemical Modification
6.2. Physical Activation
7. Conclusions
8. Future Direction
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neha, R.; Adithya, S.; Jayaraman, R.S.; Gopinath, K.P.; Pandimadevi, M.; Praburaman, L.; Arun, J. Nano-Adsorbents an Effective Candidate for Removal of Toxic Pharmaceutical Compounds from Aqueous Environment: A Critical Review on Emerging Trends. Chemosphere 2021, 272, 129852. [Google Scholar] [CrossRef]
- Olasupo, A.; Suah, F.B.M. Recent Advances in the Removal of Pharmaceuticals and Endocrine-Disrupting Compounds in the Aquatic System: A Case of Polymer Inclusion Membranes. J. Hazard. Mater. 2021, 406, 124317. [Google Scholar] [CrossRef] [PubMed]
- Petrie, B.; Youdan, J.; Barden, R.; Kasprzyk-Hordern, B. Multi-Residue Analysis of 90 Emerging Contaminants in Liquid and Solid Environmental Matrices by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A 2016, 1431, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging Organic Contaminants in Groundwater: A Review of Sources, Fate and Occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Li, Y.; Han, S.; Ma, J. Adsorptive Removal of Antibiotics from Aqueous Solution Using Carbon Materials. Chemosphere 2016, 153, 365–385. [Google Scholar] [CrossRef]
- Ashiq, A.; Sarkar, B.; Adassooriya, N.; Walpita, J.; Rajapaksha, A.U.; Ok, Y.S.; Vithanage, M. Sorption Process of Municipal Solid Waste Biochar-Montmorillonite Composite for Ciprofloxacin Removal in Aqueous Media. Chemosphere 2019, 236, 124384. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Adsorptive Removal of Antibiotics from Water and Wastewater: Progress and Challenges. Sci. Total Environ. 2015, 532, 112–126. [Google Scholar] [CrossRef]
- Sim, W.-J.; Lee, J.-W.; Lee, E.-S.; Shin, S.-K.; Hwang, S.-R.; Oh, J.-E. Occurrence and Distribution of Pharmaceuticals in Wastewater from Households, Livestock Farms, Hospitals and Pharmaceutical Manufactures. Chemosphere 2011, 82, 179–186. [Google Scholar] [CrossRef]
- Rasheed, T.; Bilal, M.; Hassan, A.A.; Nabeel, F.; Bharagava, R.N.; Romanholo Ferreira, L.F.; Tran, H.N.; Iqbal, H.M.N. Environmental Threatening Concern and Efficient Removal of Pharmaceutically Active Compounds Using Metal-Organic Frameworks as Adsorbents. Environ. Res. 2020, 185, 109436. [Google Scholar] [CrossRef]
- Xiong, J.-Q.; Kurade, M.B.; Patil, D.V.; Jang, M.; Paeng, K.-J.; Jeon, B.-H. Biodegradation and Metabolic Fate of Levofloxacin via a Freshwater Green Alga, Scenedesmus Obliquus in Synthetic Saline Wastewater. Algal Res. 2017, 25, 54–61. [Google Scholar] [CrossRef]
- Vieira, W.T.; De Farias, M.B.; Spaolonzi, M.P.; Da Silva, M.G.C.; Vieira, M.G.A. Latest Advanced Oxidative Processes Applied for the Removal of Endocrine Disruptors from Aqueous Media—A Critical Report. J. Environ. Chem. Eng. 2021, 9, 105748. [Google Scholar] [CrossRef]
- Lu, D.; Ou, J.; Qian, J.; Xu, C.; Wang, H. Prediction of non-equilibrium transport of nitrate nitrogen from unsaturated soil to saturated aquifer in a watershed: Insights for groundwater quality and pollution risk assessment. J. Contam. Hydrol. 2025, 274, 104649. [Google Scholar] [CrossRef]
- Adewuyi, S.O.; Ibigbami, B.T.; Mmuoegbulam, A.O.; Abimbade, F.S.; Abiodun, O.M.; Klink, M.J.; Nelana, S.M.; Malomo, D.; Ayanda, O.S. Toxicity and health implications of pesticides and the need to remediate pesticide-contaminated wastewater through the advanced oxidation processes. Water Conserv. Manag. 2024, 8, 97–108. [Google Scholar] [CrossRef]
- Feng, L.; Van Hullebusch, E.D.; Rodrigo, M.A.; Esposito, G.; Oturan, M.A. Removal of Residual Anti-Inflammatory and Analgesic Pharmaceuticals from Aqueous Systems by Electrochemical Advanced Oxidation Processes. A Review. Chem. Eng. J. 2013, 228, 944–964. [Google Scholar] [CrossRef]
- Song, X.; Zhang, Y.; Cao, N.; Sun, D.; Zhang, Z.; Wang, Y.; Wen, Y.; Yang, Y.; Lyu, T. Sustainable Chromium (VI) Removal from Contaminated Groundwater Using Nano-Magnetite-Modified Biochar via Rapid Microwave Synthesis. Molecules 2020, 26, 103. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, N.; Behera, M.P.; Rajak, J.K.; Darbha, G.K. Biochar–nZVI Nanocomposite: Optimization of Grain Size and Fe0 Loading, Application and Removal Mechanism of Anionic Metal Species from Soft Water, Hard Water and Groundwater. Clean Technol. Environ. Policy 2020, 22, 1015–1024. [Google Scholar] [CrossRef]
- Ilavský, J.; Barloková, D. The Removal of Selected Pharmaceuticals from Water by Adsorption with Granular Activated Carbons. Eng. Proc. 2023, 57, 33. [Google Scholar] [CrossRef]
- Yankovych, H.; Melnyk, I.; Václavíková, M. Understanding of Mechanisms of Organohalogens Removal onto Mesoporous Granular Activated Carbon with Acid-Base Properties. Microporous Mesoporous Mater. 2021, 317, 110974. [Google Scholar] [CrossRef]
- Yu, Z.; Peldszus, S.; Huck, P.M. Adsorption of Selected Pharmaceuticals and an Endocrine Disrupting Compound by Granular Activated Carbon. 1. Adsorption Capacity and Kinetics. Environ. Sci. Technol. 2009, 43, 1467–1473. [Google Scholar] [CrossRef]
- Dalrymple, O.K.; Yeh, D.H.; Trotz, M.A. Removing Pharmaceuticals and Endocrine-Disrupting Compounds from Wastewater by Photocatalysis. J. Chem. Technol. Biotechnol. 2007, 82, 121–134. [Google Scholar] [CrossRef]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef] [PubMed]
- Gross-Sorokin, M.Y.; Roast, S.D.; Brighty, G.C. Assessment of Feminization of Male Fish in English Rivers by the Environment Agency of England and Wales. Environ. Health Perspect. 2006, 114, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.; Sellamuthu, B.; Ouarda, Y.; Drogui, P.; Tyagi, R.D.; Buelna, G. Review on Fate and Mechanism of Removal of Pharmaceutical Pollutants from Wastewater Using Biological Approach. Bioresour. Technol. 2017, 224, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.J.; Hameed, B.H. Removal of Emerging Pharmaceutical Contaminants by Adsorption in a Fixed-Bed Column: A Review. Ecotoxicol. Environ. Saf. 2018, 149, 257–266. [Google Scholar] [CrossRef]
- Quesada, H.B.; Baptista, A.T.A.; Cusioli, L.F.; Seibert, D.; De Oliveira Bezerra, C.; Bergamasco, R. Surface Water Pollution by Pharmaceuticals and an Alternative of Removal by Low-Cost Adsorbents: A Review. Chemosphere 2019, 222, 766–780. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; De Pedro, C.; Paxeus, N. Effluent from Drug Manufactures Contains Extremely High Levels of Pharmaceuticals. J. Hazard. Mater. 2007, 148, 751–755. [Google Scholar] [CrossRef]
- Amos Sibeko, P.; Naicker, D.; Mdluli, P.S.; Madikizela, L.M. Naproxen, Ibuprofen, and Diclofenac Residues in River Water, Sediments and Eichhornia crassipes of Mbokodweni River in South Africa: An Initial Screening. Environ. Forensics 2019, 20, 129–138. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Kosma, C.; Lambropoulou, D. Seasonal Occurrence, Removal, Mass Loading and Environmental Risk Assessment of 55 Pharmaceuticals and Personal Care Products in a Municipal Wastewater Treatment Plant in Central Greece. Sci. Total Environ. 2016, 543, 547–569. [Google Scholar] [CrossRef]
- Schaider, L.A.; Rudel, R.A.; Ackerman, J.M.; Dunagan, S.C.; Brody, J.G. Pharmaceuticals, Perfluorosurfactants, and Other Organic Wastewater Compounds in Public Drinking Water Wells in a Shallow Sand and Gravel Aquifer. Sci. Total Environ. 2014, 468–469, 384–393. [Google Scholar] [CrossRef]
- Lacey, C.; Basha, S.; Morrissey, A.; Tobin, J.M. Occurrence of Pharmaceutical Compounds in Wastewater Process Streams in Dublin, Ireland. Environ. Monit. Assess. 2012, 184, 1049–1062. [Google Scholar] [CrossRef]
- Abou-Elwafa Abdallah, M.; Nguyen, K.-H.; Ebele, A.J.; Atia, N.N.; Ali, H.R.H.; Harrad, S. A Single Run, Rapid Polarity Switching Method for Determination of 30 Pharmaceuticals and Personal Care Products in Waste Water Using Q-Exactive Orbitrap High Resolution Accurate Mass Spectrometry. J. Chromatogr. A 2019, 1588, 68–76. [Google Scholar] [CrossRef]
- Burns, E.E.; Carter, L.J.; Kolpin, D.W.; Thomas-Oates, J.; Boxall, A.B.A. Temporal and Spatial Variation in Pharmaceutical Concentrations in an Urban River System. Water Res. 2018, 137, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Praveena, S.M.; Mohd Rashid, M.Z.; Mohd Nasir, F.A.; Sze Yee, W.; Aris, A.Z. Occurrence and Potential Human Health Risk of Pharmaceutical Residues in Drinking Water from Putrajaya (Malaysia). Ecotoxicol. Environ. Saf. 2019, 180, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Asghar, M.A.; Zhu, Q.; Sun, S.; Peng, Y.; Shuai, Q. Suspect Screening and Target Quantification of Human Pharmaceutical Residues in the Surface Water of Wuhan, China, Using UHPLC-Q-Orbitrap HRMS. Sci. Total Environ. 2018, 635, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Matongo, S.; Birungi, G.; Moodley, B.; Ndungu, P. Pharmaceutical Residues in Water and Sediment of Msunduzi River, KwaZulu-Natal, South Africa. Chemosphere 2015, 134, 133–140. [Google Scholar] [CrossRef]
- Yang, Y.-Y.; Zhao, J.-L.; Liu, Y.-S.; Liu, W.-R.; Zhang, Q.-Q.; Yao, L.; Hu, L.-X.; Zhang, J.-N.; Jiang, Y.-X.; Ying, G.-G. Pharmaceuticals and Personal Care Products (PPCPs) and Artificial Sweeteners (ASs) in Surface and Ground Waters and Their Application as Indication of Wastewater Contamination. Sci. Total Environ. 2018, 616–617, 816–823. [Google Scholar] [CrossRef]
- Bean, T.G.; Rattner, B.A.; Lazarus, R.S.; Day, D.D.; Burket, S.R.; Brooks, B.W.; Haddad, S.P.; Bowerman, W.W. Pharmaceuticals in Water, Fish and Osprey Nestlings in Delaware River and Bay. Environ. Pollut. 2018, 232, 533–545. [Google Scholar] [CrossRef]
- Rivera-Jaimes, J.A.; Postigo, C.; Melgoza-Alemán, R.M.; Aceña, J.; Barceló, D.; López De Alda, M. Study of Pharmaceuticals in Surface and Wastewater from Cuernavaca, Morelos, Mexico: Occurrence and Environmental Risk Assessment. Sci. Total Environ. 2018, 613–614, 1263–1274. [Google Scholar] [CrossRef]
- Lindim, C.; Van Gils, J.; Georgieva, D.; Mekenyan, O.; Cousins, I.T. Evaluation of Human Pharmaceutical Emissions and Concentrations in Swedish River Basins. Sci. Total Environ. 2016, 572, 508–519. [Google Scholar] [CrossRef]
- Pereira, A.M.P.T.; Silva, L.J.G.; Laranjeiro, C.S.M.; Meisel, L.M.; Lino, C.M.; Pena, A. Human Pharmaceuticals in Portuguese Rivers: The Impact of Water Scarcity in the Environmental Risk. Sci. Total Environ. 2017, 609, 1182–1191. [Google Scholar] [CrossRef]
- Praveena, S.M.; Shaifuddin, S.N.M.; Sukiman, S.; Nasir, F.A.M.; Hanafi, Z.; Kamarudin, N.; Ismail, T.H.T.; Aris, A.Z. Pharmaceuticals Residues in Selected Tropical Surface Water Bodies from Selangor (Malaysia): Occurrence and Potential Risk Assessments. Sci. Total Environ. 2018, 642, 230–240. [Google Scholar] [CrossRef]
- Celle-Jeanton, H.; Schemberg, D.; Mohammed, N.; Huneau, F.; Bertrand, G.; Lavastre, V.; Le Coustumer, P. Evaluation of Pharmaceuticals in Surface Water: Reliability of PECs Compared to MECs. Environ. Int. 2014, 73, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Paíga, P.; Santos, L.H.M.L.M.; Ramos, S.; Jorge, S.; Silva, J.G.; Delerue-Matos, C. Presence of Pharmaceuticals in the Lis River (Portugal): Sources, Fate and Seasonal Variation. Sci. Total Environ. 2016, 573, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Mutiyar, P.K.; Gupta, S.K.; Mittal, A.K. Fate of Pharmaceutical Active Compounds (PhACs) from River Yamuna, India: An Ecotoxicological Risk Assessment Approach. Ecotoxicol. Environ. Saf. 2018, 150, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Carmona, E.; Andreu, V.; Picó, Y. Occurrence of Acidic Pharmaceuticals and Personal Care Products in Turia River Basin: From Waste to Drinking Water. Sci. Total Environ. 2014, 484, 53–63. [Google Scholar] [CrossRef]
- Chowdhury, J.; Mandal, T.K.; Mondal, S. Genotoxic Impact of Emerging Contaminant Amoxicillin Residue on Zebra Fish (Danio Rerio) Embryos. Heliyon 2020, 6, e05379. [Google Scholar] [CrossRef]
- Botelho, R.G.; Christofoletti, C.A.; Correia, J.E.; Ansoar, Y.; Olinda, R.A.; Tornisielo, V.L. Genotoxic Responses of Juvenile Tilapia (Oreochromis niloticus) Exposed to Florfenicol and Oxytetracycline. Chemosphere 2015, 132, 206–212. [Google Scholar] [CrossRef]
- Novak, M.; Žegura, B.; Modic, B.; Heath, E.; Filipič, M. Cytotoxicity and Genotoxicity of Anticancer Drug Residues and Their Mixtures in Experimental Model with Zebrafish Liver Cells. Sci. Total Environ. 2017, 601–602, 293–300. [Google Scholar] [CrossRef]
- Han, Y.; Ma, M.; Li, N.; Hou, R.; Huang, C.; Oda, Y.; Wang, Z. Chlorination, Chloramination and Ozonation of Carbamazepine Enhance Cytotoxicity and Genotoxicity: Multi-Endpoint Evaluation and Identification of Its Genotoxic Transformation Products. J. Hazard. Mater. 2018, 342, 679–688. [Google Scholar] [CrossRef]
- Bapat, S.A.; Jaspal, D.K. Surface-Modified Water Hyacinth (Eichhornia crassipes) over Activated Carbon for Wastewater Treatment: A Comparative Account. S. Afr. J. Chem. 2020, 73, 70–80. [Google Scholar] [CrossRef]
- Stjepanović, M.; Velić, N.; Galić, A.; Kosović, I.; Jakovljević, T.; Habuda-Stanić, M. From Waste to Biosorbent: Removal of Congo Red from Water by Waste Wood Biomass. Water 2021, 13, 279. [Google Scholar] [CrossRef]
- Singh, N.B.; Nagpal, G.; Agrawal, S. Rachna Water Purification by Using Adsorbents: A Review. Environ. Technol. Innov. 2018, 11, 187–240. [Google Scholar] [CrossRef]
- Awe, A.A.; Opeolu, B.O.; Fatoki, O.S.; Ayanda, O.S.; Jackson, V.A.; Snyman, R. Preparation and Characterisation of Activated Carbon from Vitisvinifera Leaf Litter and Its Adsorption Performance for Aqueous Phenanthrene. Appl. Biol. Chem. 2020, 63, 12. [Google Scholar] [CrossRef]
- Moro, T.R.; Henrique, F.R.; Malucelli, L.C.; De Oliveira, C.M.R.; Da Silva Carvalho Filho, M.A.; De Vasconcelos, E.C. Adsorption of Pharmaceuticals in Water through Lignocellulosic Fibers Synergism. Chemosphere 2017, 171, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Calisto, V.; Jaria, G.; Silva, C.P.; Ferreira, C.I.A.; Otero, M.; Esteves, V.I. Single and Multi-Component Adsorption of Psychiatric Pharmaceuticals onto Alternative and Commercial Carbons. J. Environ. Manag. 2017, 192, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Shi, Y.; Wang, X.; Li, Z. Sorption and Retention of Diclofenac on Zeolite in the Presence of Cationic Surfactant. J. Hazard. Mater. 2017, 323, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Jiang, W.; Xu, P. Comparative Study on Pharmaceuticals Adsorption in Reclaimed Water Desalination Concentrate Using Biochar: Impact of Salts and Organic Matter. Sci. Total Environ. 2017, 601–602, 857–864. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, X.; Cao, Z.; Zhan, Y.; Shi, X.; Yang, Y.; Zhou, J.; Xu, J. Adsorption Behavior and Mechanism of Chloramphenicols, Sulfonamides, and Non-Antibiotic Pharmaceuticals on Multi-Walled Carbon Nanotubes. J. Hazard. Mater. 2016, 310, 235–245. [Google Scholar] [CrossRef]
- Liang, Z.; Zhaob, Z.; Sun, T.; Shi, W.; Cui, F. Adsorption of Quinolone Antibiotics in Spherical Mesoporous Silica: Effects of the Retained Template and Its Alkyl Chain Length. J. Hazard. Mater. 2016, 305, 8–14. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Bikiaris, D.N.; Lambropoulou, D.A. Effect of Humic Acid on Pharmaceuticals Adsorption Using Sulfonic Acid Grafted Chitosan. J. Mol. Liq. 2017, 230, 1–5. [Google Scholar] [CrossRef]
- Zheng, S.; Li, X.; Zhang, X.; Wang, W.; Yuan, S. Effect of Inorganic Regenerant Properties on Pharmaceutical Adsorption and Desorption Performance on Polymer Anion Exchange Resin. Chemosphere 2017, 182, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Shan, D.; Deng, S.; Li, J.; Wang, H.; He, C.; Cagnetta, G.; Wang, B.; Wang, Y.; Huang, J.; Yu, G. Preparation of Porous Graphene Oxide by Chemically Intercalating a Rigid Molecule for Enhanced Removal of Typical Pharmaceuticals. Carbon 2017, 119, 101–109. [Google Scholar] [CrossRef]
- Dordio, A.V.; Miranda, S.; Prates Ramalho, J.P.; Carvalho, A.J.P. Mechanisms of Removal of Three Widespread Pharmaceuticals by Two Clay Materials. J. Hazard. Mater. 2017, 323, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, L.; Cheng, Z. Removal of Organic Pollutants from Aqueous Solution Using Agricultural Wastes: A Review. J. Mol. Liq. 2015, 212, 739–762. [Google Scholar] [CrossRef]
- Ge, S.; Yek, P.N.Y.; Cheng, Y.W.; Xia, C.; Wan Mahari, W.A.; Liew, R.K.; Peng, W.; Yuan, T.-Q.; Tabatabaei, M.; Aghbashlo, M.; et al. Progress in Microwave Pyrolysis Conversion of Agricultural Waste to Value-Added Biofuels: A Batch to Continuous Approach. Renew. Sustain. Energy Rev. 2021, 135, 110148. [Google Scholar] [CrossRef]
- Jinendra, U.; Bilehal, D.; Nagabhushana, B.M.; Kumar, A.P. Adsorptive Removal of Rhodamine B Dye from Aqueous Solution by Using Graphene–Based Nickel Nanocomposite. Heliyon 2021, 7, e06851. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and Non-Conventional Adsorbents for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 195–213. [Google Scholar] [CrossRef]
- Zhang, Y.; He, H.; Liu, Y.; Wang, Y.; Huo, F.; Fan, M.; Adidharma, H.; Li, X.; Zhang, S. Recent Progress in Theoretical and Computational Studies on the Utilization of Lignocellulosic Materials. Green Chem. 2019, 21, 9–35. [Google Scholar] [CrossRef]
- Hernández-Beltrán, J.U.; Hernández-De Lira, I.O.; Cruz-Santos, M.M.; Saucedo-Luevanos, A.; Hernández-Terán, F.; Balagurusamy, N. Insight into Pretreatment Methods of Lignocellulosic Biomass to Increase Biogas Yield: Current State, Challenges, and Opportunities. Appl. Sci. 2019, 9, 3721. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Yuan, Z.; Fang, J.; Chang, L.; Zhang, H.; Li, C. Role of Sulfonation in Lignin-Based Material for Adsorption Removal of Cationic Dyes. Int. J. Biol. Macromol. 2019, 135, 1171–1181. [Google Scholar] [CrossRef]
- Meng, Y.; Lu, J.; Cheng, Y.; Li, Q.; Wang, H. Lignin-Based Hydrogels: A Review of Preparation, Properties, and Application. Int. J. Biol. Macromol. 2019, 135, 1006–1019. [Google Scholar] [CrossRef]
- Li, C.; Zhao, X.; Wang, A.; Huber, G.W.; Zhang, T. Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem. Rev. 2015, 115, 11559–11624. [Google Scholar] [CrossRef] [PubMed]
- Manyatshe, A.; Cele, Z.E.D.; Balogun, M.O.; Nkambule, T.T.I.; Msagati, T.A.M. Lignocellulosic Derivative-Chitosan Biocomposite Adsorbents for the Removal of Soluble Contaminants in Aqueous Solutions—Preparation, Characterization and Applications. J. Water Process Eng. 2022, 47, 102654. [Google Scholar] [CrossRef]
- Rivas, S.; Vila, C.; Santos, V.; Parajó, J.C. Furfural Production from Birch Hemicelluloses by Two-Step Processing: A Potential Technology for Biorefineries. Holzforschung 2016, 70, 901–910. [Google Scholar] [CrossRef]
- Angelini, S.; Ingles, D.; Gelosia, M.; Cerruti, P.; Pompili, E.; Scarinzi, G.; Cavalaglio, G.; Cotana, F.; Malinconico, M. One-Pot Lignin Extraction and Modification in γ-Valerolactone from Steam Explosion Pre-Treated Lignocellulosic Biomass. J. Clean. Prod. 2017, 151, 152–162. [Google Scholar] [CrossRef]
- Cheng, H.; Feng, Q.; Liao, C.; Liu, Y.; Wu, D.; Wang, Q. Removal of Methylene Blue with Hemicellulose/Clay Hybrid Hydrogels. Chin. J. Polym. Sci. 2016, 34, 709–719. [Google Scholar] [CrossRef]
- Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial Application of Cellulose Nano-Composites—A Review. Biotechnol. Rep. 2019, 21, e00316. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, M.; Wang, X.; Huang, Q.; Min, Y.; Ma, T.; Niu, J. Removal of Crystal Violet by a Novel Cellulose-Based Adsorbent: Comparison with Native Cellulose. Ind. Eng. Chem. Res. 2014, 53, 5498–5506. [Google Scholar] [CrossRef]
- Lin, Y.; Fang, G.; Deng, Y.; Shen, K.; Wu, T.; Li, M. Highly Effective Removal of Methylene Blue Using a Chemi-Mechanical Pretreated Cellulose-Based Superabsorbent Hydrogel. BioResources 2018, 13, 8709–8722. [Google Scholar] [CrossRef]
- Garba, Z.N.; Lawan, I.; Zhou, W.; Zhang, M.; Wang, L.; Yuan, Z. Microcrystalline Cellulose (MCC) Based Materials as Emerging Adsorbents for the Removal of Dyes and Heavy Metals—A Review. Sci. Total Environ. 2020, 717, 135070. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. Utilization of Agro-Industrial and Municipal Waste Materials as Potential Adsorbents for Water Treatment—A Review. Chem. Eng. J. 2010, 157, 277–296. [Google Scholar] [CrossRef]
- Homagai, P.L.; Poudel, R.; Poudel, S.; Bhattarai, A. Adsorption and Removal of Crystal Violet Dye from Aqueous Solution by Modified Rice Husk. Heliyon 2022, 8, e09261. [Google Scholar] [CrossRef]
- Masoud, M.S.; El-Saraf, W.M.; Abdel-Halim, A.M.; Ali, A.E.; Mohamed, E.A.; Hasan, H.M.I. Rice Husk and Activated Carbon for Waste Water Treatment of El-Mex Bay, Alexandria Coast, Egypt. Arab. J. Chem. 2016, 9, S1590–S1596. [Google Scholar] [CrossRef]
- Ahmed, S.A.; El-Roudi, A.M.; Salem, A.A.A. Removal of Mn(II) from Ground Water by Solid Wastes of Sugar Industry. J. Environ. Sci. Technol. 2015, 8, 338–351. [Google Scholar] [CrossRef]
- Ezeonuegbu, B.A.; Machido, D.A.; Whong, C.M.Z.; Japhet, W.S.; Alexiou, A.; Elazab, S.T.; Qusty, N.; Yaro, C.A.; Batiha, G.E.-S. Agricultural Waste of Sugarcane Bagasse as Efficient Adsorbent for Lead and Nickel Removal from Untreated Wastewater: Biosorption, Equilibrium Isotherms, Kinetics and Desorption Studies. Biotechnol. Rep. 2021, 30, e00614. [Google Scholar] [CrossRef] [PubMed]
- Van Tran, T.; Bui, Q.T.P.; Nguyen, T.D.; Le, N.T.H.; Bach, L.G. A Comparative Study on the Removal Efficiency of Metal Ions (Cu2+, Ni2+, and Pb2+) Using Sugarcane Bagasse-Derived ZnCl2-Activated Carbon by the Response Surface Methodology. Adsorpt. Sci. Technol. 2017, 35, 72–85. [Google Scholar] [CrossRef]
- Mallampati, R.; Xuanjun, L.; Adin, A.; Valiyaveettil, S. Fruit Peels as Efficient Renewable Adsorbents for Removal of Dissolved Heavy Metals and Dyes from Water. ACS Sustain. Chem. Eng. 2015, 3, 1117–1124. [Google Scholar] [CrossRef]
- Shakoor, M.B.; Niazi, N.K.; Bibi, I.; Shahid, M.; Sharif, F.; Bashir, S.; Shaheen, S.M.; Wang, H.; Tsang, D.C.W.; Ok, Y.S.; et al. Arsenic Removal by Natural and Chemically Modified Water Melon Rind in Aqueous Solutions and Groundwater. Sci. Total Environ. 2018, 645, 1444–1455. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, X.; Ngo, H.H.; Guo, W.; Wen, H.; Li, C.; Zhang, Y.; Ma, C. Comparison Study on the Ammonium Adsorption of the Biochars Derived from Different Kinds of Fruit Peel. Sci. Total Environ. 2020, 707, 135544. [Google Scholar] [CrossRef]
- Chikri, R.; Elhadiri, N.; Benchanaa, M.; El Maguana, Y. Efficiency of Sawdust as Low-Cost Adsorbent for Dyes Removal. J. Chem. 2020, 2020, 8813420. [Google Scholar] [CrossRef]
- Tretsiakova-McNally, S.; Solan, B.; Currie, R.; Akinsanmi, O.; Arnscheidt, J.; McDermott, R.; Coleman, H.M. A ligno-cellulosic bio-adsorbent derived from sawdust waste for the removal of meropenem antibiotic dissolved in water. In Proceedings of the European Waste Water Management Conference, Birmingham, UK, 16–17 July 2019; Aqua Enviro: Birmingham, UK, 2020. [Google Scholar]
- Mallakpour, S.; Sirous, F.; Hussain, C.M. Sawdust, a Versatile, Inexpensive, Readily Available Bio-Waste: From Mother Earth to Valuable Materials for Sustainable Remediation Technologies. Adv. Colloid Interface Sci. 2021, 295, 102492. [Google Scholar] [CrossRef]
- Abudu, L.A.; Bhosale, R.; Arnscheidt, J.; Tretsiakova-McNally, S.; O’Hagan, B.; Adeyemi, D.; Oluseyi, T.; Luqman Adams, L.; Coleman, H.M. Tackling Antimicrobial Resistance: A Sustainable Method for the Removal of Antibiotics from Water. Antibiotics 2025, 14, 324. [Google Scholar] [CrossRef]
- Ahsan, A.; Islam, T.; Hernandez, C.; Castro, E.; Katla, S.K.; Kim, H.; Lin, Y.; Curry, M.L.; Gardea-Torresdey, J.; Noveron, J.C. Biomass Conversion of Saw Dust to a Functionalized Carbonaceous Materials for the Removal of Tetracycline, Sulfamethoxazole and Bisphenol A from Water. J. Environ. Chem. Eng. 2018, 6, 4329–4338. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Noubactep, C.; Mukome, F.N.D. Biochar-Based Water Treatment Systems as a Potential Low-Cost and Sustainable Technology for Clean Water Provision. J. Environ. Manag. 2017, 197, 732–749. [Google Scholar] [CrossRef] [PubMed]
- Sizirici, B.; Fseha, Y.H.; Yildiz, I.; Delclos, T.; Khaleel, A. The Effect of Pyrolysis Temperature and Feedstock on Date Palm Waste Derived Biochar to Remove Single and Multi-Metals in Aqueous Solutions. Sustain. Environ. Res. 2021, 31, 9. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A Critical Review on the Biochar Production Techniques, Characterization, Stability and Applications for Circular Bioeconomy. Biotechnol. Rep. 2020, 28, e00570. [Google Scholar] [CrossRef]
- Rafiq, M.K.; Bachmann, R.T.; Rafiq, M.T.; Shang, Z.; Joseph, S.; Long, R. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance. PLoS ONE 2016, 11, e0156894. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Zeghioud, H.; Fryda, L.; Djelal, H.; Assadi, A.; Kane, A. A Comprehensive Review of Biochar in Removal of Organic Pollutants from Wastewater: Characterization, Toxicity, Activation/Functionalization and Influencing Treatment Factors. J. Water Process Eng. 2022, 47, 102801. [Google Scholar] [CrossRef]
- Osagie, C.; Othmani, A.; Ghosh, S.; Malloum, A.; Kashitarash Esfahani, Z.; Ahmadi, S. Dyes Adsorption from Aqueous Media through the Nanotechnology: A Review. J. Mater. Res. Technol. 2021, 14, 2195–2218. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; Da Silva, E.B.; De Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of Metal Sorption by Biochars: Biochar Characteristics and Modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef] [PubMed]
- Fseha, Y.H.; Sizirici, B.; Yildiz, I. Manganese and Nitrate Removal from Groundwater Using Date Palm Biochar: Application for Drinking Water. Environ. Adv. 2022, 8, 100237. [Google Scholar] [CrossRef]
- Pellera, F.-M.; Giannis, A.; Kalderis, D.; Anastasiadou, K.; Stegmann, R.; Wang, J.-Y.; Gidarakos, E. Adsorption of Cu(II) Ions from Aqueous Solutions on Biochars Prepared from Agricultural by-Products. J. Environ. Manag. 2012, 96, 35–42. [Google Scholar] [CrossRef]
- Hadjittofi, L.; Prodromou, M.; Pashalidis, I. Activated Biochar Derived from Cactus Fibres—Preparation, Characterization and Application on Cu(II) Removal from Aqueous Solutions. Bioresour. Technol. 2014, 159, 460–464. [Google Scholar] [CrossRef]
- Huang, L.; Liu, G.; Dong, G.; Wu, X.; Wang, C.; Liu, Y. Reaction mechanism of zero-valent iron coupling with microbe to degrade tetracycline in permeable reactive barrier (PRB). Chem. Eng. J. 2017, 316, 525–533. [Google Scholar] [CrossRef]
- Ai, T.; Jiang, X.; Liu, Q.; Lv, L.; Wu, H. Daptomycin adsorption on magnetic ultra-fine wood-based biochars from water: Kinetics, isotherms, and mechanism studies. Bioresour. Technol. 2019, 273, 8–15. [Google Scholar] [CrossRef]
- Zhao, H.; Lang, Y. Adsorption behaviors and mechanisms of florfenicol by magnetic functionalized biochar and reed biochar. J. Taiwan Inst. Chem. Eng. 2018, 88, 152–160. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Sun, J.; Chen, J.; Zhang, J.; Wang, Y.; Zhang, H. Adsorption of enrofloxacin on acid/alkali-modified corn stalk biochar. Spectrosc. Lett. 2019, 52, 367–375. [Google Scholar] [CrossRef]
- Gurav, R.; Bhatia, S.K.; Choi, T.R.; Park, Y.L.; Park, J.Y.; Han, Y.H.; Yang, Y.H. Treatment of furazolidone contaminated water using banana pseudostem biochar engineered with facile synthesized magnetic nanocomposites. Bioresour. Technol. 2020, 297, 122472. [Google Scholar] [CrossRef]
- Heo, J.; Yoon, Y.; Lee, G.; Kim, Y.; Han, J.; Park, C.M. Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4–biochar composite. Bioresour. Technol. 2019, 281, 179–187. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Zhao, X.; Li, X.; Xie, X. Magnetic Biochar-Based Manganese Oxide Composite for Enhanced Fluoroquinolone Antibiotic Removal from Water. Environ. Sci. Pollut. Res. 2018, 25, 31136–31148. [Google Scholar] [CrossRef]
- Eniola, J.O.; Sizirici, B.; Fseha, Y.; Shaheen, J.F.; Aboulella, A.M. Application of Conventional and Emerging Low-Cost Adsorbents as Sustainable Materials for Removal of Contaminants from Water. Environ. Sci Pollut. Res. 2023, 30, 88245–88271. [Google Scholar] [CrossRef]
- Zvulunov, Y.; Ben-Barak-Zelas, Z.; Fishman, A.; Radian, A. A Self-Regenerating Clay-Polymer-Bacteria Composite for Formaldehyde Removal from Water. Chem. Eng. J. 2019, 374, 1275–1285. [Google Scholar] [CrossRef]
- Ewis, D.; Ba-Abbad, M.M.; Benamor, A.; El-Naas, M.H. Adsorption of Organic Water Pollutants by Clays and Clay Minerals Composites: A Comprehensive Review. Appl. Clay Sci. 2022, 229, 106686. [Google Scholar] [CrossRef]
- Kumar, A.S.K.; Kalidhasan, S.; Rajesh, V.; Rajesh, N. Application of Cellulose-Clay Composite Biosorbent toward the Effective Adsorption and Removal of Chromium from Industrial Wastewater. Ind. Eng. Chem. Res. 2012, 51, 58–69. [Google Scholar] [CrossRef]
- Teich-McGoldrick, S.L.; Greathouse, J.A.; Jové-Colón, C.F.; Cygan, R.T. Swelling Properties of Montmorillonite and Beidellite Clay Minerals from Molecular Simulation: Comparison of Temperature, Interlayer Cation, and Charge Location Effects. J. Phys. Chem. C 2015, 119, 20880–20891. [Google Scholar] [CrossRef]
- Diagboya, P.N.; Olu-Owolabi, B.I.; Mtunzi, F.M.; Adebowale, K.O. Clay-Carbonaceous Material Composites: Towards a New Class of Functional Adsorbents for Water Treatment. Surf. Interfaces 2020, 19, 100506. [Google Scholar] [CrossRef]
- Tao, H.; Qian, X.; Zhou, Y.; Cheng, H. Research Progress of Clay Minerals in Carbon Dioxide Capture. Renew. Sustain. Energy Rev. 2022, 164, 112536. [Google Scholar] [CrossRef]
- Tabrizi, S.H.; Tanhaei, B.; Ayati, A.; Ranjbari, S. Substantial Improvement in the Adsorption Behavior of Montmorillonite toward Tartrazine through Hexadecylamine Impregnation. Environ. Res. 2022, 204, 111965. [Google Scholar] [CrossRef]
- Mirmohamadsadeghi, S.; Kaghazchi, T.; Soleimani, M.; Asasian, N. An Efficient Method for Clay Modification and Its Application for Phenol Removal from Wastewater. Appl. Clay Sci. 2012, 59–60, 8–12. [Google Scholar] [CrossRef]
- Dehmani, Y.; Sellaoui, L.; Alghamdi, Y.; Lainé, J.; Badawi, M.; Amhoud, A.; Bonilla-Petriciolet, A.; Lamhasni, T.; Abouarnadasse, S. Kinetic, Thermodynamic and Mechanism Study of the Adsorption of Phenol on Moroccan Clay. J. Mol. Liq. 2020, 312, 113383. [Google Scholar] [CrossRef]
- Adeniyi, A.G.; Ighalo, J.O. Biosorption of Pollutants by Plant Leaves: An Empirical Review. J. Environ. Chem. Eng. 2019, 7, 103100. [Google Scholar] [CrossRef]
- Chang, J.; Shen, Z.; Hu, X.; Schulman, E.; Cui, C.; Guo, Q.; Tian, H. Adsorption of Tetracycline by Shrimp Shell Waste from Aqueous Solutions: Adsorption Isotherm, Kinetics Modeling, and Mechanism. ACS Omega 2020, 5, 3467–3477. [Google Scholar] [CrossRef] [PubMed]
- Olu-Owolabi, B.I.; Alabi, A.H.; Diagboya, P.N.; Unuabonah, E.I.; Düring, R.-A. Adsorptive Removal of 2,4,6-Trichlorophenol in Aqueous Solution Using Calcined Kaolinite-Biomass Composites. J. Environ. Manag. 2017, 192, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.-W.; Lee, S.Y.; Lee, Y.J. Hydrothermal Synthesis of Hierarchically Structured Birnessite-Type MnO2/Biochar Composites for the Adsorptive Removal of Cu(II) from Aqueous Media. Bioresour. Technol. 2018, 260, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Lonappan, L.; Rouissi, T.; Kaur Brar, S.; Verma, M.; Surampalli, R.Y. An Insight into the Adsorption of Diclofenac on Different Biochars: Mechanisms, Surface Chemistry, and Thermodynamics. Bioresour. Technol. 2018, 249, 386–394. [Google Scholar] [CrossRef]
- Vigneshwaran, S.; Sirajudheen, P.; Nikitha, M.; Ramkumar, K.; Meenakshi, S. Facile Synthesis of Sulfur-Doped Chitosan/Biochar Derived from Tapioca Peel for the Removal of Organic Dyes: Isotherm, Kinetics and Mechanisms. J. Mol. Liq. 2021, 326, 115303. [Google Scholar] [CrossRef]
- Zhu, Y.; Dai, W.; Deng, K.; Pan, T.; Guan, Z. Efficient Removal of Cr(VI) from Aqueous Solution by Fe-Mn Oxide-Modified Biochar. Water Air Soil Pollut. 2020, 231, 61. [Google Scholar] [CrossRef]
- Tan, G.; Wu, Y.; Liu, Y.; Xiao, D. Removal of Pb(II) Ions from Aqueous Solution by Manganese Oxide Coated Rice Straw Biochar A Low-Cost and Highly Effective Sorbent. J. Taiwan Inst. Chem. Eng. 2018, 84, 85–92. [Google Scholar] [CrossRef]
- Chin, J.F.; Heng, Z.W.; Teoh, H.C.; Chong, W.C.; Pang, Y.L. Recent Development of Magnetic Biochar Crosslinked Chitosan on Heavy Metal Removal from Wastewater—Modification, Application and Mechanism. Chemosphere 2022, 291, 133035. [Google Scholar] [CrossRef]
- Baccar, R.; Sarrà, M.; Bouzid, J.; Feki, M.; Blánquez, P. Removal of Pharmaceutical Compounds by Activated Carbon Prepared from Agricultural By-Product. Chem. Eng. J. 2012, 211–212, 310–317. [Google Scholar] [CrossRef]
- Sayin, F.; Akar, S.T.; Akar, T. From Green Biowaste to Water Treatment Applications: Utilization of Modified New Biochar for the Efficient Removal of Ciprofloxacin. Sustain. Chem. Pharm. 2021, 24, 100522. [Google Scholar] [CrossRef]
- Bankole, D.T.; Oluyori, A.P.; Inyinbor, A.A. The Removal of Pharmaceutical Pollutants from Aqueous Solution by Agro-Waste. Arab. J. Chem. 2023, 16, 104699. [Google Scholar] [CrossRef]
- Trinh, V.T.; Nguyen, T.M.P.; Van, H.T.; Hoang, L.P.; Nguyen, T.V.; Ha, L.T.; Vu, X.H.; Pham, T.T.; Nguyen, T.N.; Quang, N.V.; et al. Phosphate Adsorption by Silver Nanoparticles-Loaded Activated Carbon Derived from Tea Residue. Sci. Rep. 2020, 10, 3634. [Google Scholar] [CrossRef]
- Chen, M.; Coasne, B.; Guyer, R.; Derome, D.; Carmeliet, J. Role of Hydrogen Bonding in Hysteresis Observed in Sorption-Induced Swelling of Soft Nanoporous Polymers. Nat. Commun. 2018, 9, 3507. [Google Scholar] [CrossRef]
- Ahmed, I.; Jhung, S.H. Applications of Metal-Organic Frameworks in Adsorption/Separation Processes via Hydrogen Bonding Interactions. Chem. Eng. J. 2017, 310, 197–215. [Google Scholar] [CrossRef]
- Olusegun, S.J.; Larrea, G.; Osial, M.; Jackowska, K.; Krysinski, P. Photocatalytic Degradation of Antibiotics by Superparamagnetic Iron Oxide Nanoparticles. Tetracycline Case. Catalysts 2021, 11, 1243. [Google Scholar] [CrossRef]
- Hu, X.; Xie, Y.; He, R.; Yao, L.; Ma, S.; Bai, C. Nano-Iron Wrapped by Graphitic Carbon in the Carbonaceous Matrix for Efficient Removal of Chlortetracycline. Sep. Purif. Technol. 2021, 279, 119693. [Google Scholar] [CrossRef]
- Weng, X.; Cai, W.; Owens, G.; Chen, Z. Magnetic Iron Nanoparticles Calcined from Biosynthesis for Fluoroquinolone Antibiotic Removal from Wastewater. J. Clean. Prod. 2021, 319, 128734. [Google Scholar] [CrossRef]
- Jing, X.-R.; Wang, Y.-Y.; Liu, W.-J.; Wang, Y.-K.; Jiang, H. Enhanced Adsorption Performance of Tetracycline in Aqueous Solutions by Methanol-Modified Biochar. Chem. Eng. J. 2014, 248, 168–174. [Google Scholar] [CrossRef]
- Paredes-Laverde, M.; Silva-Agredo, J.; Torres-Palma, R.A. Removal of Norfloxacin in Deionized, Municipal Water and Urine Using Rice (Oryza sativa) and Coffee (Coffea arabica) Husk Wastes as Natural Adsorbents. J. Environ. Manag. 2018, 213, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-X.; Wang, M.-X. Anion−π Interactions: Generality, Binding Strength, and Structure. J. Am. Chem. Soc. 2013, 135, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Das, A. The n → π* Interaction: A Rapidly Emerging Non-Covalent Interaction. Phys. Chem. Chem. Phys. 2015, 17, 9596–9612. [Google Scholar] [CrossRef] [PubMed]
- Mpupa, A.; Nqombolo, A.; Mizaikoff, B.; Nomngongo, P.N. Enhanced Adsorptive Removal of β-Estradiol from Aqueous and Wastewater Samples by Magnetic Nano-Akaganeite: Adsorption Isotherms, Kinetics, and Mechanism. Processes 2020, 8, 1197. [Google Scholar] [CrossRef]
- Muca, R.; Kołodziej, M.; Piątkowski, W.; Carta, G.; Antos, D. Effects of Negative and Positive Cooperative Adsorption of Proteins on Hydrophobic Interaction Chromatography Media. J. Chromatogr. A 2020, 1625, 461309. [Google Scholar] [CrossRef]
- He, S.; Liu, X.; Yan, P.; Wang, A.; Su, J.; Su, X. Preparation of Gemini Surfactant/Graphene Oxide Composites and Their Superior Performance for Congo Red Adsorption. RSC Adv. 2019, 9, 4908–4916. [Google Scholar] [CrossRef]
- Villaescusa, I.; Fiol, N.; Poch, J.; Bianchi, A.; Bazzicalupi, C. Mechanism of Paracetamol Removal by Vegetable Wastes: The Contribution of π–π Interactions, Hydrogen Bonding and Hydrophobic Effect. Desalination 2011, 270, 135–142. [Google Scholar] [CrossRef]
- McCue, J.T. Chapter 25 Theory and Use of Hydrophobic Interaction Chromatography in Protein Purification Applications. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2009; Volume 463, pp. 405–414. ISBN 978-0-12-374536-1. [Google Scholar]
- Shi, S.; Fan, Y.; Huang, Y. Facile Low Temperature Hydrothermal Synthesis of Magnetic Mesoporous Carbon Nanocomposite for Adsorption Removal of Ciprofloxacin Antibiotics. Ind. Eng. Chem. Res. 2013, 52, 2604–2612. [Google Scholar] [CrossRef]
- Xiang, Y.; Yang, X.; Xu, Z.; Hu, W.; Zhou, Y.; Wan, Z.; Yang, Y.; Wei, Y.; Yang, J.; Tsang, D.C.W. Fabrication of Sustainable Manganese Ferrite Modified Biochar from Vinasse for Enhanced Adsorption of Fluoroquinolone Antibiotics: Effects and Mechanisms. Sci. Total Environ. 2020, 709, 136079. [Google Scholar] [CrossRef]
- Peng, H.; Pan, B.; Wu, M.; Liu, Y.; Zhang, D.; Xing, B. Adsorption of Ofloxacin and Norfloxacin on Carbon Nanotubes: Hydrophobicity- and Structure-Controlled Process. J. Hazard. Mater. 2012, 233–234, 89–96. [Google Scholar] [CrossRef]
- Adamczyk, Z.; Warszyński, P. Role of Electrostatic Interactions in Particle Adsorption. Adv. Colloid Interface Sci. 1996, 63, 41–149. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Cui, Y.; Shi, J.; Meng, X.; Zhang, J.; He, H. Magnetite Nanoparticles Modified β-Cyclodextrin PolymerCoupled with KMnO4 Oxidation for Adsorption and Degradation of Acetaminophen. Carbohydr. Polym. 2019, 222, 114972. [Google Scholar] [CrossRef] [PubMed]
- Bernal, V.; Erto, A.; Giraldo, L.; Moreno-Piraján, J. Effect of Solution pH on the Adsorption of Paracetamol on Chemically Modified Activated Carbons. Molecules 2017, 22, 1032. [Google Scholar] [CrossRef]
- Reguyal, F.; Sarmah, A.K. Adsorption of Sulfamethoxazole by Magnetic Biochar: Effects of pH, Ionic Strength, Natural Organic Matter and 17α-Ethinylestradiol. Sci. Total Environ. 2018, 628–629, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Nassar, M.Y.; Ahmed, I.S.; Hendy, H.S. A Facile One-Pot Hydrothermal Synthesis of Hematite (α-Fe2O3) Nanostructures and Cephalexin Antibiotic Sorptive Removal from Polluted Aqueous Media. J. Mol. Liq. 2018, 271, 844–856. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; Wan, Z.; Sun, Y.; Tsang, D.C.W.; Gupta, J.; Gao, B.; Cao, X.; Tang, J.; Ok, Y.S. Ball Milling as a Mechanochemical Technology for Fabrication of Novel Biochar Nanomaterials. Bioresour. Technol. 2020, 312, 123613. [Google Scholar] [CrossRef]
- Nam, S.-W.; Choi, D.-J.; Kim, S.-K.; Her, N.; Zoh, K.-D. Adsorption Characteristics of Selected Hydrophilic and Hydrophobic Micropollutants in Water Using Activated Carbon. J. Hazard. Mater. 2014, 270, 144–152. [Google Scholar] [CrossRef]
- Masanje Malima, N.; John Owonubi, S.; Hellen Lugwisha, E.; Simon Mwakaboko, A. Development of Cost-Effective and Eco-Friendly Adsorbent by Direct Physical Activation of Tanzanian Malangali Kaolinite for Efficient Removal of Heavy Metals. Mater. Today Proc. 2021, 38, 1126–1132. [Google Scholar] [CrossRef]
- Ahmed, W.; Khushnood, R.A.; Memon, S.A.; Ahmad, S.; Baloch, W.L.; Usman, M. Effective Use of Sawdust for the Production of Eco-Friendly and Thermal-Energy Efficient Normal Weight and Lightweight Concretes with Tailored Fracture Properties. J. Clean. Prod. 2018, 184, 1016–1027. [Google Scholar] [CrossRef]
- Martins, A.C.; Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Yamazaki, D.A.S.; Bandoch, G.F.G.; Asefa, T.; Visentainer, J.V.; Almeida, V.C. Removal of Tetracycline by NaOH-Activated Carbon Produced from Macadamia Nut Shells: Kinetic and Equilibrium Studies. Chem. Eng. J. 2015, 260, 291–299. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Dong, C.-D.; Su, J.-F.; Wang, P.-Y.; Chen, C.-W.; Chang, J.-S.; Kim, H.; Huang, C.-P.; Hung, C.-M. The Role of Biochar in Regulating the Carbon, Phosphorus, and Nitrogen Cycles Exemplified by Soil Systems. Sustainability 2021, 13, 5612. [Google Scholar] [CrossRef]
- Olusegun, S.J.; Rodrigues, G.L.S.; Freitas, E.T.F.; Lara, L.R.S.; Rocha, W.R.; Mohallem, N.D.S. Sequestrating Anionic and Cationic Dyes from Wastewater Using Spray Dried Biopolymeric Magnetic Composite: Experimental and Theoretical Studies. J. Hazard. Mater. 2019, 380, 120872. [Google Scholar] [CrossRef]
- Delmond, B.; Tretsiakova-McNally, S.; Solan, B.; McDermott, R.; Audoin, A. A Sustainable Method to Reduce Vancomycin Concentrations in Water using Timber Waste. Water Air Soil Pollut. 2023, 234, 81. [Google Scholar] [CrossRef]
- Onyekachukwu, E.; Nesbitt, H.; Tretsiakova-McNally, S.; Coleman, H. A Low-cost Material for the Adsorption of Antibiotics. In Proceedings of the 34th Irish Environmental Researchers Colloquium, Waterford, Ireland, 25–27 March 2024; p. 77. [Google Scholar]
- Coleman, H.M.; Nesbitt, H.; Arnscheidt, J.; Tretsiakova-McNally, S. Removal of pharmaceuticals in water using low-cost materials. In Proceedings of the European Wastewater Management Conference & Exhibition, Manchester, UK, 2–3 July 2024. [Google Scholar]
- Zhou, Y.; Leong, S.Y.; Li, Q. Modified Biochar for Removal of Antibiotics and Antibiotic Resistance Genes in the Aqueous Environment: A Review. J. Water Process Eng. 2023, 55, 104222. [Google Scholar] [CrossRef]
Compounds | pKa | Minimum Level (ng/L) | Maximum Level (ng/L) | Country | Reference |
---|---|---|---|---|---|
Antibiotics | |||||
Metronidazole | 2.38 | 0 | 13.51 | Bangladesh | [1] |
0 | 5.10 | China | [2] | ||
Trimethoprim | 7.12 | 0 | 17.20 | Bangladesh | [1] |
0 | 15.70 | China | [2] | ||
0 | 290 | South Africa | [3] | ||
0 | 76 | UK | [4] | ||
0.40 | 52.10 | China | [5] | ||
0 | 2.29 | USA | [6] | ||
34 | 74 | Mexico | [7] | ||
0.02 | 0.33 | Sweden | [8] | ||
Erythromycin | 8.88 | 10.20 | 183 | China | [5] |
0 | 240 | South Africa | [3] | ||
0 | 6.46 | Bangladesh | [1] | ||
0 | 263 | UK | [4] | ||
32.89 | 38.80 | Portugal | [9] | ||
Sulfamethoxazole | 1.6; 5.7 | 2.83 | 20.80 | China | [5] |
108 | 502 | Mexico | [7] | ||
0 | 0.14 | Sweden | [8] | ||
0 | 2.50 | China | [2] | ||
19.26 | 114.24 | Malaysia | [10] | ||
0 | 5320 | South Africa | [3] | ||
0 | 14.73 | USA | [6] | ||
0 | 7.24 | Bangladesh | [1] | ||
0 | 43 | Portugal | [39] | ||
Antiepileptic medications | |||||
Carbamazepine | 13.9 | 0 | 3.50 | China | [5] |
0 | 36 | Mexico | [7] | ||
0 | 5.80 | France | [11] | ||
0.94 | 9.39 | USA | [6] | ||
0 | 8.80 | Bangladesh | [1] | ||
Central nervous system (CNS) stimulants | |||||
Caffeine | 14 | 0 | 2640 | India | [11] |
0 | 220 | China | [2] | ||
0 | 81 | France | [11] | ||
8.05 | 26.92 | USA | [6] | ||
0 | 332 | South Africa | [3] |
Biochar Feedstock | Antibiotic | Modification Agent | Specific Surface Area (m2/g) | pH | Adsorption Capacity (Mg/g) | Reference |
---|---|---|---|---|---|---|
Poplar | Tetracycline | KOH | 1.61 | 5 | 21.17 | [106] |
Pine wood | Daptomycin | Fe3O4 | 634.218 | 4 | 212.77 | [107] |
Reed stalk | Florfenicol | FeSO4⋅7H2O | 254.6 | 6 | 9.29 | [108] |
Banana | Furazolidone | FeCl2⋅4H2O | 116.97 | 7.5 | 37.45 | [109] |
Corn stalk | Enrofloxacin | KOH | 22.69 | 3 | 58.29 | [110] |
Bamboo | Sulfamethoxazole | Fe2O3 | 61.48 | 6 | 212.8 | [111] |
Biochar Feedstocks | Reagents of Modification | Specific Surface Area (m2/g) | Reference | |
---|---|---|---|---|
Before | After | |||
Modification | Modification | |||
Bamboo | Fe2O3 | 24.56 | 61.48 | [111] |
Potato stems and leaves | KMnO4 | 99.43 | 252.00 | [112] |
Corn stalk | H3PO4 | 3.01 | 14.17 | [113] |
Willow wood | Fe3O4 | 607.076 | 662.066 | [107] |
Reed stalk powder | FeSO4⋅7H2O | 58.75 | 254.6 | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onyekachukwu, E.; Nesbitt, H.; Tretsiakova-McNally, S.; Coleman, H. Low-Cost Adsorbents for the Removal of Pharmaceuticals from Surface Waters. Water 2025, 17, 2619. https://doi.org/10.3390/w17172619
Onyekachukwu E, Nesbitt H, Tretsiakova-McNally S, Coleman H. Low-Cost Adsorbents for the Removal of Pharmaceuticals from Surface Waters. Water. 2025; 17(17):2619. https://doi.org/10.3390/w17172619
Chicago/Turabian StyleOnyekachukwu, Erwin, Heather Nesbitt, Svetlana Tretsiakova-McNally, and Heather Coleman. 2025. "Low-Cost Adsorbents for the Removal of Pharmaceuticals from Surface Waters" Water 17, no. 17: 2619. https://doi.org/10.3390/w17172619
APA StyleOnyekachukwu, E., Nesbitt, H., Tretsiakova-McNally, S., & Coleman, H. (2025). Low-Cost Adsorbents for the Removal of Pharmaceuticals from Surface Waters. Water, 17(17), 2619. https://doi.org/10.3390/w17172619