An Assessment Model for Winter Wheat Crop Water Status Fusing Hyperspectral and Environmental Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Experiment Design
2.3. Data Measurements
2.3.1. Canopy Spectral Data Acquisition
2.3.2. Determination of Water Content of Winter Wheat Plant
2.3.3. Determination of Soil Moisture Content of Winter Wheat
2.3.4. Determination of Canopy Temperature and Ground Temperature of Winter Wheat
2.4. Hyperspectral Data Preprocessing and Spectral Index Calculation
2.5. Modeling Method
2.6. Technology Roadmap
3. Results
3.1. Water Content Variation in Winter Wheat During Growth Stages
3.2. Canopy Spectral Reflectance Variations of Winter Wheat Across Growth Stages
3.3. Correlation Between Winter Wheat Plant Water Content and Influencing Factors Across Growth Stages
3.4. Estimating Winter Wheat Plant Water Content Across Growth Stages Using Canopy Hyperspectral Indices
3.5. Estimating Winter Wheat Water Content Across Growth Stages by Integrating Canopy Hyperspectral Indices and Environmental Variables
3.6. Hyperspectral-Environmental Fusion Approach for Winter Wheat Water Content Monitoring Across Growth Stages
4. Discussion
4.1. Spectral Reflectance and Water Content Relationship in Winter Wheat Plants
4.2. Environmental Factors and Water Content in Winter Wheat Plants
4.3. Improving Winter Wheat Water Content Prediction During Critical Growth Stages by Integrating Proximal Hyperspectral Indices and Environmental Factors
4.4. Improving Winter Wheat Water Content Prediction Across Growth Stages by Integrating Hyperspectral Indices and Environmental Factors
4.5. Practical Significance, Limitations, and Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, U.; Jamal, A.; Iqbal, W.; Durrishahwar; Qayyum, U.; Saeed, M.F.; Ali, A.; Ronga, D.; Dewir, Y.H.; Černý, J. Integrated management of nitrogen and spent mushroom compost for improved wheat yield and soil fertility. J. Soil Sci. Plant Nut. 2025, 25, 3354–3371. [Google Scholar] [CrossRef]
- Jamal, A.; Saeed, M.F.; Mihoub, A.; Hopkins, B.G.; Ahmad, I.; Naeem, A. Integrated use of phosphorus fertilizer and farmyard manure improves wheat productivity by improving soil quality and P availability in calcareous soil under subhumid conditions. Front. Plant Sci. 2023, 14, 1034421. Available online: https://pubmed.ncbi.nlm.nih.gov/36755699/ (accessed on 13 July 2025). [CrossRef]
- Wang, Y.; Peng, Y.; Lin, J.; Wang, L.; Jia, Z.; Zhang, R. Optimal nitrogen management to achieve high wheat grain yield, grain protein content, and water productivity: A meta-analysis. Agric. Water Manag. 2023, 290, 108587. [Google Scholar] [CrossRef]
- Triana-Martinez, J.C.; Álvarez-Meza, A.M.; Gil-González, J.; De Swaef, T.; Fernandez-Gallego, J.A. Crop water status analysis from complex agricultural data using UMAP-based local biplot. Remote Sens. 2024, 16, 2854. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, H.; Ren, C.; Sun, D.; Yang, J. Optimization allocation of irrigation water resources based on crop water requirement under considering effective precipitation and uncertainty. Agric. Water Manag. 2020, 239, 106264. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0378377419323716 (accessed on 13 July 2025). [CrossRef]
- Zhao, W.; Liu, L.; Shen, Q.; Yang, J.; Han, X.; Tian, F.; Wu, J. Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water 2020, 12, 2127. [Google Scholar] [CrossRef]
- Jihua, W.; Chunjiang, Z.; Wenjiang, H.; Xiaowei, G.; Hongxiang, L. Effect of soil water content on the wheat leaf water content and the physiological function. J. Triticeae Crops 2001, 21, 42–47. [Google Scholar]
- Zhang, C.W.; Qi, Y.Q.; Dai, M.H.; Zhang, Y.C.; Shen, Y.J. Effects of multi-factor on water use efficiency as identifid by the SEM method in irrigated wheat farmlands in the North China Plain. Chin. J. Eco Agric. 2020, 28, 876–886. Available online: https://ecoagri.ac.cn/en/article/doi/10.13930/j.cnki.cjea.190924?viewType=HTML (accessed on 13 July 2025).
- Scholander, P.F.; Bradstreet, E.D.; Hemmingsen, E.A.; Hammel, H.T. Sap Pressure in Vascular Plants: Negative hydrostatic pressure can be measured in plants. Science 1965, 148, 339–346. Available online: https://pubmed.ncbi.nlm.nih.gov/17832103/ (accessed on 13 July 2025). [CrossRef] [PubMed]
- Jones, H.G. Monitoring plant and soil water status: Established and novel methods revisited and their relevance to studies of drought tolerance. J. Exp. Bot. 2007, 58, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Qi, Z.; Burghate, R.; Yuan, S.; Jiao, X.; Xu, J. Irrigation scheduling approaches and applications: A review. J. Irrig. Drain. Eng. 2020, 146, 4020007. [Google Scholar] [CrossRef]
- Li, Z.; Leng, P.; Zhou, C.; Chen, K.; Zhou, F.; Shang, G. Soil moisture retrieval from remote sensing measurements: Current knowledge and directions for the future. Earth Sci. Rev. 2021, 218, 103673. [Google Scholar] [CrossRef]
- Qu, T.; Li, Y.; Zhao, Q.; Yin, Y.; Wang, Y.; Li, F.; Zhang, W. Drone-based multispectral remote sensing inversion for typical crop soil moisture under dry farming conditions. Agriculture 2024, 14, 484. [Google Scholar] [CrossRef]
- Li, K.; Chang, Q.R.; Chen, Q.; Chen, X.K.; Mo, H.Y.; Zhang, Y.D.; Zhang, Z.K. Estimation of water content in canopy leaf of winter wheat based on continuous wavelet transform coupled cars algorithm. J. Triticeae Crops 2023, 43, 251–258. Available online: https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=202302218960762545 (accessed on 13 July 2025).
- Zhou, J.; Zhang, Y.; Han, Z.; Liu, X.; Jian, Y.; Hu, C.; Dian, Y. Evaluating the performance of hyperspectral leaf reflectance to detect water stress and estimation of photosynthetic capacities. Remote Sens. 2021, 13, 2160. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Q.; Yao, Y.; Du, S.; Zhang, C.; Li, J.; Zhao, J. Estimating and validating wheat leaf water content with three modis spectral indexes: A case study in Ningxia Plain, China. J. Agric. Sci. Technol. 2016, 18, 387–398. [Google Scholar]
- Mali, S.S.; Scobie, M.; Baillie, J.; Plant, C.; Shammi, S.; Das, A. Integrating UAV-based multispectral and thermal infrared imageries with machine learning for predicting water stress in winter wheat. Precis. Agric. 2025, 26, 44. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Xiong, S.; Song, Z.; Tian, W.; Shi, L.; Ma, X. Comparison of New Hyperspectral Index and Machine Learning Models for Prediction of Winter Wheat Leaf Water Content. Plant Methods 2021, 17, 34. [Google Scholar] [CrossRef]
- Das, B.; Sahoo, R.N.; Pargal, S.; Krishna, G.; Verma, R.; Chinnusamy, V.; Sehgal, V.K.; Gupta, V.K. Comparison of different uni-and multi-variate techniques for monitoring leaf water status as an indicator of water-deficit stress in wheat through spectroscopy. Biosyst. Eng. 2017, 160, 69–83. [Google Scholar] [CrossRef]
- Jones, H.G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric. For. Meteorol. 1999, 95, 139–149. [Google Scholar] [CrossRef]
- Wang, G.Y.; Song, S.Y.; Fan, T.L.; Li, S.Z.; Zhao, G. Relationship of canopy temperature with grain yield and water use efficiency in various genotypes of maize. J. Maize Sci. 2019, 17, 92–95. Available online: https://www.dissertationtopic.net/doc/497528 (accessed on 13 July 2025).
- Gontia, N.K.; Tiwari, K.N. Development of crop water stress index of wheat crop for scheduling irrigation using infrared thermometry. Agric. Water Manag. 2008, 95, 1144–1152. [Google Scholar] [CrossRef]
- Mangus, D.L.; Sharda, A.; Zhang, N. Development and evaluation of thermal infrared imaging system for high spatial and temporal resolution crop water stress monitoring of corn within a greenhouse. Comput. Electron. Agric. 2016, 121, 149–159. [Google Scholar] [CrossRef]
- Bo, L.; Guan, H.; Mao, X. Diagnosing crop water status based on canopy temperature as a function of film mulching and deficit irrigation. Field Crops Res. 2023, 304, 109154. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Liu, X.; Shao, L.; Sun, H.; Chen, S. Incorporating root distribution factor to evaluate soil water status for winter wheat. Agric. Water Manag. 2015, 153, 32–41. [Google Scholar] [CrossRef]
- Peng, Z.; Lin, S.; Zhang, B.; Wei, Z.; Liu, L.; Han, N.; Cai, J.; Chen, H. Winter Wheat Canopy Water Content Monitoring Based on Spectral Transforms and “Three-edge” Parameters. Agric. Water Manag. 2020, 240, 106306. [Google Scholar] [CrossRef]
- Cai, J.; Wang, Y.; Liu, Y. Feature Parameters of Evapotranspiration Estimation Model for Winter Wheat and Summer Maize Based on Lysimeter Monitoring System. Trans. Chin. Soc. Agric. Mach. 2021, 52, 285–295. Available online: http://www.j-csam.org/jcsam/article/abstract/20210332?st=article_issue (accessed on 13 July 2025).
- Peñuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance water index WI (R900/R970). Int. J. Remote Sens. 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Eitel, J.U.; Gessler, P.E.; Smith, A.M.; Robberecht, R. Suitability of existing and novel spectral indices to remotely detect water stress in Populus spp. For. Ecol. Manag. 2006, 229, 170–182. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Lyon, R.J. Estimation of the vegetation contribution to the 1·65/2·22 μm ratio in airborne thematic-mapper imagery of the Virginia Range, Nevada. Int. J. Remote Sens. 1985, 6, 75–88. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Rock, B.N. Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar] [CrossRef]
- Hardisky, M.A.; Klemas, V.; Smart, R. The influence of soil salinity, growth form, and leaf moisture on-the spectral radiance of. Photogramm. Eng. Remote Sens. 1983, 49, 77–83. [Google Scholar]
- Zarco-Tejada, P.J.; Ustin, S.L. Modeling Canopy Water Content for Carbon Estimates from MODIS Data at Land EOS Validation Sites. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, NSW, Australia, 9–13 July 2001. [Google Scholar] [CrossRef]
- Bai, Q.M.; Han, Y.G.; Peng, Z.G.; Liu, L.; Lin, S.J. Optimization of the hyperspectral water prediction model of winter wheat with the leaf area index. Chin. J. Appl. Environ. Biol. 2020, 26, 943–950. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing ofvegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Cassanelli, D.; Lenzini, N.; Ferrari, L.; Rovati, L. Partial least squares estimation of crop moisture and density by near-infrared spectroscopy. IEEE Trans. Instrum. Meas. 2021, 70, 1004510. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.C.; Li, X.Q.; Yang, X.F.; Gu, X.P. Quantitative inversion of water content of plant components in winter wheat based on wavelet technology. Trans. Chin. Soc. Agric. Mach. 2021, 52, 193. [Google Scholar] [CrossRef]
- Cheng, M.; Jiao, X.; Liu, Y.; Shao, M.; Yu, X.; Bai, Y.; Wang, Z.; Wang, S.; Tuohuti, N.; Liu, S. Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning. Agric. Water Manag. 2022, 264, 107530. [Google Scholar] [CrossRef]
- Wan, L.; Zhou, W.; He, Y.; Wanger, T.C.; Cen, H. Combining transfer learning and hyperspectral reflectance analysis to assess leaf nitrogen concentration across different plant species datasets. Remote Sens. Environ. 2022, 269, 112826. [Google Scholar] [CrossRef]
- Wang, L.G.; Zheng, G.Q.; Guo, Y.; He, J.; Cheng, Y.Z. Prediction of Winter Wheat Yield Based on Fusing Multi-source Spatio-temporal Data. Trans. Chin. Soc. Agric. Mach. 2022, 53, 198–204. [Google Scholar] [CrossRef]
- Xue, X.; Cai, J.B.; Yu, Y.D.; Han, Y.A. Quantifying Groundwater Contributions and Threshold in the Growth Stages for Winter Wheat. Trans. Chin. Soc. Agric. Eng. 2024, 40, 101–111. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Al-Suhaibani, N.A.; Elsayed, S.; Hassan, W.M. Potential of the existing and novel spectral reflectance Potential of the existing and novel spectral reflectance indices for estimating the leaf water status and grain yield of spring wheat exposed to different irrigation rates. Agric. Water Manag. 2019, 217, 356–373. [Google Scholar] [CrossRef]
- Vescovo, L.; Wohlfahrt, G.; Balzarolo, M.; Pilloni, S.; Sottocornola, M.; Rodeghiero, M.; Gianelle, D. New spectral vegetation indices based on the near-infrared shoulder wavelengths for remote detection of grassland phytomass. Int. J. Remote Sens. 2012, 33, 2178–2195. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, C.; Guo, N.; Li, Y.; Kai, Y. Determining the canopy water stress for spring wheat using canopy hyperspectral reflectance data in Loess Plateau semiarid regions. Spectrosc. Lett. 2015, 48, 492–498. [Google Scholar] [CrossRef]
- Yang, C.; Feng, M.; Sun, H.; Wang, C.; Yang, W.; Xie, Y.; Jing, B. Hyperspectral monitoring of aboveground dry biomass of winter wheat under different irrigation treatments. Chin. J. Ecol. 2019, 38, 1767. Available online: http://www.cje.net.cn/CN/Y2019/V38/I6/1767 (accessed on 13 July 2025).
- Guo, R.; Zhou, J.; Yang, F.; Li, F.; Xia, X.; Liu, Q. Growth metabolism of wheat under drought stress at the jointing-booting stage. Chin. J. Plant Ecol. 2016, 40, 1319–1327. [Google Scholar] [CrossRef]
- Zhao, C.; Han, N.N.; Zhou, Q.Y.; Li, S.M. Estimation of winter wheat plant water content based on canopy hyperspectral. J. Triticeae Crops 2024, 43, 2569. Available online: https://lib.cqvip.com/Qikan/Article/Detail?id=7112492996&from=Qikan_Search_Index (accessed on 13 July 2025).
- Santesteban, L.G.; Di Gennaro, S.F.; Herrero-Langreo, A.; Miranda, C.; Royo, J.B.; Matese, A. High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agric. Water Manag. 2017, 183, 49–59. [Google Scholar] [CrossRef]
- Pappalardo, S.; Consoli, S.; Longo-Minnolo, G.; Vanella, D.; Longo, D.; Guarrera, S.; D’Emilio, A.; Ramírez-Cuesta, J.M. Performance evaluation of a low-cost thermal camera for citrus water status estimation. Agric. Water Manag. 2023, 288, 108489. [Google Scholar] [CrossRef]
- Morales, I.; Alvaro, J.E.; Urrestarazu, M. Contribution of thermal imaging to fertigation in soilless culture. J. Therm. Anal. Calorim. 2014, 116, 1033–1039. [Google Scholar] [CrossRef][Green Version]
- Jiang, J.; Atkinson, P.M.; Zhang, J.; Lu, R.; Zhou, Y.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Combining fixed-wing UAV multispectral imagery and machine learning to diagnose winter wheat nitrogen status at the farm scale. Eur. J. Agron. 2022, 138, 126537. [Google Scholar] [CrossRef]
- Kirschbaum, M.U. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 1995, 27, 753–760. [Google Scholar] [CrossRef]
- Leirós, M.C.; Trasar-Cepeda, C.; Seoane, S.; Gil-Sotres, F. Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biol. Biochem. 1999, 31, 327–335. [Google Scholar] [CrossRef]
- Naylor, D.; Sadler, N.; Bhattacharjee, A.; Graham, E.B.; Anderton, C.R.; McClure, R.; Lipton, M.; Hofmockel, K.S.; Jansson, J.K. Soil microbiomes under climate change and implications for carbon cycling. Annu. Rev. Environ. Resour. 2020, 45, 29–59. [Google Scholar] [CrossRef]
- He, T.; Xie, C.; Liu, Q.; Guan, S.; Liu, G. Evaluation and comparison of random forest and A-LSTM networks for large-scale winter wheat identification. Remote Sens. 2019, 11, 1665. [Google Scholar] [CrossRef]
- Torres-Tello, J.W.; Ko, S. A novel approach to identify the spectral bands that predict moisture content in canola and wheat. Biosyst. Eng. 2021, 210, 91–103. [Google Scholar] [CrossRef]
- Ray, S.S.; Das, G.; Singh, J.P.; Panigrahy, S. Evaluation of hyperspectral indices for LAI estimation and discrimination of potato crop under different irrigation treatments. Int. J. Remote Sens. 2006, 27, 5373–5387. [Google Scholar] [CrossRef]
- Zhao, T.; Nakano, A.; Iwaski, Y.; Umeda, H. Application of hyperspectral imaging for assessment of tomato leaf water status in plant factories. Appl. Sci. 2020, 10, 4665. [Google Scholar] [CrossRef]
- Shi, B.; Yuan, Y.; Zhuang, T.; Xu, X.; Schmidhalter, U.; Ata-UI-Karim, S.T.; Zhao, B.; Liu, X.; Tian, Y.; Zhu, Y.; et al. Improving water status prediction of winter wheat using multi-source data with machine learning. Eur. J. Agron. 2022, 139, 126548. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, Z.; Zhang, J.; Yang, X.; Liu, H.; Chen, J.; Ning, J.; Sun, S.; Shi, L. Accurate estimation of winter-wheat leaf water content using continuous wavelet transform-based hyperspectral combined with thermal infrared on a UAV platform. Eur. J. Agron. 2025, 168, 127624. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L. A review on unmanned aerial vehicle remote sensing: Platforms, sensors, data processing methods, and applications. Drones 2023, 7, 398. [Google Scholar] [CrossRef]
- Wang, S.; Guan, K.; Zhang, C.; Zhou, Q.; Wang, S.; Wu, X.; Jiang, C.; Peng, B.; Mei, W.; Li, K.; et al. Cross-Scale Sensing of Field-Level Crop Residue Cover: Integrating Field Photos, Airborne Hyperspectral Imaging, and Satellite Data. Remote Sens. Environ. 2023, 285, 113366. [Google Scholar] [CrossRef]
- Jin, N.; Zhang, D.; Li, Z.; He, L. Evaluation of Water Status of Winter Wheat Based on Simulated Reflectance of Multispectral Satellites. Trans. Chin. Soc. Agric. Mach. 2020, 51, 243–252. Available online: http://www.j-csam.org/jcsam/article/abstract/20201127 (accessed on 13 July 2025).










| Year | Treatment | Irrigating Quota on Each Application/mm | Irrigation Quota/mm | |||||
|---|---|---|---|---|---|---|---|---|
| Pre-Sowing Irrigation | Winter Irrigation | Reviving-Jointing 5 April 2019 3 April 2024 | Jointing-Heading 26 April 2019 23 April 2024 | Heading-Filling 21 May 2019 17 May 2024 | ||||
| 2018–2019 | field test | W1 | 45 | 60 | 60 | 165 | ||
| W2 | 45 | 60 | 60 | 60 | 225 | |||
| W3 | 45 | 60 | 60 | 60 | 60 | 285 | ||
| 2023–2024 | small lysimeter test | a | 45 | 60 | 45 | 45 | 50 | 245 |
| b | 45 | 60 | 45 | 50 | 200 | |||
| c | 45 | 60 | 50 | 155 | ||||
| field test | d | 45 | 60 | 105 | ||||
| e | 45 | 60 | 60 | 60 | 60 | 285 | ||
| Spectral Index | Definition or Equation | References |
|---|---|---|
| Water index, WI | Peñuelas et al. [28] | |
| Normalized differential water index, NDWI | Eitel et al. [29] | |
| Ratio Index, RI | Elvidge et al. [30] | |
| Moisture stress index, MSI | Hunt et al. [31] | |
| Normalized Difference Infrared Index, NDII | Hardisky et al. [32] | |
| Simple Ratio Water Index, SRWI | Zarco et al. [33] | |
| R(810,460) | Bai et al. [34] | |
| Vegetative and Reproductive Index, VARI | Bai et al. [34] | |
| Pigment Specific Simple Ratio, PSSRa | Bai et al. [34] | |
| Normalized Difference Vegetation Index, NDVI | Gao et al. [35] |
| Growth Stage | Algorithm | Hyperspectral Index | Model Training | Model Testing | ||||
|---|---|---|---|---|---|---|---|---|
| R2 | RMSE/% | RE/% | R2 | RMSE/% | RE/% | |||
| Jointing stage (n = 48) | RF | NDWI, NDVI, MSI, SRWI, NDII | 0.805 | 2.080 | 2.658 | 0.742 | 2.612 | 3.334 |
| SVM | 0.572 | 3.888 | 3.482 | 0.332 | 2.265 | 2.878 | ||
| SR | SRWI | 0.564 | 3.922 | 4.866 | 0.498 | 1.963 | 2.494 | |
| Heading stage (n = 48) | RF | VARI, PSSRa, R(810,460), RI, MSI | 0.893 | 2.178 | 3.284 | 0.315 | 5.394 | 8.074 |
| SVM | 0.923 | 2.082 | 3.143 | 0.590 | 4.169 | 6.241 | ||
| SR | VARI | 0.747 | 3.346 | 5.047 | 0.549 | 4.374 | 6.547 | |
| filling stage (n = 48) | RF | VARI, PSSRa, R(810,460), SRWI, WI | 0.928 | 2.019 | 3.829 | 0.541 | 6.042 | 11.823 |
| SVM | 0.902 | 1.933 | 3.601 | 0.702 | 4.864 | 9.518 | ||
| SR | VARI | 0.724 | 4.081 | 7.743 | 0.675 | 5.078 | 9.938 | |
| Growth Stage | Algorithm | Hyperspectral Index | Model Training | Model Testing | ||||
|---|---|---|---|---|---|---|---|---|
| R2 | RMSE/% | RE/% | R2 | RMSE/% | RE/% | |||
| Jointing stage (n = 48) | RF | NDWI, NDVI, MSI, SRWI, NDII | 0.941 | 1.101 | 1.407 | 0.817 | 2.203 | 2.811 |
| SVM | 0.962 | 1.153 | 1.429 | 0.455 | 2.049 | 2.604 | ||
| SR | SRWI | 0.564 | 3.922 | 4.866 | 0.498 | 1.963 | 2.494 | |
| Heading stage (n = 48) | RF | VARI, PSSRa, R(810,460), RI, MSI | 0.953 | 1.434 | 2.162 | 0.460 | 4.657 | 6.971 |
| SVM | 0.938 | 1.650 | 2.489 | 0.481 | 4.564 | 6.832 | ||
| SR | VARI | 0.932 | 1.836 | 2.771 | 0.688 | 3.636 | 5.444 | |
| filling stage (n = 48) | RF | VARI, PSSRa, R(810,460), SRWI, WI | 0.950 | 1.660 | 3.150 | 0.617 | 5.516 | 10.749 |
| SVM | 0.911 | 1.871 | 3.485 | 0.761 | 4.362 | 8.535 | ||
| SR | VARI | 0.724 | 4.082 | 7.743 | 0.675 | 5.078 | 9.938 | |
| Growth Stage | Algorithm | Hyperspectral Index | Model Training | Model Testing | ||||
|---|---|---|---|---|---|---|---|---|
| R2 | RMSE/% | RE/% | R2 | RMSE/% | RE/% | |||
| maturation stage (n = 144) | RF | WI, VARI, MSI, SRWI, NDII, Tc, Ts, 40 cmSWC | 0.973 | 3.789 | 6.565 | 0.789 | 8.216 | 13.103 |
| SVM | 0.951 | 2.953 | 4.598 | 0.845 | 5.105 | 7.792 | ||
| SR | NDWI | 0.533 | 15.625 | 27.070 | 0.409 | 12.129 | 15.335 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, N.; Wang, M.; Zhou, Q.; Han, X.; Liu, X.; Peng, Z.; Li, S. An Assessment Model for Winter Wheat Crop Water Status Fusing Hyperspectral and Environmental Data. Water 2025, 17, 2574. https://doi.org/10.3390/w17172574
Han N, Wang M, Zhou Q, Han X, Liu X, Peng Z, Li S. An Assessment Model for Winter Wheat Crop Water Status Fusing Hyperspectral and Environmental Data. Water. 2025; 17(17):2574. https://doi.org/10.3390/w17172574
Chicago/Turabian StyleHan, Nana, Minmin Wang, Qingyun Zhou, Xin Han, Xiaomao Liu, Zhigong Peng, and Songmin Li. 2025. "An Assessment Model for Winter Wheat Crop Water Status Fusing Hyperspectral and Environmental Data" Water 17, no. 17: 2574. https://doi.org/10.3390/w17172574
APA StyleHan, N., Wang, M., Zhou, Q., Han, X., Liu, X., Peng, Z., & Li, S. (2025). An Assessment Model for Winter Wheat Crop Water Status Fusing Hyperspectral and Environmental Data. Water, 17(17), 2574. https://doi.org/10.3390/w17172574
