Selection of Hydrologically Vulnerable Areas in Urban Regions Using Techniques for Order Preference by Similarity to Ideal Solution
Abstract
1. Introduction
2. Materials and Methods
2.1. Methods for Evaluating Vulnerable Areas
2.2. Case Study
2.3. SWAT Model
2.4. Selection of Indicators
2.5. Normalization
2.6. Entropy-Based Weighting
2.6.1. Construction of Indicator Data Matrix
2.6.2. Calculation of Entropy for Each Indicator
2.6.3. Calculation of Degree of Diversification and Final Weight Determination
2.7. TOPSIS Analysis
3. Results and Discussion
3.1. Development of the SWAT Model
3.2. Normalization of Indicators
3.3. Entropy Analysis
3.4. Analysis of Vulnerable Area
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CN | Curve Number |
DEM | Digital Elevation Model |
EPA | Environmental Protection Agency |
MCDM | Multicriteria Decision-Making |
NIS | Negative Ideal Solution |
PIS | Positive Ideal Solution |
SWAT | Soil and Water Assessment Tool |
TOPSIS | Technique for Order Preference by Similarity to the Ideal Solution |
References
- Li, H.; Wei, Y.; Ishidaira, H.; Commey, N.A.; Yang, D. Integrated Urban and Riverine Flood Risk Management in the Fujiang River Basin-Mianyang City. J. Hydrol. 2024, 645, 132150. [Google Scholar] [CrossRef]
- Cea, L.; Costabile, P. Flood Risk in Urban Areas: Modelling, Management and Adaptation to Climate Change. A Review. Hydrology 2022, 9, 50. [Google Scholar] [CrossRef]
- Mabrouk, M.; Haoying, H. Urban Resilience Assessment: A Multicriteria Approach for Identifying Urban Flood-Exposed Risky Districts Using Multiple-Criteria Decision-Making Tools (MCDM). Int. J. Disaster Risk Reduct. 2023, 91, 103684. [Google Scholar] [CrossRef]
- Chae, Y.; Kang, J.; Bae, H.; Lee, J.; Jo, G.; Jo, H. Prioritization of Climate Change Adaptation Measures by Sector; Korea Environment Institute: Seoul, Republic of Korea, 2012. [Google Scholar]
- Yeh, C.-H.; Willis, R.J.; Deng, H.; Pan, H. Task oriented weighting in multi-criteria analysis. Eur. J. Oper. Res. 1999, 119, 130–146. [Google Scholar] [CrossRef]
- Al-Kloub, B.; Al-Shemmeri, T.; Pearman, A. The role of weights in multi-criteria decision aid, and the ranking of water projects in Jordan. Eur. J. Oper. Res 1997, 99, 278–288. [Google Scholar] [CrossRef]
- Hobbs, B.F.; Chankong, V.; Hamadeh, W.; Stakhiv, E.Z. Does choice of multicriteria method matter? An experiment in water resources planning. Water Resour. Res. 1992, 28, 1767–1779. [Google Scholar] [CrossRef]
- Chung, E.-S.; Won, K.; Kim, Y.; Lee, H. Water resource vulnerability characteristics by district’s population size in a changing climate using subjective and objective weights. Sustainability 2014, 6, 6141–6157. [Google Scholar] [CrossRef]
- Lee, G.; Jun, K.-S.; Chung, E.-S. Integrated multi-criteria flood vulnerability approach using fuzzy TOPSIS and Delphi technique. Nat. Hazards Earth Syst. Sci. 2013, 13, 1293–1312. [Google Scholar] [CrossRef]
- Ponhan, K.; Sureeyatanapas, P. A comparison between subjective and objective weighting approaches for multi-criteria decision making: A case of industrial location selection. Eng. Appl. Sci. Res. 2022, 49, 763771. [Google Scholar]
- Wu, R.M.X. Which objective weight method is better: PCA or entropy? SJRR 2022, 3, 558. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making; Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1981; Volume 186. [Google Scholar]
- Hajkowicz, S.; Collins, K. A Review of Multiple Criteria Analysis for Water Resource Planning and Management. Water Resour. Manag. 2007, 21, 1553–1566. [Google Scholar] [CrossRef]
- Lee, C.-W.; Shin, H.-J.; Kwon, M.-S.; Lee, G.-M.; Nam, S.-H.; Kang, M.-S. An approach to drought vulnerability assessment using TOPSIS Method. J. Korean Assoc. Geogr. Inf. Stud. 2019, 22, 102–115. [Google Scholar]
- Kim, Y.K.; Chung, E.S.; Lee, K.S. Fuzzy TOPSIS approach to flood vulnerability assessment in Korea. J. Korea Water Resour. Assoc. 2012, 45, 901–913. [Google Scholar]
- Park, H.S.; Kim, J.B.; Um, M.J.; Kim, Y. Assessment of water use vulnerability in the unit watersheds using TOPSIS approach with subjective and objective weights. J. Korea Water Resour. Assoc. 2016, 49, 685–692. [Google Scholar] [CrossRef]
- Kal, B.-S.; Park, J.-B.; Kim, Y.-J. Evaluation of non-point source vulnerable areas in west Nakdong River watershed using TOPSIS. J. Korean Assoc. Geogr. Inf. Stud. 2021, 24, 26–39. [Google Scholar]
- Kal, B.; Park, J.; Kim, S.; Shim, K.; Shin, S.; Choi, S. A study on evaluation of water quality measurement network in the nakdong river tributary using TOPSIS. J. Wetl. Res. 2022, 24, 44–51. [Google Scholar]
- Lee, J.; Shin, J.; Jee, J. Study on priority decision for ship’s alternative fuel selection using fuzzy TOPSIS method. J. Korean Soc. Mar. Environ. Saf. 2024, 30, 135–145. [Google Scholar] [CrossRef]
- Heo, D.W.; Yang, W.J. Prioritization of evaluation items for industrial accident prevention factors using the fuzzy TOPSIS technique. J. Korean Soc. Hazard Mitig. 2024, 24, 73–82. [Google Scholar] [CrossRef]
- Bouwer, H. Integrated Water Management for the 21st Century: Problems and Solutions. J. Irrig. Drain. Eng. 2002, 128, 193–202. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground Water and Climate Change. Nat. Clim. Chang 2013, 3, 322–329. [Google Scholar] [CrossRef]
- Shope, C.L. Disentangling Event-Scale Hydrologic Flow Partitioning in Mountains of the Korean Peninsula under Extreme Precipitation. J. Hydrol. 2016, 538, 399–415. [Google Scholar] [CrossRef]
- Kim, H.; Kim, T.S.; Chen, S.; Kim, D.; Kim, T.W. Hydrologic Risk Assessment of Drought in South Korea According to Climate Change Scenarios Using a Multiple Drought Index Integrated with a Dynamic Naive Bayesian Classifier. KSCE J. Civ. Eng. 2025, 29, 100118. [Google Scholar] [CrossRef]
- Won, K.; Chung, E.-S.; Choi, S.-U. Parametric assessment of water use vulnerability variations using SWAT and fuzzy TOPSIS coupled with entropy. Sustainability 2015, 7, 12052–12070. [Google Scholar] [CrossRef]
- Chung, E.-S.; Abdulai, P.; Park, H.; Kim, Y.; Ahn, S.; Kim, S. Multi-Criteria Assessment of spatial robust water resource vulnerability using the TOPSIS method coupled with objective and subjective weights in the Han River basin. Sustainability 2016, 9, 29. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development1. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Arnold, J.G.; Allen, P.M.; Muttiah, R.; Bernhardt, G. Automated base flow separation and recession analysis techniques. Groundwater 1995, 33, 1010–1018. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Gosain, A.K.; Rao, S.; Basuray, D. Climate change impact assessment on hydrology of Indian river basins. Curr. Sci. 2006, 90, 346–353. [Google Scholar]
- US EPA. Available online: https://www.epa.gov/hwp/integrated-assessment-healthy-watersheds (accessed on 20 February 2025).
- US EPA. Available online: https://www.epa.gov/hwp/developing-watershed-vulnerability-index (accessed on 20 February 2025).
- Patro, S.G.K.; Sahu, K.K. Normalization: A preprocessing stage. Int. Adv. Res. J. Sci. Eng. Technol. 2015, 2, 20–22. [Google Scholar] [CrossRef]
- Sarraf, F.; Nejad, S.H. Improving performance evaluation based on balanced scorecard with grey relational analysis and data envelopment analysis approaches: Case study in water and wastewater companies. Eval. Program Plan 2020, 79, 101762. [Google Scholar] [CrossRef]
- Rocha, L.C.S.; Paiva, A.P.D.; Balestrassi, P.P.; Severino, G.; Rotela Junior, P. Entropy-based weighting for multiobjective optimization: An application on vertical turning. Math. Probl. Eng. 2015, 2015, 1–11. [Google Scholar] [CrossRef]
- Mukhametzyanov, I. Specific character of objective methods for determining weights of criteria in MCDM problems: Entropy, CRITIC and SD. Decis. Mak. Appl. Manag. Eng. 2021, 4, 76–105. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning. In Adaptive Computation and Machine Learning; The MIT Press: Cambridge, UK, 2016. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The elements of statistical learning: Data mining, inference, and prediction. In Springer Series in Statistics, 2nd ed.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Zhu, Y.; Tian, D.; Yan, F. Effectiveness of entropy weight method in decision-making. Math. Probl. Eng. 2020, 2020, 1–5. [Google Scholar] [CrossRef]
- Singh, V.P. Entropy-based parameter estimation in hydrology. In Water Science and Technology Library; Springer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Triantaphyllou, E. Multi-criteria decision making methods: A comparative study. In Applied Optimization; Kluwer: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Zavadskas, E.K.; Peldschus, F.; Kaklauskas, A. Multiple criteria evaluation of projects in construction. In Series of Publications/Institute of Technological and Economic Development, Vilnius Technical University; Technika: Vilnius, Lithuania, 1994. [Google Scholar]
- Zavadskas, E.K.; Zakarevicius, A.; Antucheviciene, J. Evaluation of ranking accuracy in multi-criteria decisions. Informatica 2006, 17, 601–618. [Google Scholar] [CrossRef]
- National Geogrphic Information Institute. Available online: https://www.ngii.go.kr/kor/main.do? (accessed on 21 March 2025).
- Environmental Geographic Information Service(EGIS). Available online: https://egis.me.go.kr/ (accessed on 21 March 2025).
- Korea Soil Information System. Available online: https://soil.rda.go.kr/ (accessed on 21 March 2025).
Criterion | Method | SWAT Model Variable (hru.out) | Data |
---|---|---|---|
Hydrology | Total water yield (mm) | WYLD | SWAT simulation result |
Surface processes Surface runoff (mm) | SURQ (mm) | ||
Soil water dynamics Infiltration (mm) Soil moisture (mm) Lateral flow (mm) | DAILYCN SW (mm) LATQ (mm) | ||
Groundwater dynamics Percolation (mm) Groundwater recharge (mm) Baseflow (mm) | PERC (mm) GW_RCHG (mm) GWQ (mm) |
Subbasin No. | Land Use Rate (%) | Subbasin No. | Land Use Rate (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Transportation | Forest | Residential | Others | Transportation | Forest | Residential | Others | ||
1 | 71.18 | 24.88 | 0.74 | 3.20 | 14 | 78.40 | 18.97 | 0.04 | 2.59 |
2 | 73.84 | 22.57 | 1.73 | 1.86 | 15 | 82.59 | 4.56 | 0.25 | 12.60 |
3 | 73.34 | 22.41 | 1.66 | 2.59 | 16 | 32.46 | 63.87 | 0.22 | 3.45 |
4 | 96.56 | 0.41 | 0.73 | 2.30 | 17 | 0.30 | 97.94 | 0.00 | 1.76 |
5 | 74.72 | 23.11 | 0.76 | 1.41 | 18 | 49.23 | 46.61 | 1.90 | 2.26 |
6 | 97.05 | 0.13 | 0.27 | 2.55 | 19 | 0.23 | 98.03 | 0.00 | 1.74 |
7 | 96.96 | 0.00 | 0.34 | 2.70 | 20 | 0.02 | 98.44 | 0.00 | 1.54 |
8 | 72.05 | 21.85 | 0.73 | 5.38 | 21 | 33.19 | 63.49 | 0.53 | 2.79 |
9 | 0.08 | 97.61 | 0.00 | 2.31 | 22 | 0.20 | 97.31 | 0.00 | 2.49 |
10 | 81.38 | 17.31 | 0.14 | 1.17 | 23 | 65.57 | 25.53 | 0.25 | 8.65 |
11 | 99.17 | 0.00 | 0.00 | 0.83 | 24 | 26.46 | 64.36 | 0.93 | 8.25 |
12 | 67.00 | 27.75 | 0.27 | 4.98 | 25 | 94.52 | 1.29 | 0.56 | 3.61 |
13 | 32.58 | 64.09 | 0.11 | 3.22 | Avg. | 48.30 | 47.71 | 0.52 | 3.47 |
Method | Factor | Average | Transportation | Forest | Residential |
---|---|---|---|---|---|
Equal weights | Total water yield | 0.065 | 0.053 | 0.087 | 0.050 |
Surface runoff | 0.079 | 0.064 | 0.109 | 0.053 | |
Soil moisture | 0.071 | 0.056 | 0.099 | 0.050 | |
Lateral flow | 0.045 | 0.039 | 0.052 | 0.050 | |
CN | 0.059 | 0.047 | 0.085 | 0.029 | |
Percolation | 0.078 | 0.068 | 0.093 | 0.078 | |
Groundwater recharge | 0.078 | 0.068 | 0.093 | 0.078 | |
Groundwater | 0.078 | 0.067 | 0.093 | 0.078 | |
Entropy method | Total water yield | 0.062 | 0.050 | 0.083 | 0.048 |
Surface runoff | 0.082 | 0.066 | 0.114 | 0.055 | |
Soil moisture | 0.072 | 0.056 | 0.101 | 0.051 | |
Lateral flow | 0.037 | 0.033 | 0.043 | 0.042 | |
CN | 0.055 | 0.044 | 0.080 | 0.027 | |
Percolation | 0.083 | 0.072 | 0.099 | 0.084 | |
Groundwater recharge | 0.083 | 0.072 | 0.099 | 0.084 | |
Groundwater | 0.083 | 0.072 | 0.099 | 0.084 |
Original Ranking | Reevaluated Ranking | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Rank | Subbasin No. | Elevation Percentile | Rank | Subbasin No. | Elevation Percentile | Rank | Subbasin No. | Rank | Subbasin No. | |
1 | 20 | 100.00 | 14 | 23 | 58.16 | Re evaluation | 1 | 5 | 14 | 3 |
2 | 14 | 99.78 | 15 | 2 | 37.09 | 2 | 10 | 15 | 7 | |
3 | 17 | 84.42 | 16 | 16 | 29.94 | 3 | 9 | 16 | 6 | |
4 | 5 | 56.08 | 17 | 18 | 29.49 | 4 | 12 | 17 | 8 | |
5 | 24 | 75.65 | 18 | 1 | 23.99 | 5 | 13 | 18 | 25 | |
6 | 10 | 46.19 | 19 | 3 | 43.72 | 6 | 19 | 19 | 11 | |
7 | 9 | 30.17 | 20 | 7 | 16.52 | 7 | 21 | 20 | 15 | |
8 | 12 | 60.54 | 21 | 6 | 16.44 | 8 | 4 | Excluded | 14, 17, 20, 22, 24 | |
9 | 22 | 70.21 | 22 | 8 | 28.39 | 9 | 23 | |||
10 | 13 | 28.21 | 23 | 25 | 21.90 | 10 | 2 | |||
11 | 19 | 25.92 | 24 | 11 | 32.84 | 11 | 16 | |||
12 | 21 | 32.09 | 25 | 15 | 20.26 | 12 | 18 | |||
13 | 4 | 16.03 | 13 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, M.; Cho, Y.; Park, J. Selection of Hydrologically Vulnerable Areas in Urban Regions Using Techniques for Order Preference by Similarity to Ideal Solution. Water 2025, 17, 2455. https://doi.org/10.3390/w17162455
Lee J, Kim M, Cho Y, Park J. Selection of Hydrologically Vulnerable Areas in Urban Regions Using Techniques for Order Preference by Similarity to Ideal Solution. Water. 2025; 17(16):2455. https://doi.org/10.3390/w17162455
Chicago/Turabian StyleLee, Jungmin, Myeongin Kim, Youngtae Cho, and Jaebeom Park. 2025. "Selection of Hydrologically Vulnerable Areas in Urban Regions Using Techniques for Order Preference by Similarity to Ideal Solution" Water 17, no. 16: 2455. https://doi.org/10.3390/w17162455
APA StyleLee, J., Kim, M., Cho, Y., & Park, J. (2025). Selection of Hydrologically Vulnerable Areas in Urban Regions Using Techniques for Order Preference by Similarity to Ideal Solution. Water, 17(16), 2455. https://doi.org/10.3390/w17162455