Optimization of a Compact Corona Discharge Ozone Generator for Emergency Water Treatment in Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Pilot Ozonation Systems
2.2. Determination of Ozone Production and Dosage by the Generator
2.3. Mass Balance of the Ozonation Process
3. Results and Discussions
3.1. Determination of Generator’s Stabilization Time
3.2. Determination of Ozone Production Considering the Complete Ozone Flow
3.3. Determination of Ozone Production Considering the Divided Ozone Flow
3.4. Determination of Residual Ozone in the Ozonation Process Without Flow Division
3.5. Mass Balance of Dissolved Ozone in the Liquid Phase
3.6. Compact Ozonation System and Engineering Implications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOPs | Advanced oxidation processes |
ATL | Atenolol |
CAF | Caffeine |
%D | Degradation efficiency |
ECs | Emerging compounds |
POL | Pollutants |
References
- Vargas-Berrones, K.; Bernal-Jácome, L.; de León-Martínez, L.D.; Flores-Ramírez, R. Emerging pollutants (EPs) in Latin América: A critical review of under-studied EPs, case of study -Nonylphenol. Sci. Total Environ. 2020, 726, 138493. [Google Scholar] [CrossRef]
- Anjali, R.; Shanthakumar, S. Simultaneous degradation of amoxicillin, ciprofloxacin and acetaminophen in a mixture by ozonation: Kinetics and mechanisms pathway. J. Clean. Prod. 2022, 378, 134509. [Google Scholar] [CrossRef]
- Cangul, S.; Erpacal, B.; Adiguzel, O.; Sagmak, S.; Unal, S.; Tekin, S. Does the Use of Ozone as a Cavity Disinfectant Affect the Bonding Strength of Antibacterial Bonding Agents? Ozone Sci. Eng. 2020, 42, 565–570. [Google Scholar] [CrossRef]
- Nakada, L.Y.K.; Santos, L.U.D.; Guimarães, J.R. Pre-ozonation of surface water: An effective water treatment process to reduce the risk of infection by Giardia in drinking water. Environ. Pollut. 2020, 266, 115144. [Google Scholar] [CrossRef]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. What have we learned from worldwide experiences on the management and treatment of hospital effluent?—An overview and a discussion on perspectives. Sci. Total Environ. 2015, 514, 467–491. [Google Scholar] [CrossRef]
- de Oliveira, J.T.; de Carvalho Costa, L.R.; Agustini, C.B.; Féris, L.A. Optimized Ozonation of Caffeine Targeting its Mineralization: Reactor Design and Environmental Safety Insights. Water Air Soil Pollut. 2025, 236, 547. [Google Scholar] [CrossRef]
- Hooper, J.; Funk, D.; Bell, K.; Noibi, M.; Vickstrom, K.; Schulz, C.; Machek, E.; Huang, C.H. Pilot testing of direct and indirect potable water reuse using multi-stage ozone-biofiltration without reverse osmosis. Water Res. 2020, 169, 115178. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, J.T.; de Carvalho Costa, L.R.; Estumano, D.C.; Féris, L.A. Applying Bayesian statistics and MCMC to ozone reaction kinetics: Implications for water treatment models. Chemosphere 2025, 373, 144164. [Google Scholar] [CrossRef] [PubMed]
- Souza, F.S.; Féris, L.A. Degradation of caffeine by advanced oxidative processes: O3 and o3/UV. Ozone Sci. Eng. 2015, 37, 379–384. [Google Scholar] [CrossRef]
- Zoumpouli, G.A.; Scheurer, M.; Brauch, H.J.; Kasprzyk-Hordern, B.; Wenk, J.; Happel, O. COMBI, continuous ozonation merged with biofiltration to study oxidative and microbial transformation of trace organic contaminants. Environ. Sci. 2019, 5, 552–563. [Google Scholar] [CrossRef]
- Graça, C.A.L.; Lima, R.B.; Pereira, M.F.R.; Silva, A.M.T.; Ferreira, A. Intensification of the ozone-water mass transfer in an oscillatory flow reactor with innovative design of periodic constrictions: Optimization and application in ozonation water treatment. Chem. Eng. J. 2020, 389, 124412. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment e A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Pathapati, S.S.; Smith, D.W.; Mazzel, A.L. Emerging Operational Challenges to Ozone Applications-High Turndown & Doses and Stable Ozone Residuals. In Proceedings of the lOA World Congress & Exhibition, Nice, France, 20–25 October 2019. [Google Scholar]
- Tashtoush, B.; Alshare, A.; Al-Rifai, S. Performance study of ejector cooling cycle at critical mode under superheated primary flow. Energy Convers. Manag. 2015, 94, 300–310. [Google Scholar] [CrossRef]
- Kaiga, N.; Takase, O.; Todo, Y.; Yamanashi, I. Corrosion resistance of ozone generator electrode. Ozone Sci. Eng. 1997, 19, 169–178. [Google Scholar] [CrossRef]
- de Carvalho Costa, L.R.; Li, L.; Haak, L.; Teel, L.; Feris, L.A.; Marchand, E.; Pagilla, K.R. Optimizing ozone treatment for pathogen removal and disinfection by-product control for potable reuse at pilot-scale. Chemosphere 2024, 364, 143128. [Google Scholar] [CrossRef]
- Reggiane de Carvalho Costa, L.; Toffoli de Oliveira, J.; Jurado-Davila, V.; Amaral Féris, L. Caffeine and ampicillin degradation by ozonation: Addressing pathways, performance and eco-toxicity. Chem. Eng. Sci. 2024, 288, 119817. [Google Scholar] [CrossRef]
- Gou, X.; Yuan, D.; Wang, L.; Xie, L.; Wei, L.; Zhang, G. Enhancing ozone production in dielectric barrier discharge utilizing water as electrode. Vacuum 2023, 212, 112047. [Google Scholar] [CrossRef]
- Alonso, J.M.; Rico-Secades, M.; Corominas, E.; Cardesín, J.; García, J. Low-Power High-Voltage High-Frequency Power Supply for Ozone Generation. In Proceedings of the Conference Record of the 2002 IEEE Industry Applications Conference, 37th IAS Annual Meeting (Cat. No.02CH37344), Pittsburgh, PA, USA, 13–18 October 2002. [Google Scholar]
- Alonso, J.M.; Valdés, M.; Calleja, A.J.; Ribas, J.; Losada, J. High Frequency Testing and Modeling of Silent Discharge Ozone Generators. Ozone Sci. Eng. 2003, 25, 363–376. [Google Scholar] [CrossRef]
- Wei, L.S.; Pongrac, B.; Zhang, Y.F.; Liang, X.; Prukner, V.; Šimek, M. Influence of Duty Cycle on Ozone Generation and Discharge Using Volume Dielectric Barrier Discharge. Plasma Chem. Plasma Process. 2018, 38, 355–364. [Google Scholar] [CrossRef]
- Samaranayake, W.J.M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Sakugawal, T.; Hackad, R.; Akiyama, H. Pulsed Streamer Discharge Characteristics of Ozone Production in Dry Air. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 254–265. [Google Scholar] [CrossRef]
- Sung, T.L.; Teii, S.; Liu, C.M.; Hsiao, R.C.; Chen, P.C.; Wu, Y.H.; Yang, C.K.; Teii, K.; Ono, S.; Ebihara, K. Effect of pulse power characteristics and gas flow rate on ozone production in a cylindrical dielectric barrier discharge ozonizer. Vacuum 2013, 90, 65–69. [Google Scholar] [CrossRef]
- Veloso, F.; Chuaqui, H.; Correa, N.; Favre, M.; Wyndham, E. Compression of a laser initiated hollow gas embedded z-pinch. Plasma Sources Sci. Technol. 2009, 18, 045012. [Google Scholar] [CrossRef]
- Jodzis, S.; Baran, K. The influence of gas temperature on ozone generation and decomposition in ozone generator. How is ozone decomposed? Vacuum 2022, 195, 110647. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2017. [Google Scholar]
- Buerge, I.J.; Poiger, T.; Muller, M.D.; Buser, H. Caffeine, an Anthropogenic Marker for Wastewater Contamination of Surface Waters. Environ. Sci. Technol. 2003, 37, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Machado, K.C.; Grassi, M.T.; Vidal, C.; Pescara, I.C.; Jardim, W.F.; Fernandes, A.N.; Sodré, F.F.; Almeida, F.V.; Santana, J.S.; Canela, M.C.; et al. A preliminary nationwide survey of the presence of emerging contaminants in drinking and source waters in Brazil. Sci. Total Environ. 2016, 572, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Arsand, J.B.; Dallegrave, A.; Jank, L.; Feijo, T.; Perin, M.; Hoff, R.B.; Arenzon, A.; Gomes, A.; Pizzolato, T.M. Spatial-temporal occurrence of contaminants of emerging concern in urban rivers in southern Brazil. Chemosphere 2023, 311, 136814. [Google Scholar] [CrossRef]
- Gottschalk, C.; Libra, J.A.; Saupe, A. Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and Its Applications, 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010. [Google Scholar] [CrossRef]
- Sarron, E.; Gadonna-Widehem, P.; Aussenac, T. Ozone treatments for preserving fresh vegetables quality: A critical review. Foods 2021, 10, 605. [Google Scholar] [CrossRef]
- Aslam, R.; Alam, M.S.; Pandiselvam, R. Aqueous Ozone Sanitization System for Fresh Produce: Design, Development, and Optimization of Process Parameters for Minimally Processed Onion. Ozone Sci. Eng. 2022, 44, 3–16. [Google Scholar] [CrossRef]
- Pounraj, S.; Bhilwadikar, T.; Manivannan, S.; Rastogi, N.K.; Negi, P.S. Effect of ozone, lactic acid and combination treatments on the control of microbial and pesticide contaminants of fresh vegetables. J. Sci. Food Agric. 2021, 101, 3422–3428. [Google Scholar] [CrossRef]
- Gurol, M.D.; Singer, P.C. Kinetics of Ozone Decomposition: A Dynamic Approach. Available online: https://pubs.acs.org/sharingguidelines (accessed on 16 June 2025).
- Trevizani, J. Ozonation and Sodium Persulfate Oxidation of the Azo Dye Reactive Black 5: Kinetics, Byproduct Formation, and Response Surface Methodology. Ph.D. Thesis, Federal University of Paraná: Curitiba, Brazil, 2019. [Google Scholar]
- Trevizani, J.L.B.; Nagalli, A.; Passig, F.H.; de Carvalho, K.Q.; Schiavon, G.J.; Model, A.N. Influence of pH and concentration on the decolorization and degradation of BR red azo dye by ozonation. Acta Sci.—Technol. 2018, 40, 35436. [Google Scholar] [CrossRef]
- Scandelai, A.P.J.; Cardozo Filho, L.; Martins, D.C.C.; Freitas, T.K.F.d.S.; Garcia, J.C.; Tavares, C.R.G. Combined processes of ozonation and supercritical water oxidation for landfill leachate degradation. Waste Manag. 2018, 77, 466–476. [Google Scholar] [CrossRef]
- Duan, X.; Li, Y.; Liu, J.; Guo, G.; Fu, J.; Zhang, Q.; Zhang, S.; Liu, W. Experimental study the effects of various compression ratios and spark timing on performance and emission of a lean-burn heavy-duty spark ignition engine fueled with methane gas and hydrogen blends. Energy 2019, 169, 558–571. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Z.; Sun, W. Drag coefficient modification for turbulent gas-liquid two-phase flow in a rotodynamic pump. Chem. Eng. J. 2021, 417, 128570. [Google Scholar] [CrossRef]
- Kowalska, K.; Maniakova, G.; Carotenuto, M.; Sacco, O.; Vaiano, V.; Lofrano, G.; Rizzo, L. Removal of carbamazepine, diclofenac and trimethoprim by solar driven advanced oxidation processes in a compound triangular collector based reactor: A comparison between homogeneous and heterogeneous processes. Chemosphere 2020, 238, 124665. [Google Scholar] [CrossRef]
- Lourenção, J. Avaliação da Resistência de Microrganismos Patogênicos à Desinfecção Sequencial com Ozônio-Radiação Ultravioleta e Cloro-Radiação Ultravioleta. Ph.D. Thesis, Universidade de São Paulo, Sao Paulo, Brazil, 2009. [Google Scholar]
- Ofori, I.; Maddila, S.; Lin, J.; Jonnalagadda, S.B. Ozone initiated inactivation of Escherichia coli and Staphylococcus aureus in water: Influence of selected organic solvents prevalent in wastewaters. Chemosphere 2018, 206, 43–50. [Google Scholar] [CrossRef]
- Márquez, G.; Rodríguez, E.M.; Maldonado, M.I.; Álvarez, P.M. Integration of ozone and solar TiO2-photocatalytic oxidation for the degradation of selected pharmaceutical compounds in water and wastewater. Sep. Purif. Technol. 2014, 136, 18–26. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Z.; He, Y.; Dong, S.; Dong, F.; He, Z.; Lu, X.; Wang, L.; Song, S.; Ma, J. Metribuzin and metamitron degradation using catalytic ozonation over tourmaline: Kinetics, degradation pathway, and toxicity. Sep. Purif. Technol. 2023, 309, 123028. [Google Scholar] [CrossRef]
- Yu, X.; Kamali, M.; Van Aken, P.; Appels, L.; Van der Bruggen, B.; Dewil, R. Advanced oxidation of benzalkonium chloride in aqueous media under ozone and ozone/UV systems—Degradation kinetics and toxicity evaluation. Chem. Eng. J. 2021, 413, 127431. [Google Scholar] [CrossRef]
- Lopes, M.S. Remoção do fármaco Ácido Mefenâmico em água via oxidação por cloro e por ozônio. Bachelor’s Thesis, Universidade Estadual Paulista, Rio Claro, Brazil, 2016. [Google Scholar]
- Souza, F.G.C. Remoção de desreguladores endócrinos por fotocatálise heterogênea e ozonização. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2009. [Google Scholar]
- Presumido, P.H.; Montes, R.; Quintana, J.B.; Rodil, R.; Feliciano, M.; Puma, G.L.; Gomes, A.I.; Vilar, V.J.P. Ozone membrane contactor to intensify gas/liquid mass transfer and contaminants of emerging concern oxidation. J. Environ. Chem. Eng. 2022, 10, 108671. [Google Scholar] [CrossRef]
- Da Silva, L.M.; Jardim, W.F. Trends and strategies of ozone application in environmental problems. Química Nova 2006, 29, 310–317. [Google Scholar] [CrossRef]
- Westerterp, K.R.; Wijngaarden, R.J. Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed.; VCH: Weinheim, Germany, 2000. [Google Scholar]
- Smith, J.S.; Burns, L.F.; Valsaraj, K.T.; Thibodeaux, L.J. Bubble Column Reactors for Wastewater Treatment. 2. The Effect of Sparger Design on Sublation Column Hydrodynamics in the Homogeneous Flow Regime. Ind. Chem. Eng. Res. 1996, 35, 1700–1710. [Google Scholar] [CrossRef]
- Zaky, A.A.; Nosseir, A. Bubble injection and electrically induced hydrostatic pressure in insulating liquids subjected to non-uniform fields. J. Phys. D Appl. Phys. 1977, 10, L189. [Google Scholar] [CrossRef]
- Shin, W.-T.; Yiacoumi, S.; Tsouris, C. Experiments on Electrostatic Dispersion of Air in Water. Ind. Eng. Chem. Res. 1997, 36, 3647–3655. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Huang, C.J. Characteristics of a New Gas-Induced Reactor. AIChE J. 1996, 42, 3146–3152. [Google Scholar] [CrossRef]
- Hsu, Y.-C.; Chen, J.-T.; Yang, H.-C.; Chen, J.-H. Decolorization of Dyes Using Ozone in a Gas-Induced Reactor. React. Kinet. Catal. 2001, 47, 169–176. [Google Scholar] [CrossRef]
- Geppert, M. Avaliação da eficiência de degradação de corante amido black 10B em solução aquosa por ozonização. Bachelor’s Thesis, Universidade LaSalle, Canoas, Brazil, 2018. [Google Scholar]
- Elovitz, M.S.; Von Gunten, U. Hydroxyl Radical/Ozone Ratios During Ozonation Processes. I. The Rct Concept. Ozone Sci. Eng. 1999, 21, 239–260. [Google Scholar] [CrossRef]
- Rosal, R.; Rodríguez, A.; Perdigón-Melón, J.A.; Petre, A.; García-Calvo, E.; Gómez, M.J.; Agüera, A.; Fernández-Alba, A.R. Degradation of caffeine and identification of the transformation products generated by ozonation. Chemosphere 2009, 74, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Tay, K.S.; Rahman, N.A.; Bin Abas, M.R. Characterization of atenolol transformation products in ozonation by using rapid resolution high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. Microchem. J. 2011, 99, 312–326. [Google Scholar] [CrossRef]
- Quaresma, A.V.; Sousa, B.A.; Silva, K.T.S.; Silva, S.Q.; Werle, A.A.; Afonso, R.J.C.F. Oxidative treatments for atenolol removal in water: Elucidation by mass spectrometry and toxicity evaluation of degradation products. Rapid Commun. Mass Spectrom. 2019, 33, 303–313. [Google Scholar] [CrossRef]
- Costa, L.R.d.C.; Féris, L.A. Use of ozonation technology to combat viruses and bacteria in aquatic environments: Problems and application perspectives for SARS-CoV-2. Environ. Technol. 2022, 44, 2490–2502. [Google Scholar] [CrossRef]
- de Carvalho Costa, L.R.; Féris, L.A. Approach to Treating Contaminated Water in Flood Scenarios in Brazil: Case Study of Arroio Dilúvio. Water Air Soil Pollut. 2025, 236, 247. [Google Scholar] [CrossRef]
Ozone Flow Rate (LO3·min−1) | |||||
---|---|---|---|---|---|
0.2 | 0.4 | 0.6 | 0.8 | 1.0 | |
Ozone production (gO3·h−1) | 0.86 | 1.27 | 1.65 | 1.70 | 1.90 |
Generator performance (gO3·kWh−1) | 1.95 | 2.89 | 3.75 | 3.87 | 4.32 |
Ozone Flow Rate (LO3·min−1) | ||||||
---|---|---|---|---|---|---|
Reactor | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | |
Ozone production (gO3·h−1) | A | 0.44 | 0.86 | 1.14 | 1.48 | 1.51 |
B | 0.0065 | 0.0014 | 0.0019 | 0.022 | 0.061 | |
C | 0.16 | 0.15 | 0.14 | 0.085 | 0.10 |
Ozone Flow Rate (LO3·min−1) | ||||||
---|---|---|---|---|---|---|
0.2 | 0.4 | 0.6 | 0.8 | 1.0 | ||
Ozone production (gO3·h−1) | Total without flow division | 0.86 | 1.27 | 1.65 | 1.70 | 1.90 |
Total diving the flow | 0.60 | 1.02 | 1.29 | 1.58 | 1.68 | |
Load loss (gO3·h−1) | 0.26 | 0.25 | 0.36 | 0.12 | 0.22 | |
Load loss (%) | 30.12 | 19.87 | 21.97 | 6.99 | 11.66 |
Caffeine | Atenolol | |||
---|---|---|---|---|
Variables | Time (min) | |||
5 | 10 | 5 | 10 | |
P (gO3·h−1) | 1.23 | 1.23 | 1.23 | 1.23 |
D (mgO3·L−1) | 512.5 | 1025.0 | 512.5 | 1025.0 |
MA (mg) | 102.5 | 205.0 | 102.5 | 205.0 |
Moff-gas (mg) | 89.28 | 188.64 | 92.07 | 192.28 |
MC (mg) | 13.22 | 16.36 | 10.43 | 12.72 |
MR (mg) | 0.25 | 0.52 | 0.213 | 0.32 |
MT (mg) | 13.47 | 16.88 | 10.64 | 13.04 |
MP (mg) | 192.03 | 394.16 | 194.78 | 397.60 |
%T | 7.01 | 4.28 | 5.46 | 3.28 |
%C | 6.88 | 4.15 | 5.36 | 3.20 |
[O3]C (mgO3·L−1) | 66.10 | 81.8 | 52.15 | 63.6 |
[O3]R (mgO3·L−1) | 1.24 | 2.61 | 1.07 | 1.58 |
[O3]off-gas (mgO3·L−1) | 446.4 | 943.20 | 460.35 | 961.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho Costa, L.R.; Toffoli de Oliveira, J.; Amaral Féris, L. Optimization of a Compact Corona Discharge Ozone Generator for Emergency Water Treatment in Brazil. Water 2025, 17, 2430. https://doi.org/10.3390/w17162430
de Carvalho Costa LR, Toffoli de Oliveira J, Amaral Féris L. Optimization of a Compact Corona Discharge Ozone Generator for Emergency Water Treatment in Brazil. Water. 2025; 17(16):2430. https://doi.org/10.3390/w17162430
Chicago/Turabian Stylede Carvalho Costa, Letícia Reggiane, Júlia Toffoli de Oliveira, and Liliana Amaral Féris. 2025. "Optimization of a Compact Corona Discharge Ozone Generator for Emergency Water Treatment in Brazil" Water 17, no. 16: 2430. https://doi.org/10.3390/w17162430
APA Stylede Carvalho Costa, L. R., Toffoli de Oliveira, J., & Amaral Féris, L. (2025). Optimization of a Compact Corona Discharge Ozone Generator for Emergency Water Treatment in Brazil. Water, 17(16), 2430. https://doi.org/10.3390/w17162430