Multi-Model Analyses of Spatiotemporal Variations of Water Resources in Central Asia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data and Processing
2.3. Methodology
2.3.1. Relative Change Analysis
2.3.2. Trend Analysis
2.3.3. Geographically Weighted Regression
3. Results
3.1. Long-Term Mean Runoff in Central Asia
3.2. Trend Analysis of Runoff in Central Asia
3.3. Influencing Factors
4. Discussion
4.1. Model Selection and Uncertainty
4.2. Spatial Heterogeneity of Influencing Factors
4.3. Implications for Water Resources Management and Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, G.; Yong, L.; Zhao, X.; Liu, Y.; Zhang, Z.; Xu, Y.; Sun, Z.; Sang, L.; Wang, L. Evaporation, Infiltration and Storage of Soil Water in Different Vegetation Zones in the Qilian Mountains: A Stable Isotope Perspective. Hydrol. Earth Syst. Sci. 2022, 26, 3771–3784. [Google Scholar] [CrossRef]
- Wada, Y.; Bierkens, M.F.P.; De Roo, A.; Dirmeyer, P.A.; Famiglietti, J.S.; Hanasaki, N.; Konar, M.; Liu, J.; Schmied, H.M.; Oki, T.; et al. Human-Water Interface in Hydrological Modelling: Current Status and Future Directions. Hydrol. Earth Syst. Sci. 2017, 21, 4169–4193. [Google Scholar] [CrossRef]
- Punkari, M.; Droogers, P.; Immerzeel, W.; Korhonen, N.; Lutz, A.; Venäläinen, A. Climate Change and Sustainable Water Management in Central Asia. ADB Cent. West Asia Work. Pap. Ser. 2014, 5, 9. [Google Scholar]
- Liu, W.; Wang, Y.; Huang, J.; Zhu, W. Assessment on the Sustainability of Water Resources Utilization in Central Asia Based on Water Resources Carrying Capacity. J. Geogr. Sci. 2023, 33, 1967–1988. [Google Scholar] [CrossRef]
- Berndtsson, R.; Tussupova, K. The Future of Water Management in Central Asia. Water 2020, 12, 2241. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, C.; Hu, Q.; Tian, H. Temperature Changes in Central Asia from 1979 to 2011 Based on Multiple Datasets. J. Clim. 2014, 27, 1143–1167. [Google Scholar] [CrossRef]
- Wu, X.; Tang, W.; Chen, F.; Wang, S.; Bakhtiyorov, Z.; Liu, Y.; Guan, Y. Attribution and Risk Projections of Hydrological Drought Over Water-Scarce Central Asia. Earth Future 2025, 13, e2024EF005243. [Google Scholar] [CrossRef]
- Chatalova, L.; Djanibekov, N.; Gagalyuk, T.; Valentinov, V. The Paradox of Water Management Projects in Central Asia: An Institutionalist Perspective. Water 2017, 9, 300. [Google Scholar] [CrossRef]
- Beltran-Pea, A.; Rosa, L.; D’Odorico, P. Global Food Self-Sufficiency in the 21st Century under Sustainable Intensification of Agriculture. Environ. Res. Lett. 2020, 15, 095004. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Leggieri, A.; Calisi, A.; De Caroli, M. Impact of Climate Change on Agroecosystems and Potential Adaptation Strategies. Land 2023, 12, 1117. [Google Scholar] [CrossRef]
- Bolch, T. Hydrology: Asian Glaciers Are a Reliable Water Source. Nature 2017, 545, 161–162. [Google Scholar] [CrossRef]
- Yu, Y.; Pi, Y.; Yu, X.; Ta, Z.; Sun, L.; Disse, M.; Zeng, F.; Li, Y.; Chen, X.; Yu, R. Climate Change, Water Resources and Sustainable Development in the Arid and Semi-Arid Lands of Central Asia in the Past 30 Years. J. Arid Land 2019, 11, 1–14. [Google Scholar] [CrossRef]
- Micklin, P.P. Desiccation of the Aral Aea: A Water Management Disaster in the Soviet Union. Science 1988, 241, 1170–1176. [Google Scholar] [CrossRef] [PubMed]
- Sadyrov, S.; Tanaka, K.; Satylkanov, R.; Khujanazarov, T.; Touge, Y.; Fujita, K. Modelling Runoff Components and Hydrological Processes in Glaciated Catchments of the Inner Tien-Shan, Kyrgyzstan. Front. Earth Sci. 2023, 11, 1–18. [Google Scholar] [CrossRef]
- Reyisha, J.; Issanova, G.; Jilili, A. Water Environment and Water Resource Use Issues of Kazakhstan. Arid Land Geogr. 2018, 41, 518–527. [Google Scholar] [CrossRef]
- Yao, J.; Liu, Z.; Zhang, W.; Hu, W. Water Resources and Utilization in Turkmenistan. J. Desert Res. 2014, 34, 885–892. [Google Scholar]
- Deng, M.; Long, A.; Zhang, Y.; Li, X.; Lei, Y. Assessment of Water Resources Development and Utilization in the Five Central Asia Countries. Adv. Earth Sci. 2010, 25, 1347–1356. [Google Scholar]
- Issanova, G.; Jilili, R.; Abuduwaili, J.; Kaldybayev, A.; Saparov, G.; Yongxiao, G. Water Availability and State of Water Resources within Water-Economic Basins in Kazakhstan. Paddy Water Environ. 2018, 16, 183–191. [Google Scholar] [CrossRef]
- Long, A.; Deng, M.; Xie, L.; Li, X.; Wang, J.; Su, H.; Wu, S. Exploring Analysis on the Adaptive Countermeasures to Water Resources Evolvement under the Climate Change in Xinjiang and Aral Sea Basin. Arid Land Geogr. 2012, 35, 377–387. [Google Scholar] [CrossRef]
- Malsy, M.; Aus Der Beek, T.; Eisner, S.; Flörke, M. Climate Change Impacts on Central Asian Water Resources. Adv. Geosci. 2012, 32, 77–83. [Google Scholar] [CrossRef]
- Gulakhmadov, A.; Chen, X.; Gulahmadov, N.; Liu, T.; Anjum, M.N.; Rizwan, M. Simulation of the Potential Impacts of Projected Climate Change on Streamflow in the Vakhsh River Basin in Central Asia under CMIP5 RCP Scenarios. Water 2020, 12, 1426. [Google Scholar] [CrossRef]
- Warszawski, L.; Frieler, K.; Huber, V.; Piontek, F.; Serdeczny, O.; Schewe, J. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project Framework. Proc. Natl. Acad. Sci. USA 2014, 111, 3228–3232. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Davie, J.C.S.; Falloon, P.D.; Kahana, R.; Dankers, R.; Betts, R.; Portmann, F.T.; Wisser, D.; Clark, D.B.; Ito, A.; Masaki, Y.; et al. Comparing Projections of Future Changes in Runoff from Hydrological and Biome Models in ISI-MIP. Earth Syst. Dyn. 2013, 4, 359–374. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.A.; Stigter, E.E.; Yao, T.; Immerzeel, W.W. Climate Change Decisive for Asia’s Snow Meltwater Supply. Nat. Clim. Change 2021, 11, 591–597. [Google Scholar] [CrossRef]
- Mo, G.; Feng, J.; Bai, L.; Wang, Z.; Li, H.; Yu, T. Spatio-Temporal Dynamic Characteristics of Surface Water Resources in Arid Regions of Central Asia from 2001 to 2018. Sci. Geogr. Sin. 2022, 42, 174–184. [Google Scholar] [CrossRef]
- Zomer, R.J.; Xu, J.; Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 2022, 9, 409. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, Y.; Fang, G.; Li, Y. Multivariate Assessment and Attribution of Droughts in Central Asia. Sci. Rep. 2017, 7, 1316. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, C.; Arnell, N.W.; Ebi, K.L.; Lotze-Campen, H.; Raes, F.; Rapley, C.; Smith, M.S.; Cramer, W.; Frieler, K.; Reyer, C.P.O.; et al. Assessing Inter-Sectoral Climate Change Risks: The Role of ISIMIP. Environ. Res. Lett. 2017, 12, 010301. [Google Scholar] [CrossRef]
- Hanasaki, N.; Kanae, S.; Oki, T.; Masuda, K.; Motoya, K.; Shirakawa, N.; Shen, Y.; Tanaka, K. An Integrated Model for the Assessment of Global Water Resources—Part 2: Applications and Assessments. Hydrol. Earth Syst. Sci. 2008, 12, 1027–1037. [Google Scholar] [CrossRef]
- Hanasaki, N.; Kanae, S.; Oki, T.; Masuda, K.; Motoya, K.; Shirakawa, N.; Shen, Y.; Tanaka, K. An Integrated Model for the Assessment of Global Water Resources—Part 1: Model Description and Input Meteorological Forcing. Hydrol. Earth Syst. Sci. 2008, 12, 1007–1025. [Google Scholar] [CrossRef]
- Muller Schmied, H.; Adam, L.; Eisner, S.; Fink, G.; Florke, M.; Kim, H.; Oki, T.; Theodor Portmann, F.; Reinecke, R.; Riedel, C.; et al. Variations of Global and Continental Water Balance Components as Impacted by Climate Forcing Uncertainty and Human Water Use. Hydrol. Earth Syst. Sci. 2016, 20, 2877–2898. [Google Scholar] [CrossRef]
- Yokohata, T.; Kinoshita, T.; Sakurai, G.; Pokhrel, Y.; Ito, A.; Okada, M.; Satoh, Y.; Kato, E.; Nitta, T.; Fujimori, S.; et al. MIROC-INTEG-LAND Version 1: A Global Biogeochemical Land Surface Model with Human Water Management, Crop Growth, and Land-Use Change. Geosci. Model Dev. 2020, 13, 1–57. [Google Scholar] [CrossRef]
- Wang, H.M.; Chen, J.; Xu, C.Y.; Zhang, J.; Chen, H. A Framework to Quantify the Uncertainty Contribution of GCMs Over Multiple Sources in Hydrological Impacts of Climate Change. Earth Future 2020, 8, e2020EF001602. [Google Scholar] [CrossRef]
- Mohammad, L.; Mondal, I.; Bandyopadhyay, J.; Pham, Q.B.; Nguyen, X.C.; Dinh, C.D.; Al-Quraishi, A.M.F. Assessment of Spatio-Temporal Trends of Satellite-Based Aerosol Optical Depth Using Mann–Kendall Test and Sen’s Slope Estimator Model. Geomat. Nat. Hazards Risk 2022, 13, 1270–1298. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Şen, Z. Innovative Trend Analysis Methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Bevan, J.M.; Kendall, M.G. Rank Correlation Methods. J. R. Stat. Soc. Ser. D (Stat.) 1971, 20, 74. [Google Scholar] [CrossRef]
- Brunsdont, C.; Fotheringham, S.; Charlton, M. Geographically Weighted Regression—Modelling Spatial Non-Stationarity. J. R. Stat. Soc. Ser. D Stat. 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Ren, J.; Ma, R.; Huang, Y.; Wang, Q.; Guo, J.; Li, C.; Zhou, W. Identifying the Trade-Offs and Synergies of Land Use Functions and Their Influencing Factors of Lanzhou-Xining Urban Agglomeration in the Upper Reaches of Yellow River Basin, China. Ecol. Indic. 2024, 158, 111279. [Google Scholar] [CrossRef]
- Bierkens, M.F.P. Global Hydrology 2015: State, Trends, and Directions. Water Resour. Res. 2015, 51, 4923–4947. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, K.; Sheng, Z.; Xu, X.; Zhou, Y.; Wang, G.; Tian, W. Comparing Multi-Source Runoff Data in Different Watersheds across China. Geogr. Res. 2024, 43, 1004–1017. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Boulange, J.; Do, H.X.; Gosling, S.N.; Grillakis, M.G.; Koutroulis, A.G.; Leonard, M.; Liu, J.; Schmied, H.M.; Papadimitriou, L.; et al. Globally Observed Trends in Mean and Extreme River Flow Attributed to Climate Change. Science 2021, 371, 1159–1162. [Google Scholar] [CrossRef]
- He, Z.; Shook, K.; Spence, C.; Pomeroy, J.W.; Whitfield, C. Modelling the Regional Sensitivity of Snowmelt, Soil Moisture, and Streamflow Generation to Climate over the Canadian Prairies Using a Basin Classification Approach. Hydrol. Earth Syst. Sci. 2023, 27, 1–31. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Woods, R.A.; Hrachowitz, M. A Precipitation Shift from Snow towards Rain Leads to a Decrease in Streamflow. Nat. Clim. Change 2014, 4, 583–586. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Deng, H.; Fang, G.; Li, Z. Changes in Central Asia’s Water Tower: Past, Present and Future. Sci. Rep. 2016, 6, 35458. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Y.; Li, Z.; Fang, G.; Xiang, Y.; Li, Y.; Ji, H. Recent Changes in Water Discharge in Snow and Glacier Melt-Dominated Rivers in the Tienshan Mountains, Central Asia. Remote Sens. 2020, 12, 2704. [Google Scholar] [CrossRef]
- Narama, C.; Kääb, A.; Duishonakunov, M.; Abdrakhmatov, K. Spatial Variability of Recent Glacier Area Changes in the Tien Shan Mountains, Central Asia, Using Corona (~1970), Landsat (~2000), and ALOS (~2007) Satellite Data. Glob. Planet. Change 2010, 71, 42–54. [Google Scholar] [CrossRef]
- Hagg, W.; Braun, L.N.; Kuhn, M.; Nesgaard, T.I. Modelling of Hydrological Response to Climate Change in Glacierized Central Asian Catchments. J. Hydrol. 2007, 332, 40–53. [Google Scholar] [CrossRef]
- Fan, J.; Wang, D.; Zhao, Y.; Zhou, X.; Cheng, Y.; Xu, F.; Wei, S.; Liu, H. Spatiotemporal Geographically Weighted Regression Analysis for Runoff Variations in the Weihe River Basin. J. Environ. Manag. 2024, 366, 121908. [Google Scholar] [CrossRef]
- Han, S.; Xin, P.; Li, H.; Yang, Y. Evolution of Agricultural Development and Land-Water-Food Nexus in Central Asia. Agric. Water Manag. 2022, 273, 107874. [Google Scholar] [CrossRef]
- Huang, W.; Duan, W.; Chen, Y. Rapidly Declining Surface and Terrestrial Water Resources in Central Asia Driven by Socio-Economic and Climatic Changes. Sci. Total Environ. 2021, 784, 147193. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Long, A.; Zhang, Y.; Li, X.; Lei, Y. An Analysis of the Explitation, Cooperation and Problems of Transboundary Water Resources in the Five Central Asian Countries. Adv. Earth Sci. 2010, 25, 1337–1346. [Google Scholar]
Classification | Secondary Classification | Description |
---|---|---|
Model | H08 | Two representative global hydrological models and one representative land surface model. |
WaterGAP2-2e | ||
MIROC-INTEG-LAND | ||
GCMs | GFDL-ESM4 | Using multi-model ensemble of five CMIP6 climate models in ISIMIP3b. |
IPSL-CM6A-LR | ||
MPI-ESM1-2-HR | ||
MRI-ESM2-0 | ||
UKESM1-0-LL | ||
Scenarios | historical + histsoc | histsoc: Time-varying, historical socio-economic scenarios. 2015 soc: Fixed year-2015 direct human influences. |
SSP126 + 2015 soc | ||
SSP370 + 2015 soc | ||
SSP585 +2015 soc |
Model | Evapotranspiration Scheme | Snow Scheme | Groundwater Scheme | Runoff Scheme | River Routing Scheme | Human Water Use | CO2 Effect | Reference |
---|---|---|---|---|---|---|---|---|
H08 | Bulk formulation | Energy balance method | Explicit (renewable and nonrenewable reservoirs) | Saturation excess, baseflow | Linear reservoir model | Irrigation | No | [31,32] |
WaterGAP 2-2e | Priestley–Taylor with varying alpha values for arid and humid areas | Degree-day method | Explicit (single reservoir) | Saturation excess, beta function | Linear reservoir cascade | Irrigation, domestic electricity, manufacturing, livestock | No | [33] |
MIROC-INTEG-LAND | Penman–Monteith formulation | Energy balance method | Implicit (assumed to be handled within the soil moisture) | Saturation excess, baseflow | Kinematic wave model | Irrigation, domestic, industry | Yes | [34] |
Indicators | H08 | WaterGAP2-2e | MIROC-INTEG-LAND | |||
---|---|---|---|---|---|---|
OLS | GWR | OLS | GWR | OLS | GWR | |
Sigma | 37.40 | 13.91 | 102.60 | 77.55 | 19.89 | 11.37 |
R2 | 0.6142 | 0.9649 | 0.3531 | 0.7075 | 0.4921 | 0.8870 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Tan, L.; Liu, X.; Aldiyarova, A.; Tungatar, D.; Liu, W. Multi-Model Analyses of Spatiotemporal Variations of Water Resources in Central Asia. Water 2025, 17, 2423. https://doi.org/10.3390/w17162423
Zhao Y, Tan L, Liu X, Aldiyarova A, Tungatar D, Liu W. Multi-Model Analyses of Spatiotemporal Variations of Water Resources in Central Asia. Water. 2025; 17(16):2423. https://doi.org/10.3390/w17162423
Chicago/Turabian StyleZhao, Yilin, Lu Tan, Xixi Liu, Ainura Aldiyarova, Dana Tungatar, and Wenfeng Liu. 2025. "Multi-Model Analyses of Spatiotemporal Variations of Water Resources in Central Asia" Water 17, no. 16: 2423. https://doi.org/10.3390/w17162423
APA StyleZhao, Y., Tan, L., Liu, X., Aldiyarova, A., Tungatar, D., & Liu, W. (2025). Multi-Model Analyses of Spatiotemporal Variations of Water Resources in Central Asia. Water, 17(16), 2423. https://doi.org/10.3390/w17162423